
85 Devonshire Street, 5th Floor, Boston, MA 02109 • Phone 617.742.5200 • Fax 617.742.1028 •
 www.psgroup.com

Patricia Seybold Group
S t r a t e g i c T e c h n o l o g i e s , B e s t P r a c t i c e s , B u s i n e s s S o l u t i o n s

Selecting
Enterprise JavaBeans
Technology

By Anne Thomas
July 1998

Prepared for WebLogic, Inc.

Patricia Seybold Group © 1998 i

Selecting Enterprise JavaBeans Technology

ii Patricia Seybold Group © 1998

Table of Contents

 Executive Summary ... 2

Enterprise JavaBeans Technology .. 3

Introduction to Enterprise Java ... 5

Java Platform for the Enterprise ... 5

EJB Value Proposition.. 8

Evaluating an EJB Server ... 12

Comprehensive Support for EJB .. 12

Comprehensive support for Enterprise APIs .. 17

Client Support ... 18

The Power of Choice .. 18

EJB Scalability and Reliability ... 19

EJB Management .. 21

WebLogic Tengah... 22

The Bottom Line ... 26

Illustrations

Typical JPE/EJB Environment ..4

Changing Transaction Semantics.. 11

Tengah Architecture.. 24

Patricia Seybold Group © 1998 1

Patricia Seybold Group © 1998 2

Selecting Enterprise
JavaBeans Technology

By Anne Thomas, Patricia Seybold Group
July 1998
Prepared for WebLogic, Inc.

Executive Summary

Enterprise JavaBeans (EJB) provides services to network-enable applications so
that they may be easily deployed on intranets, extranets, and the Internet. EJB is a
standard server component model for Java application servers. The component
model allows server-side Java application components to be deployed in any
application server that supports the EJB specification. EJB supports a new
approach to application development based on rapid component assembly. EJB
server components are reusable, prepackaged pieces of application functionality
that can be combined with other components to create customized application
systems.

EJB also provides an integrated application framework that dramatically
simplifies the process of developing enterprise-class application systems. The EJB
server automatically manages a number of tricky middleware services on behalf of
the application components. EJB component builders can concentrate on writing
business logic rather than complex middleware. As a result, applications are
developed more quickly and the code is of better quality.

The EJB server component model is completely vendor-independent. Any
application server vendor can add support for EJB components, and in fact, most
vendors are doing just that. The EJB specification was published in March 1998.
Within minutes, fifteen application server vendors announced plans to implement
support for EJB. EJB-compliant application servers are available now, and the
application assembly process works. By the end of 1998 there should be about a
dozen products to choose from.

Enterprise
JavaBeans

Simplifying
Development

Universal Support
for EJB

Selecting Enterprise JavaBeans Technology

Patricia Seybold Group © 1998 3

WebLogic was the first Java application server vendor to release full support for
EJB. Tengah is a highly scalable, general-purpose application server that supports
both Web-based and desktop applications. Tengah was specifically designed to
support the application component assembly approach, and the system provides a
very clean implementation of the EJB specification. For those looking to reduce
costs, improve quality, and build applications quickly (and who isn’t?), EJB is the
way to go. Tengah provides an excellent EJB host.

Enterprise JavaBeans Technology

Enterprise JavaBeans (EJB) technology is an integral component of Sun’s Java
Platform for the Enterprise (JPE). EJB defines a standard set of programming
interfaces for a Java application server. The standard interfaces are based on
server component technology, which supports rapid development and reusability.
The EJB component model dramatically simplifies enterprise-class application
development by automating complex middleware services. The EJB model also
defines a standard programming API to allow application components to be ported
and used in any application server without code modification.

JPE and EJB together form a powerful enterprise operating environment that
combines the best features of centralized mainframe-based computing with the
Web and client/server. Illustration 1 provides an overview of a typical JPE
environment. An EJB server can support traditional desktop LAN clients, Web
clients, and Internet appliances and devices. Application logic is deployed as
server components within an EJB application server. Components can access both
new and legacy environments, including applications, databases, files, datafeeds,
and unstructured data.

Sun Microsystems published the EJB specification in March 1998, and within
minutes, fifteen Java application server vendors had announced plans to
implement support for EJB in their products. The EJB specification defines a very
comprehensive model, but it does not define implementation details. Therefore
vendors have the opportunity to differentiate their products through special
features and services.

This paper defines the key requirements of an EJB application server and provides
sufficient evaluation criteria to enable a discriminating buyer to select an
appropriate Java application server that fits the needs of a particular organization.
Table 1 outlines the key characteristics that should be available in an EJB
implementation. These characteristics are defined in detail in the remainder of the
report.

WebLogic Tengah

Java Application
Servers

Combining the
Best of the
Mainframe, the
Web, and
Client/Server

Implementing EJB

Key Requirements

Selecting Enterprise JavaBeans Technology

4 Patricia Seybold Group © 1998

Typical JPE/EJB Environment

Telephony

Web
Browser

Kiosk

Smartcard
Reader

Smartcard

EJB Application Server

Touch Screen

LAN

Internet
Device

Legacy
Applications

DB

Datafeed

Files

Illustration 1. A typical JPE/EJB environment can support a variety of client environments, including
desktop clients connected through a LAN, Web browser clients, telephony clients, kiosks, smartcards,
and other Internet devices. Business logic is implemented as reusable application components deployed
in the EJB application server. These components have complete access to all types of data and
applications, including relational and non-relational databases, flat files, live datafeeds, unstructured
data, and legacy applications.

Requirement Reasoning

Comprehensive EJB
Support

EJB dramatically simplifies development and supports portability and reusability. An EJB
server should provide full support for all EBJ features and services to ensure the most
benefit.

Comprehensive JPE
Support

JPE defines a standard set of interfaces to a variety of middleware services. These interfaces
can be used to network-enable applications, uniting web, database, and distributed
components. JPE supports portability and reusability. EJB does not require full support for
all of the JPE APIs, but the portability and reusability benefit is compromised if an
application server uses proprietary APIs.

Non-Proprietary An EJB server and the EJB applications that run within it should be completely independent
from any operating system, Java platform, database, development tool, client connection,
integration service, or middleware infrastructure. Proprietary technologies limit flexibility,
portability, and reusability and ruin any chance of using off-the-shelf application
components.

Robust Environment Enterprise applications require a robust execution environment that supports high
performance and scalability, comprehensive security, and bulletproof reliability.

Comprehensive
Management

Distributed application systems consist of many small components that can be scattered
across many different systems. The management requirements for this type of environment
are more complex than for any others. A conceptually centralized management system that
coordinates the entire distributed environment is required.

Table 1. The key characteristics that should be supported by an EJB server.

Selecting Enterprise JavaBeans Technology

Patricia Seybold Group © 1998 5

Introduction to Enterprise Java

Java Platform for the Enterprise

Sun Microsystem’s Java Platform for the Enterprise (JPE) provides a foundation
for the development and deployment of Java-based enterprise-class application
systems. JPE elevates Java to a serious application development language capable
of supporting mission-critical distributed enterprise application systems.
Enterprise JavaBeans (EJB) is an essential piece of the complete JPE
environment. EJB defines a model to support the development and deployment of
server-side Java application components.

The term enterprise implies an extremely robust application environment.
Enterprise-class computing requires the highest caliber scalability, availability,
reliability, security, and integrity. In order to achieve this level of performance and
quality of service, enterprise applications require access to a core set of distributed
infrastructure services, including management, naming, security, transactions, and
persistent data stores.

The Java Platform for the Enterprise defines nine Java APIs that enable Java
applications to access the above mentioned core enterprise-class infrastructure
services through a set of standard programming interfaces. Table 2 briefly
describes the APIs. The JPE APIs also enable development, deployment, and
management tools to more easily integrate with infrastructure services and
application servers. Unlike most standards efforts, JPE does not require a new set
of infrastructure services. The JPE APIs were designed to make use of the
infrastructure services that are already in place. The JPE APIs simply provide a
new programming interface to the existing services.

The JPE APIs, and the EJB API in particular, are designed to deliver two critical
benefits: portability and productivity. The JPE APIs allow enterprise applications
to be ported from one set of infrastructure services to another without
modification. The EJB API extends the portability model to also include
application servers.

The EJB API provides numerous automatic services that significantly simplify the
enterprise application development process. Developing well-behaved enterprise-
class application systems that perform and scale is quite hard. Developers often
spend more time writing middleware code than business logic. The EJB API
completely automates many complex middleware services, such as naming,
distribution, lifecycle, transactions, security, state management, and persistence.
With EJB, developers can concentrate on the business rather than the middleware.

Supporting
Enterprise-Class
Applications

Enterprise-class
Computing

JPE APIs

Portability and
Productivity

Simplifying
Middleware

Selecting Enterprise JavaBeans Technology

6 Patricia Seybold Group © 1998

API Description

EJB Enterprise JavaBeans is a server component model that provides portability across application
servers and implements automatic services on behalf of the application components.

JNDI Java Naming and Directory Interface provides access to naming and directory services, such
as DNS, NDS, LDAP, and CORBA naming.

RMI Remote Method Invocation creates remote interfaces for Java-to-Java communications.

Java IDL Java Interface Definition Language creates remote interfaces to support Java-to-CORBA
communications. Java IDL includes an IDL-to-Java compiler and a lightweight ORB that
supports IIOP.

Servlets and JSP Java Servlets and Java Server Pages support dynamic HTML generation and session
management for browser clients.

JMS Java Messaging Service supports asynchronous communications through various messaging
systems, such as reliable queuing and publish-and-subscribe services.

JTA Java Transaction API provides a transaction demarcation API.

JTS Java Transaction Service defines a distributed transaction management service based on
CORBA Object Transaction Service.

JDBC JDBC Database Access provides uniform access to relational databases, such as DB2,
Informix, Oracle, SQL Server, and Sybase.

Table 2. The Java Platform for the Enterprise APIs.

One of the primary tenets of Java is to support application portability. Java’s
universal theme is “write once, run anywhere.” The Java virtual machine (JVM)
provides a common execution environment that allows a Java application to run
on any operating system. But the distributed infrastructure services are often
separate from the underlying operating systems. Organizations can use any
number of different products and configurations from multiple vendors to
implement the infrastructure services. The JPE APIs extend the JVM, enabling
applications to be completely portable across multiple infrastructures.

For example, the Java Naming and Directory Interface (JNDI) API allows a Java
application to use one common interface to access any naming or directory
service. A Java application can use an LDAP directory on one system and a
CORBA naming service on another system, without changing any code.

One of the most critical aspects of enterprise computing is scalability. The Internet
has added a new dimension to the concept of high-volume application systems.
Internet applications may need to support hundreds of thousands, if not millions,
of concurrent users, therefore enterprise Java applications will often be required to
scale to unprecedented proportions. The most effective way to achieve scalability
is by distributing the processing load across multiple processors while efficiently
managing and recycling scarce system resources. Scarce system resources include
operating system processes and threads, database connections, and network
sessions. All of these resources are expensive to create and, once created,

Portability Across
Infrastructures

Application
Servers

Selecting Enterprise JavaBeans Technology

Patricia Seybold Group © 1998 7

consume large amounts of memory. To achieve optimal performance, these
resources should be created once and then saved and recycled for subsequent
requests. An application server provides a runtime environment that recycles these
scarce and expensive system resources.

A growing number of vendors are now offering application servers specifically
designed to support Java applications. Application servers can come in a variety
of different forms, such as Web servers, TP Monitors, or database servers. Each
Java application server (JAS) offers a slightly different set of capabilities, so
selecting a vendor requires some investigation and analysis. As a general rule, a
JAS provides an optimized execution environment that supports automatic
management of scarce resources. But each product offers different advantages and
disadvantages. For example:

• Some systems offer simplicity while others offer extremely sophisticated
tuning features.

• Some systems provide integrated development tools.

• Some systems supply special data access or persistence services.

• Some systems are available on limited platforms while others provide broad
platform support.

• Some systems focus purely on Internet applications while others support
multiple client environments.

• Some application servers support only Java while others support multiple
languages.

• Some systems support bulletproof fault tolerance and recoverability.

• Some systems will scale more than others.

• Some systems use proprietary APIs while others support portability through
JPE and EJB.

 Traditionally, application servers have always been proprietary. Each application
server would supply its own APIs enabling the application server to control and
manage the execution of the server applications. An application developed for one
application server could not be ported to another application server without
extensive rewrites. For example, an application developed for Tuxedo can’t run in
Microsoft Transaction Server.

 JPE aims to support complete portability— across platforms, across infrastructure
services, and even across application servers. By using the JPE APIs, an
application can operate in any environment. The JPE APIs define a standard
vendor-independent interface between a Java application and any middleware
service. The Enterprise JavaBeans specification defines a standard vendor-
independent interface between a Java server component and any Java application

Emerging JAS
Market

 Proprietary APIs

 Standard APIs

Selecting Enterprise JavaBeans Technology

8 Patricia Seybold Group © 1998

server. Any EJB-compliant application can execute in any vendor’s EJB-
compliant Java application server.

 EJB Value Proposition

 Portability provides vendor independence, and while many users appreciate this
benefit, it probably isn’t enough to convince the world to adopt Enterprise
JavaBeans. But EJB provides quite a few other benefits related to reusability and
increased productivity.

 Since the first inception of object-oriented technology in the late 1960s, object
proponents have promised code reusability. According to the vision, business
objects providing discrete application functions will be available from a variety of
vendors. Users will be able to buy these off-the-shelf objects and rapidly assemble
customized business applications.

 To a certain extent, this vision is already a reality. The vision is made possible by
components. Components are objects that are designed specifically to support
reusability. Unlike class libraries and other objects, components can be
customized without modification of the source code. Components support
codeless customization through a set of properties that are external to the code
within the class. Therefore a single object source can be used in a variety of ways
in different applications. This approach reduces the effort required to manage,
test, debug, and maintain objects.

 Quite a few vendors provide reusable development components, such as ActiveX
controls and JavaBeans. Development components are reusable widgets and tools
that can be used in numerous application development tools. Development
components range in functionality from simple buttons to complex spreadsheets
or financial calculators.

 But development components only provide a portion of a complete business
function. According to the vision, a business object supplies a discrete business
function, such as order processing or account management.

 Thus far, the plug-and-play business object marketplace has been slow to develop.
To date, the most popular approach to delivering server-side business object
reusability is to use frameworks. A framework is a skeletal implementation of an
application that provides a core set of functions and capabilities. The application
skeleton is based on a predefined object model, and it implements a set of
interrelated abstract classes to represent the object model. Developers flesh out the
skeleton by subclassing the abstract classes and writing custom business methods.
A framework saves a lot of time compared with building an application from
scratch, but the customization process can still take quite a bit of time.

 EJB Benefits

 Business Object
Reusability

 Components

 Development
Components

 Discrete Business
Functions

 Frameworks

Selecting Enterprise JavaBeans Technology

Patricia Seybold Group © 1998 9

 EJB applies the reusability characteristics of components to server-side business
objects. EJB enables software developers to build application functionality into
small-grained business objects that can be used and reused in a variety of
configurations.

 EJB server components are reusable, prepackaged pieces of application
functionality that can be deployed in an EJB-compliant application server. EJB
server components offer a tremendous number of productivity and flexibility
advantages over frameworks, including:

• Store-Bought Business Objects. Server-side components offer complete
business object functionality. A framework is generally only 40–60 percent
complete, while a server component is generally ready for deployment.
Assuming that the component comes from a reputable vendor, the code will be
fully tested, debugged, and ready to go.

• Customization. As with development components, developers can customize
the behavior of a server component through properties without modifying the
source code. Although there are limitations to the customization capabilities
available through a property table, the environment can be very flexible. For
example, properties could be used to define customizable business rules.

• Plug-and-Play Application Assembly. Server components from different
vendors can be combined to create custom application systems. Components
could be sold as individual business objects, as a group of related business
objects, or as a complete integrated application.

• Deployment Options. Because EJB supports complete portability across
application servers, EJB users have limitless deployment options. As
application requirements grow and change, components can be redeployed
onto larger and more powerful systems.

 Obviously, using store-bought business objects is more productive than building
an entire application from scratch. But the productivity benefits don’t end there.
Perhaps the most valuable benefit of Enterprise JavaBeans is that the environment
makes it much easier to build sharable, scalable, distributed application systems.
Enterprise-class application systems are much harder to develop than simple
client/server applications. In most cases, enterprise applications must be highly
scalable, reliable, secure, and transactional.

 An EJB application server supplies a set of implicit services that automatically
manages the complex issues of distributed object computing. Lifecycle,
multithreading, load balancing, session state, fault recovery, concurrency,
synchronization, transactions, security, and persistence are all managed by the
EJB application server on behalf of the application component. Enterprise
JavaBeans greatly reduces the amount of code that needs to be developed in each

 Reusable Server
Components

 Server Component
Advantages

 Productivity
Advantages

 Implicit Services

Selecting Enterprise JavaBeans Technology

10 Patricia Seybold Group © 1998

Java server component. EJB developers write simple Java classes as if they were
to be used by a single user. EJB then ensures that the components behave properly
in the shared, multi-user environment.

 EJB uses an innovative technique to define the semantics of a component’s
behavior. One of the more challenging issues that stymies business object
reusability is allowing a business object to behave differently in different
situations without modifying the business object code. Component systems
support codeless behavior modification using attributes. The semantics of an
application can be defined in a set of attributes that are separate from the
application code. By separating the semantics from the application code, a single
component can behave differently in different applications. A user of the
component can change the behavior of the component by changing the value of
the attributes when the components are assembled into an application system and
deployed in an application server. EJB provides a standard mechanism to use
attributes to dynamically define lifecycle, transaction, security, and persistence
behavior in EJB applications.

 Illustration 2 further explains this concept. The Account object represents a
consumer bank account. The object supports fairly straightforward banking
operations such as GetAccountBalance, Deposit, and Withdraw. In the first
scenario, a client application interacts directly with the Account object. In this
case, the Account object starts and completes a transaction on each method call. In
the second scenario, a Teller object provides an interface between the client and
the Account object to implement added control and add support for a Transfer
operation. In this case, the Teller object starts the transaction and the two Account
objects enroll in the transaction started by the Teller object. Because the
transaction semantics of the Account object are defined as attributes, the same
Account object can be used in both scenarios without modification of any
application code.

 Component technology is also very useful as a means to integrate new application
systems with the legacy environment. Components can be used to build reusable
interfaces to existing applications, such as CICS mainframe transactions or
enterprise resource planning (ERP) systems. Through EJB, these backend systems
could be made accessible across the Internet to support better client services or
partner relations. This approach enables incremental evolution of application
systems rather than whole-scale change and replacement.

 For the moment, the market for server-side components is still very young. Until
recently, it wasn’t feasible for vendors to build server components. Each
application server required the use of its own proprietary APIs, so vendors were
required to develop applications for one specific deployment environment. For the
most part, business application vendors built applications for only the most
popular application server environments, such as CICS or Tuxedo. But the EJB
portability model gives vendors and users much better options. EJB components

 Attribute-Based
Semantics

 Integrating with
Legacy Systems

 EJB Is Fostering
the Component
Marketplace

Selecting Enterprise JavaBeans Technology

Patricia Seybold Group © 1998 11

can be deployed in any EJB-compliant application server, and most application
server vendors are implementing support for EJB.

 Changing Transaction Semantics

Client

Client Teller

Account

Account

Account

Start Txn

Start Txn

Deposit

Transfer

Deposit

Withdraw

 Illustration 2. Using attributed-based transaction semantics, the same Account object can exhibit
different transaction behavior when used in different applications. In the first example, the Account
object starts a transaction (Txn). In the second example, the Account objects join a transaction started
by the Teller object. No code modification is required within the object to affect the change in
transaction semantics.

 The EJB specification was finalized in March 1998, and within days most Java
application server vendors and industry leaders (including IBM, HP, Sun, Oracle,
Sybase, and Novell) endorsed EJB. Within four months, products began shipping.
By the end of 1998 there will be more than a dozen EJB application servers on the
market. With all the system and application server vendors committed to EJB, the
business application vendors are beginning to implement applications and
components using EJB.

 Rapid Adoption

Selecting Enterprise JavaBeans Technology

12 Patricia Seybold Group © 1998

 Evaluating an EJB Server

 A Java application server supports the execution of server-side Java applications
or components. Java application servers can come in a variety of forms, such as
general-purpose application servers, object servers, component servers, web
servers, database servers, or transaction servers. Not surprisingly, Java application
servers provide different services and capabilities.

 Although the Java Platform for the Enterprise is still quite new, we consider JPE
API support to be a critical feature in Java application servers. We recommend
that organizations avoid using a Java application server that uses proprietary APIs
or requires a proprietary Java development tool. Not only will a proprietary
environment cause vendor lock-in, but it will also severely limit the number of
third-party applications and components that can be used with the environment.

 In particular we recommend using a Java application server that supports the EJB
component model. EJB automates a number of tricky application services,
dramatically simplifying enterprise Java development and increasing developer
productivity. We predict that a large market for plug-and-play server-side
components will grow around EJB, enabling users to develop and deploy
customized application systems more quickly than ever before.

 We also recommend using a complete, integrated Java application server that
combines and maximizes the capabilities of EJB and the other JPE APIs to
provide the best possible performance and reliability. An application server should
fully integrate load balancing, failover, security, transactions, persistence, and
management services with the EJB and JPE environment.

 EJB defines a standard set of interfaces that enable an application component to
run in any application server. By definition, an application server manages
resources on behalf of its application. But the exact nature by which the
application server manages these resources is not defined within the scope of the
Enterprise JavaBeans specification. Individual vendors can differentiate their
products based on the simplicity or sophistication of the services. The following
sections provide evaluation criteria that can be used to measure the different
vendor offerings.

 Comprehensive Support for EJB

 Most Java application server vendors have announced plans to support EJB. A
small number of vendors are releasing EJB support during Q3 1998. Quite a few
more will implement support for EJB by the end of 1998. The remaining vendors
plan to deliver EJB-compliant products in early 1999. The EJB API 1.0
specification defines what it means to support EJB. According to the

 Java Application
Servers

 JPE Support

 EJB Support

 Integrated
Application Server

 Differentiating
Enterprise
JavaBeans Servers

 What Is EJB
Support?

Selecting Enterprise JavaBeans Technology

Patricia Seybold Group © 1998 13

specification, an EJB server must provide an execution environment for the
enterprise bean, called an Enterprise JavaBeans container. An EJB container is
also referred to as an EJB home.

 EJB provides implicit and automatic middleware services for any application
component running within the EJB server. The EJB container is responsible for
implementing the middleware services on behalf of one or more enterprise beans.

 In all circumstances, an enterprise bean developer can choose to implement all
middleware interactions directly within the bean application code. For example,
an enterprise bean can manage its own transaction semantics by coding JTA
transaction demarcation code within the application. This approach limits the
reusability of the component since the transaction semantics cannot be changed
without modifying the source code. For better portability and reusability, the
developer should delegate middleware control to the container. If the container
manages the middleware services, then the behavioral semantics are defined as
attributes in a set of deployment descriptor objects. These values are defined at
deployment time rather than development time.

 The EJB container manages all lifecycle, naming, distribution, state, transaction,
security, and (optionally) persistence services on behalf of the enterprise bean.

• Lifecycle. The EJB container is responsible for locating, creating, and
destroying instances of an enterprise bean. The EJB container provides an EJB
Home interface for each enterprise bean that implements the lifecycle services.
By separating out the lifecycle services from the application code, the
enterprise bean can automatically take advantage of any session pooling or
load balancing services supplied by the EJB server.

• Naming. The EJB container automatically registers all EJB components in a
naming or directory service. Clients retrieve references to the enterprise bean’s
EJB Home interface using JNDI, therefore the naming service could be
implemented in any of a variety of naming or directory services.

• Distribution. The EJB container ensures that all enterprise beans are
accessible through a remote interface called an EJB Object interface. The EJB
Object interface is generated automatically by the EJB server at deployment
time based on the remote interface definition provided with the enterprise
bean (defined using RMI). The EJB Object interface provides a client view of
the enterprise bean. The specification indicates that the EJB Object interface
should support access through RMI and (optionally) CORBA. Other protocols
could also be supported, such as an HTTP plug-in or DCOM. The EJB
container uses the remote EJB Object interface to implement runtime services,
such as state management, transactions, security, and persistence. The EJB
container intercepts all method calls made through the remote interface and

 Implicit
Middleware
Services

 Bean-Managed
versus Container-
Managed Services

 EJB Services

Selecting Enterprise JavaBeans Technology

14 Patricia Seybold Group © 1998

automatically performs the services before delegating the request to the
enterprise bean.

• State. The EJB container manages the state of all active object instances. In a
high-volume environment, numerous object instances need to share a limited
amount of memory and resources. The EJB server may elect to swap an
instance out of memory while it is not in use. The EJB container is responsible
for saving and restoring the active object state each time the object is swapped
in or out. The EJB container also must synchronize any cached database
information with the database prior to any transaction commits or rollbacks.

• Transactions. An EJB server must support transactions. A transaction service
ensures the integrity of a unit of work. A unit of work can consist of a single
method call accessing a single data resource or it could incorporate a number
of method calls, on multiple objects, manipulating any number of data
resources. To ensure integrity, either all operations within the transaction
complete successfully or all operations are reversed to their original form.

• Transaction Management. EJB supports automatic transaction management.
An enterprise bean can elect to demarcate its own transactions using JTA or it
can delegate transaction management to the EJB container. The EJB container
manages the transaction context and automatically starts and commits
transactions on behalf of the enterprise bean. For container-managed
transactions, the transaction semantics are defined in a deployment descriptor
object.

• Transaction Coordination. An EJB server must support distributed
transaction coordination. The EJB server can provide its own transaction
coordination service or it can delegate transaction coordination to an external
transaction service provider, such as a database. The JPE JTS specification
defines a standard Java transaction coordination service based on the CORBA
Object Transaction Service (OTS). Although JTS is recommended, the EJB
specification does not require a JTS-compliant transaction service. The
transaction service used by the EJB server determines what kind of
transactions are supported. A full implementation of JTS supports distributed,
heterogeneous, two-phase commit transactional integrity against any number
of transactional resource managers, such as databases, files, and message
queues. JTS also defines a transaction interoperability protocol that allows
transaction coordination with heterogeneous transaction environments, such as
CORBA OTS or CICS/390. Most database transaction coordination services
support only homogeneous transactions. For simple homogeneous
environments, database-based transaction management is usually sufficient.
For more complex systems, we strongly recommend using a complete
implementation of JTS.

Selecting Enterprise JavaBeans Technology

Patricia Seybold Group © 1998 15

• Security. EJB supports automatic security checking using standard Java
Security and access control lists (ACLs). ACLs are defined in a security
descriptor object. The EJB container performs automatic security checking on
each method call, matching the user identity or role to permissions defined in
the ACL. The EJB server determines which authentication services can be
used to establish user identity and what type of privacy and data integrity
services are supported on all remote communications. For example, an
application server may provide support for secure communications based on
SSL or authentication based on X.509 certificates. We strongly recommend
using SSL and X.509 certificates for any applications that support access from
outside the firewall.

 The EJB 1.0 specification defines, but does not require, automatic persistence
services. EJB objects can be persisted in any permanent data store, such as a
relational database, an object database, or a file system. The EJB specification
does not dictate what mechanisms can be used to implement persistence. The JPE
JDBC API provides a standard low-level SQL-based API to access relational
databases. The American National Standards Institute (ANSI) is in the process of
defining a standard embeddable SQL binding for Java called SQLJ. The Object
Database Management Group (ODMG) has defined a standard Java binding to
access object databases and object/relational mapping services. Although the
service is optional, we view automatic persistence as an extremely desirable
feature in an EJB application server. Automatic persistence provides a clean
separation between the Java objects and the underlying data store. Therefore an
enterprise bean could transparently take advantage of any persistence mechanism
supplied by the application server.

 EJB defines two different types of enterprise beans. Session beans represent
transient objects, and entity beans represent persistent objects. Entity beans are not
required for EJB 1.0 compliance, and automatic persistence services are only
available with entity beans.

 Session beans are transient objects that exist (generally) for the duration of a
single user session. A session bean represents work in progress on behalf of a
single client. Referring back to Illustration 2 (see page 10), the Teller bean would
be implemented as a session bean. The Teller bean represents the work being
performed by the user for the duration of the user session, but it does not represent
any persistent data.

 Optional
Persistence
Services

 Session versus
Entity Beans

 Session Beans

Selecting Enterprise JavaBeans Technology

16 Patricia Seybold Group © 1998

 Session beans often make use of persistent information that is maintained in a
database. An initialization routine can be set up for a session bean to
automatically retrieve the appropriate data when the object is created. During the
course of the session, the user may manipulate the data within the object, and any
modifications to the data within the object must be manually written to the
database before the object is destroyed. If the system crashes during processing,
all data in the session bean will be lost.

 A session bean can be stateless or stateful. A stateless session bean does not
maintain any user state between method calls; therefore, any instance of the bean
can service any method request. A stateful bean maintains some user information
across method requests; therefore, a user must continue to use the same bean
instance throughout the user session. The EJB container maintains the session
state on behalf of the bean. Historically, most business-critical, high-volume
transaction systems have relied exclusively on stateless procedures. Stateless
procedures can be pooled and recycled in the same fashion as threads and
database connections to support faster response time and better scalability. Using
the same technique, an EJB server can maintain a pool of reusable stateless
session bean instances. Stateless beans support easier replication, fault recovery,
and system failover. But stateless operations don’t necessarily represent the real
world. Many operations consist of multiple stages, and it can often be much more
convenient and efficient to maintain state across method calls than to recreate
state for each method call. Stateless objects contradict the essence of object-
oriented processing, which marries code to data. With the increased adoption of
object-oriented technology in enterprise application development, there is a
significant push to use stateful and persistent objects.

 Entity beans are persistent objects that exist (generally) for an extended period of
time. An entity bean provides an object abstraction for data stored in a database or
some other persistent data store. Again referring back to Illustration 2 (see page
10), the Account bean would be implemented as an entity bean. The Account bean
represents an object that is stored in the database. The account object could be
stored as a row within a relational table, an object in an object database, or a file
within a file hierarchy. When a user creates an entity bean, a new object is stored
in the permanent data store. When a user later requests use of the entity bean, the
object is retrieved from the data store and activated in memory. Any modifications
made to the object are saved in the data store. Each entity bean has a unique
identifier, and the entity bean is recoverable following a system crash. Multiple
users can access a single entity bean instance.

 An entity bean can manage its own persistence or delegate persistence to its
container. If the bean delegates persistence to the container, the container
automatically performs all data retrieval and storage operations on behalf of the
bean. Persistence semantics are defined in a deployment descriptor object.

 Accessing
Persistent Data

 Stateless and
Stateful Session
Beans

 Entity Beans

 Container-
Managed
Persistence

Selecting Enterprise JavaBeans Technology

Patricia Seybold Group © 1998 17

 Container-managed persistence simplifies enterprise bean development.
Developers do not need to code any JDBC, SQLJ, or ODMG code within the
application. Container-managed persistence also provides better support for
portability and enables more flexible deployment options. If the enterprise bean
manages its own persistence, the chances are much higher that bean will require a
specific database for deployment.

 Container-managed persistence completely separates the entity bean from its
persistence mechanism. The persistence mechanism is identified and mapped at
deployment time. In fact, the persistence mechanism can change simply by
redeploying the component and specifying new persistence semantics. Therefore
the object can be shifted— from one relational database to another relational
database, from a relational database to an object database, or to some other data
store— without modifying the component application code.

 Comprehensive support for Enterprise APIs

 An EJB environment makes extensive use of distributed infrastructure services,
and therefore EJB relies on many of the other JPE APIs. JNDI, RMI, and JTA are
required by the EJB 1.0 specification.

• JNDI. The EJB container automatically registers an enterprise bean in a
naming or directory service. Although the container could use a proprietary
interface to register the object, the specification assumes the use of JNDI.
Client applications in turn use JNDI to obtain a reference to the object. JNDI
support is now available for most naming and directory services. If an
application server supports JNDI, the application server can use any directory
service, including one that is already installed and in use.

• RMI. All enterprise beans support remote access, and remote interfaces are
implemented using RMI. RMI is the preferred Java client interface because it
is the simplest. RMI provides a completely native programming interface for
Java clients. RMI also provides a very powerful and dynamic remote interface
that allows any client to obtain access to the object at any time. Using RMI’s
pass-by-value capability, a client can download a client proxy object at
runtime. EJB remote interfaces can also be implemented using CORBA and
Java IDL. The Java IDL interface provides support for CORBA clients written
in languages other than Java. Other EJB client interfaces can also be generated
to support protocols, such as DCOM or HTTP plug-ins.

• JTA. The Enterprise JavaBeans model supports distributed transactions. EJB
applications must use JTA to demarcate transactions and to manage the
transaction context. JTA provides a high-level transaction interface that is
compatible with a variety of transaction management services.

 Benefits of
Container-
Managed
Persistence

 Pluggable
Persistence
Classes

 JPE API
Requirements

Selecting Enterprise JavaBeans Technology

18 Patricia Seybold Group © 1998

The other JPE APIs are not required by the EJB specification, but a standards-
focused EJB Java application server should include support for Servlets, JTS,
JDBC, JMS, and Java IDL. Some application server vendors may use proprietary
APIs in place of the standard JPE APIs. Using proprietary APIs within enterprise
beans will severely compromise the portability and reusability of the application
components.

Client Support

Every enterprise bean must define a remote interface using RMI. The EJB
container exposes the remote interface to users. When a client invokes a method,
the EJB container intercepts the request, implements services, and delegates the
request to the enterprise bean.

In addition to RMI, the EJB container can generate a CORBA IDL interface from
the remote interface definition, adding support for CORBA clients in C++,
Smalltalk, and other languages.

The EJB specification does not mention ActiveX clients, but an RMI interface can
be wrapped in a COM object to support access from popular Windows
development languages, such as Visual Basic or PowerBuilder.

Java Servlets and Java Server Pages (JSPs) provide the standard JPE APIs to
support HTML clients. Servlets and Java Server Pages (JSPs) interact with EJB
components through the standard RMI interface. Servlets and JSPs are Java
components that run on a Web server. Browser clients accessed servlets and JSPs
by specifying the appropriate URL through HTTP. The Servlets and JSPs provide
automatic HTTP session management, and they dynamically generate HTML.
Servlets run as standard server extensions. JSPs enable direct integration of Java
code with static HTML content through a set of standard HTML tags. Servlet and
JSP support can be installed on any Web server that supports Java. Plug-in
support for servlets and JSPs is available for Web servers from Sun, Microsoft,
Netscape, IBM, and Apache. Most Java application servers provide support for
HTML clients, although in many cases, HTML support is implemented using
proprietary APIs based on CGI, NSAPI, or ISAPI Web server extensions rather
than Servlets of JSPs.

The Power of Choice

By default, a Java application server must support the execution of server-side
Java applications or components; therefore a Java application server must provide
(or provide access to) a Java runtime environment (JRE). Some Java application
servers provide their own JREs. Others make use of the more popular JREs that
already exist. An embedded JRE provides consistency and potentially added value

Other JPE APIs

Java RMI

CORBA IDL

ActiveX Clients

HTML Client
APIs

Java Platform
Independence

Selecting Enterprise JavaBeans Technology

Patricia Seybold Group © 1998 19

across platforms, but it makes the customer dependent on a single vendor to
implement upgrades on all platforms. It is highly desirable if a Java application
server supports a certified Java-compatible runtime environment, designated by
the steaming coffee cup logo. A Java-compatible runtime environment will
support any 100% Pure Java object. At the same time, it is highly desirable to take
advantage of any special features made available on a specific platform. For
example, the Microsoft JRE (JView) provides exceptional integration with COM.
A Java application server on the Windows platforms should be able to exploit the
capabilities of JView. For the most flexibility, a Java application server should let
the customer determine which JRE to use.

A number of application servers provide integrated application development tools.
In some cases, the provided development tool is the only tool that can be used to
develop applications for the server. While these environments often offer
tremendous productivity enhancements and specialized features, they greatly limit
the use of third-party application components or packaged application features.
On general principle, we prefer an open tools approach. Most application servers
support Java development using any Java development tool.

The EJB specification does not dictate how objects access databases or how
objects should be persisted. Many Java application servers do not supply
integrated persistence services. Others rely on proprietary database access
routines. Still others rely on JDBC. A few application servers provide integrated
persistence service based on an embedded database (object or relational) or an
integrated object/relational mapping service. We generally recommend taking
advantage of automatic persistence services when available, with one caveat.
Organizations must weigh the trade-off of locking themselves into a single built-
in service versus being able to choose a persistence technology. We expect there
will be a lot of innovation in object persistence technologies within the next few
years, so choosing a solution that supports only one persistence mechanism will
limit future options.

EJB application systems will not operate in a vacuum. An EJB server should
provide mechanisms to allow enterprise beans to interoperate with other
environments, such as CORBA, COM, and legacy application systems.

EJB Scalability and Reliability

Application servers enhance the scalability of an environment by automatically
distributing processing load across multiple processors and by effectively pooling
and recycling scarce system resources. At the same time, an EJB server should
simplify and automate the process of building distributed object applications.
Using an application server, a Java developer should be able to build better
applications with less code. For example, a Java application server should

Tool Independence

Database
Independence

Integration
Services

Distribution and
Resource
Recycling

Selecting Enterprise JavaBeans Technology

20 Patricia Seybold Group © 1998

transparently manage session pooling, multithreading, active object state, and
database connection pooling.

An EJB server is responsible for managing the lifecycle of enterprise bean objects.
The EJB container creates and destroys objects on behalf of clients, establishes
network connections and communication sessions, and dispatches object requests.
The rate at which an application server can create new objects and allocate
connections, sessions, and threads will have a tremendous impact on the overall
performance and scalability of the system. One of the most critical benchmarks to
look for in an application server is the number of objects that can be created per
minute. One way to increase scalability is to pre-establish a pool of network
connections, communication sessions, and execution threads that can be allocated
to requests as needed. As users release these resources, they are recycled and
placed back in the pool for the next request.

Some high-end application servers support highly sophisticated dispatching
services to increase the scalability and reliability of the system. For example, a
distributed application server with TP monitor-type services can support object
replication and load balancing. Multiple copies of an object can be deployed
across a number of different processors, and requests can be transparently
dispatched to any one of the object replicas to balance the load across all available
processors. The load-balancing algorithms are likely to vary from application
server to application server. For example, requests might be distributed based on a
user identifier (such as a TCP/IP address) or on a parameter specified in the
request. Or requests could be dispatched using a simple round-robin process. The
more sophisticated systems can distribute requests based on actual system load or
user-defined system rules.

The object replication scheme also enables automatic and potentially transparent
failover and object recovery. If an object fails for some reason, some application
servers can automatically transfer the request to another object replica for
processing.

Replication and failover procedures are fairly straightforward when dealing with
stateless servers. But the process can get more complicated when dealing with
objects that maintain state. In order to support automatic and transparent failover
of stateful objects, the application server must support fully synchronized
replication of object state, not just object classes.

Although many load balancing schemes support replication to increase the
reliability of the application, in some cases the dispatcher can be a single point of
failure. If the dispatcher goes down, then the entire application system might go
with it.

Connection,
Session, and
Thread Pooling

Load Balancing

Failover and
Recovery

Full State
Replication

Watch for Single
Point of Failure

Selecting Enterprise JavaBeans Technology

Patricia Seybold Group © 1998 21

Once an object has been created and activated, it consumes a set of scarce
resources in the application server. During heavy usage, a single application server
may not have sufficient resources to concurrently support all active objects in
memory. Therefore an application server should have a mechanism to regain
resources or to dynamically increase the resources available to support more
objects.

One mechanism that can be used to regain resources is to temporarily swap idle
objects out of memory. Traditionally, application servers evict objects based on a
least-recently-used algorithm. Before evicting an object, the EJB container
passivates the object and stores its active state (the information that pertains to the
specific user session). Then the next time the user invokes a method on the object,
the EJB container restores the active state and reactivates the object. The speed at
which an application server can activate and passivate objects from memory will
have a significant impact on the overall performance of the application server.

A database connection is probably the most expensive resource used by an
application. It takes longer to establish a connection than it does to execute a
query. In addition, a modern relational database can only support approximately
300 concurrent connections; therefore it is critical to implement shared and pooled
database connections in a large-scale application system. All Java application
servers provide some level of pooled database connections, although performance
characteristics may vary based on the efficiency of the connection allocation
process.

In addition to database connections, it’s also a good idea to cache data access
result sets. Some application servers provide automatic services that simplify the
data access process and increase performance and capability. A top-of-the-line
data caching system automatically transfers data updates in the cache to the
database and automatically refreshes the cache when changes are made to the
database. In some cases, an application server allows multiple users to share a
single data cache.

EJB Management

A tremendous amount of information about an enterprise bean is defined at the
time the bean is assembled with other beans and deployed as an application
system in an EJB server. Much of the application’s behavior is defined as a set of
attributes in a variety of deployment descriptor objects. Deployment descriptors
are used to define the transaction semantics, security requirements, and
persistence mapping information, among other things. The EJB server should
provide a set of deployment tools and wizards that guide the deployer through the
process.

Resource
Management

Swapping Out Idle
Objects

Database
Connection
Pooling

Caching Data
Access Results

Deployment Tools

Selecting Enterprise JavaBeans Technology

22 Patricia Seybold Group © 1998

Once the components are deployed, other tools are required to monitor and
manage the runtime environment. The monitoring tools should enable operations
to quickly and easily identify any problems that might be occurring and make
adjustments to the environment as needed. Although the application may be
distributed, the monitoring tool should support management of the entire
environment from a single console.

Administration tools are used to manage users, security, and the EJB server
environment. Administration tools would also be used to distribute new versions
of system or application software, preferably with little or no physical contact with
client machines.

In secure systems, the EJB server should maintain an audit trail for all sensitive
operations. Any security violations or system exceptions should be captured for
review and examination.

WebLogic Tengah

WebLogic is the first vendor to release a fully compliant EJB 1.0 server.
WebLogic has been very involved in the definition of the EJB specification, and
three previous versions of Tengah have supported preliminary implementations of
EJB (releases 0.4, 0.5, and 0.8). Tengah is a general purpose Java application
server that will suit the requirements of most organizations. WebLogic has been a
premier provider of RMI and JDBC technologies. The Tengah application server
combines WebLogic’s highly scalable RMI framework and multi-tier JDBC Type
III middleware services with support for server-side application components.

Tengah is implemented entirely in Java and can be deployed on any platform that
supports Java. WebLogic officially supports the product on Windows 95,
Windows NT, Netware, 0S/400, and the leading Unix platforms.

Tengah is a complete implementation of EJB, providing full support for all
optional features, including entity beans and container-managed persistence. Any
EJB-compliant application component can be deployed in Tengah.

Tengah also provides extensive support for the JPE APIs. Tengah provides client
access through a highly scalable implementation of RMI. Web clients are
supported through Servlets and JSPs. Enterprise beans can access relational
databases using multi-tier JDBC and a full suite of native JDBC drivers. Tengah
provides a powerful implementation of JNDI that supports a variety of directory
services, including Novell NDS, Sun NIS+, Microsoft Active Directory, and any
LDAP directory. Tengah manages transactions using JTA and JTS. And
WebLogic is in the process of implementing full JMS support for an integrated
Tengah Events service.

Runtime
Monitoring Tools

Administration
Tools

Auditing and
Control

General-Purpose
EJB Server

Pure Java Server

Complete EJB
Implementation

JPE API Support

Selecting Enterprise JavaBeans Technology

Patricia Seybold Group © 1998 23

Tengah includes an implementation of JTS that supports distributed homogeneous
transactions. Tengah JTS includes a lightweight two-phase commit protocol that
allows distributed applications running on multiple servers to participate in a
single transaction, updating multiple, distributed homogeneous databases. But
Tengah does not provide an integrated transaction logging and recovery service.
Instead, Tengah delegates the low-level transaction management services to an
external database management system. Using the advanced transactional
capabilities of Tengah/JDBC, Tengah can support multiple logical database
connections through a single physical connection, thereby allowing the database to
coordinate the distributed transaction.

Tengah provides authorization services using Java Security and access control
lists. Tengah supports authentication using a simple sign-on process, and it
provides additional support for digital certificates. All network communications
can be secured using SSL, HTTPS, or integrated RSA security.

Tengah can support a variety of clients through an integrated remote access
framework based on WebLogic’s implementation of RMI. The remote access
framework supports Web clients, desktop clients, and network appliances. Web
browser users can access the environment through HTML and HTTP using a
Servlet or a Java Server Page. Tengah supports Java clients through a standard
RMI proxy, and it supports other language clients by wrapping the RMI proxy
with ActiveX or CORBA.

Tengah provides very tight integration with COM. If requested, the client
generator can automatically wrap an EJB remote interface with an Active/X
control. The Active/X control can be easily integrated with any COM-compliant
application development tool or application, such as Visual Basic, PowerBuilder,
Delphi, Active Server Pages, Internet Explorer, Word, or Excel.

Tengah uses an “open tools and technology” approach. Tengah applications can
be developed using any Java development tool. Although Tengah supplies a
default persistence mechanism based on JDBC, alternate persistence mechanisms
are supported. Tengah applications can access any type of data source, including
relational and object databases, flat files, and live datafeeds. Tengah provides
built-in support for both COM and CORBA. Tengah can also support integration
with legacy application systems.

Tengah does not provide its own JVM. Instead, Tengah relies on the JVMs
supplied by the platform vendors, fully exploiting any extensions provided. For
example, Tengah on NT takes full advantage of the COM integration services
provided in Microsoft JView.

The Tengah application server provides a highly scalable execution environment.
Illustration 3 shows an overview of the Tengah architecture.

Tengah JTS
Implementation

Security

Client Support

Tengah COM
Support

Open Approach

Exploiting
Resident JVMs

Tengah
Architecture

Selecting Enterprise JavaBeans Technology

24 Patricia Seybold Group © 1998

Tengah Architecture

R
em

ot
e

A
cc

es
s

Fr
am

ew
or

k:
C

on
ne

ct
io

n
an

d
se

ss
io

n
po

ol
in

g,
m

ul
tit

hr
ea

di
ng

, l
oa

d
ba

la
nc

in
g

Network Appliances

ActiveX Clients

Java Clients

Web Browsers

HTTP
Server

Servlets
JSPs

HTTP/S
SSL

TCP/IP
IIOP

CORBA Clients

Connection
and

Data Caching

COM,CORBA
,Legacy

Live
Datafeeds

JDBC

EJB

EJB

Tengah Application Server

Illustration 3. Tengah supports various types of clients through its scalable remote access framework.
Tengah supports a variety of network protocols, including TCP/IP, SSL, IIOP, HTTP, and HTTPS. Web
clients access the environment through Servlets or Java Server Pages. The remote access framework
manages network connection pooling, session pooling, multithreading, and load balancing. EJB
components can access many types of data and integrate with other application systems through COM,
CORBA, or custom connections. Tengah/JDBC provides comprehensive database connection pooling
and data caching.

Tengah supports client access through a highly scalable remote access framework.
The framework cleanly separates the programming interface from the underlying
communications protocols. Currently, the remote access framework supports the
RMI programming interface. RMI is a native Java remote access interface that,
form the client’s point of view, makes the remote object behave like a local
object. The EJB specification dictates that remote interfaces should be
implemented in RMI. The Tengah remote access framework is a complete
implementation of the Java RMI specification with a number of powerful
extensions that support much greater scalability than Sun’s reference
implementation of RMI. Sun RMI does not support session pooling or shared
network connections. Tengah integrates RMI with the resource sharing services of
an application server. Tengah automatically manages connection, session, and
thread pooling for all RMI application requests.

Highly Scalable
Remote Access
Framework

Selecting Enterprise JavaBeans Technology

Patricia Seybold Group © 1998 25

The RMI API is a programming interface, not a complete middleware
specification. RMI is designed to be protocol independent. Sun RMI currently
supports only one communication protocol, JRMP, although JDK 1.2 will provide
additional support for IIOP. WebLogic’s RMI implementation is protocol
independent, and requests can be passed over TCP/IP sockets, SSL, HTTP,
HTTPS, or IIOP.

The Tengah remote access framework also supports application server clustering
and load balancing. The built-in load balancing service can distribute requests
across multiple EJB instances or across a cluster of Tengah servers. WebLogic
provides a set of default load balancing policies, or users can define their own
policies. The load balancing service is tightly integrated with both the remote
access framework and Tengah JNDI. The load balancing policies are implemented
directly into the RMI client proxy routines, called clustering stubs. When a client
makes a request, the clustering stub queries JNDI to locate all available servers,
then executes the policies to select a specific server.

Unlike most other application servers, Tengah’s load balancing system is not
dependent on a single dispatcher service. Most application servers implement a
load balancing service as an HTTP plug-in. This approach exposes the
environment to a single point of failure. The HTTP plug-in also only supports
Web clients. Tengah load balancing occurs within the client application,
supporting Web clients, desktop clients, and network appliances.

The clustering stub also provides an added benefit of supporting automatic
recovery and failover. If the client loses contact with its server, the clustering stub
can automatically redirect the request to an alternate server.

Tengah uses its top-of-the-line JDBC Type III drivers to provide the highest
quality database access services. Tengah/JDBC pre-establishes a set of database
connections, which are allocated to objects as required. Multiple objects can share
a single physical database connection, dramatically increasing the scalability
capabilities of the database. Tengah also caches data result sets to increase
performance and reduce I/O operations.

Tengah provides a full suite of management tools to simplify Tengah
administration. A deployment wizard guides developers through the process of
defining components to the Tengah environment. A graphical management
console provides operations with a complete view of the runtime environment.
Application components can be dynamically replicated or relocated from the
console. Tengah is fully instrumented to collect runtime statistics, diagnostics, and
security audit information.

Protocol
Independence

Load Balancing
and Clustering

No Single Point of
Failure

Recovery and
Failover

Database
Connection
Pooling and Data
Caching

Management
Tools

Selecting Enterprise JavaBeans Technology

26 Patricia Seybold Group © 1998

Tengah provides an automated push mechanism to distribute and install software
on any client system. The Zero Administration Client (ZAC) is a small piece of
software that must be installed on the client system. Once installed, ZAC can
automatically manage the installation of new applets, applications, program
libraries, or system software on the client without user intervention.

The Bottom Line

Tengah is the first generally available implementation of EJB 1.0 and provides
testament that the technology works. Additional implementations are now also
available from a number of other vendors, and more implementations are in
development. EJB has been universally adopted by the Java application server
community, and the application vendors are beginning to adopt the component
development approach.

Tengah rigidly conforms to the EJB specification and fully supports all required
and optional features, including entity beans and container-managed persistence.
Any EJB-compliant application component can be deployed in Tengah. Tengah
also supports the JPE APIs, including Servlets, RMI, JDBC, JTA, JTS, and JNDI.

Tengah doesn’t dictate the use of any specific clients, development tools,
platforms, protocols, directories, or databases. Developers and administrators have
complete freedom of choice when configuring the system. Tengah easily adapts to
use whatever systems are already in place.

Tengah uses a highly scalable, robust architecture to support Java server
components. Tengah’s unique approach implements much of the application
server functionality directly into the RMI communications system. RMI is the
native communications infrastructure for Enterprise JavaBeans, but the standard
Sun implementation doesn’t support the kind of performance and scalability
characteristics required by a high-end application server. WebLogic has
implemented a number of powerful extensions to RMI to make the system much
more scalable and reliable.

We strongly recommend a move to EJB and component-based computing. EJB
dramatically simplifies the process of developing high-volume distributed
application systems. EJB is especially well suited for Web applications and e-
commerce systems. EJB automates the complex infrastructure programming so
the developers can concentrate on writing business logic. EJB increases developer
productivity and improves application quality. Best of all, EJB enables you to
deploy new applications more quickly.

Zero
Administration
Client

EJB is Now
Available

Standard
Environment

Open Approach

Highly Scalable,
Robust
Architecture

EJB Advantages

Selecting Enterprise JavaBeans Technology

Patricia Seybold Group © 1998 27

In addition to increased developer productivity, EJB supports plug-and-play
application assembly. Extending Java’s “write once, run anywhere” theme, EJB
components can be developed using any Java development tool and can be
deployed in any EJB application server. Components from any number of vendors
can be assembled into working applications. Although the market for reusable
server components is still quite small, the field is growing. The vendor community
has resoundingly endorsed the technology.

But to use these reusable components, you must select an EJB application server.
Tengah provides a practical EJB application server that meets the requirements of
all but the most rigorous application systems. Tengah is designed specifically to
support component-based computing. Unlike many of its competitors, Tengah
doesn’t carry a lot of proprietary baggage, such as HTTP plug-in client interfaces,
specialized class libraries, or integrated development tools. Tengah relies on
standard Java interfaces and APIs. Tengah provides an excellent host for “write
once, run anywhere” and plug-and-play application assembly.

For more information regarding WebLogic or to download an evaluation copy of
Tengah, please go to http://www.weblogic.com, or call 1.800.WEBLOGIC.

Plug-and-Play
Application
Assembly

Practical EJB
Server

In business since 1978, the Patricia Seybold Group provides strategic guidance and tactical advice for
organizations seeking business advantage through the application of information technology. The Group has
built an international reputation for excellence and objectivity in its research and analysis, and for the provision
of consulting services which identify strategies and tools best suited to the development of the client's unique
business and technology needs. The company office is located at 85 Devonshire St, 5th floor, Boston, MA
02109. For further information about our publications and research services, please visit our web site
(www.psgroup.com). For information about consulting services, please contact Carol Hornblower at
617.742.5200 or email: chornb@psgroup.com.

	Selecting Enterprise JavaBeans Technology
	Table of Contents
	Executive Summary
	Introduction to Enterprise Java
	Java Platform for the Enterprise
	EJB Value Proposition

	Evaluating an EJB Server
	Comprehensive Support for EJB
	Comprehensive Support for Enterprise APIs
	Client Support
	The Power of Choice
	EJB Scalability and Reliability
	EJB Management

	WebLogic Tengah
	The Bottom Line

