
 Jini™ Transaction Specification
tocol

y
ces.
This document provides a two-phase commit protocol , allowing objects using that pro
to enter into distributed transactions. This specification defines the interfaces used by
clients, participants, and managers of the protocol. Participants using the protocol ma
provide any service; they are not limited to databases or other persistent storage servi
The default transaction semantics for services is also defined, along with associated
semantics classes and interfaces.
901 San Antonio Road
Palo Alto, CA 94303 USA
415 960-1300
fax 415 969-9131

Revision 1.0
January 25, 1999

Copyright © 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. has patent and other intellectual property rights relating to implementations
of the technology described in this Specification ("Sun IPR"). Your limited right to use this
Specification does not grant you any right or license to Sun IPR. A limited license to Sun IPR is
available from Sun under a separate Community Source License.

THIS SPECIFICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY YOU AS A RESULT OF
USING THE SPECIFICATION.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE SPECIFICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
SPECIFICATIONS AT ANY TIME, IN ITS SOLE DISCRETION. SUN IS UNDER NO OBLIGATION
TO PRODUCE FURTHER VERSIONS OF THE SPECIFICATION OR ANY PRODUCT OR
TECHNOLOGY BASED UPON THE SPECIFICATION. NOR IS SUN UNDER ANY OBLIGATION
TO LICENSE THE SPECIFICATION OR ANY ASSOCIATED TECHNOLOGY, NOW OR IN THE
FUTURE, FOR PRODUCTIVE OR OTHER USE.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, Jini, JavaSpaces, JavaSoft, JavaBeans, JDK, Java, HotJava,
HotJava Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS,
EmbeddedJava, PersonalJava, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore,
SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra,
Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkShop, XView, Java WorkShop,
the Java Coffee Cup logo, and Visual Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.
Page ii Jini™ Transaction Specification—1.0

Contents
1. Introduction . 1

1.1 Overview . 1

1.2 Model and Terms . 3

1.3 Distributed Transactions and ACID Properties 4

1.4 Requirements . 6

1.5 Dependencies . 6

1.6 Comments . 6

2. The Two-Phase Commit Protocol . 7

2.1 Starting a Transaction . 8

2.2 Starting a Nested Transaction . 9

2.3 Joining a Transaction . 10

2.4 Transaction States . 12

2.5 Completing a Transaction: The Client’s View 12

2.6 Completing a Transaction: A Participant’s View 14

2.7 Completing a Transaction: The Manager’s View 17
Page iii

2.8 Crash Recovery . 20

2.9 Durability . 21

3. Default Transaction Semantics . 23

3.1 Transaction and NestableTransaction Interfaces 23

3.2 TransactionFactory Class . 25

3.3 ServerTransaction and NestableServerTransaction
Classes . 25

3.4 CannotNestException Class . 28

3.5 Semantics . 28

3.6 Serialized Forms . 30
Page iv Jini™ Transaction Specification–1.0

Introduction 1
1.1 Overview
Transactions are a fundamental tool for many kinds of computing. A

transaction allows a set of operations to be grouped in such a way that they

either all succeed or all fail; further, the operations in the set appear from

outside the transaction to occur simultaneously. Transactional behaviors are

especially important in distributed computing, where they provide a means for

enforcing consistency over a set of operations on one or more remote

participants. If all the participants are members of a transaction, one response

to a remote failure is to abort the transaction, thereby ensuring that no partial

results are written.

Traditional transaction systems often center around transaction processing

monitors that insure that the correct implementation of transactional semantics

is provided by all of the participants in a transaction. Our approach to

transactional semantics is somewhat different. Within our system, we leave it

to the individual objects that take part in a transaction to implement the

transactional semantics in the way that is best for that kind of object. What the

system primarily provides is the coordination mechanism that can be used by

those objects to communicate the information necessary for the set of objects to

agree on the transaction. The goal of this system is to provide the minimal set of

protocols and interfaces that allow objects to implement transaction semantics

rather than the maximal set of interfaces, protocols, and policies that ensure the

correctness of any possible transaction semantics. So the completion protocol is

separate from the semantics of particular transactions.
Page 1

1

This document presents this completion protocol, which consists of a two-

phase commit protocol for distributed transactions. The two-phase commit

protocol defines the communication patterns that allow distributed objects and

resources to wrap a set of operations in such a way that they appear to be a

single operation. The protocol requires a manager that will enable consistent

resolution of the operations by a guarantee that all participants will eventually

know whether they should commit the operations (roll forward) or abort them

(roll backwards). A participant can be any object that supports the participant

contract by implementing the appropriate interface. Participants are not

limited to databases or other persistent storage services.

Clients and servers will also need to depend on specific transaction semantics.

The default transaction semantics for participants is also defined in this

document.

The two-phase commit protocol presented here, while common in many

traditional transaction systems, has the potential to be used in more than just

traditional transaction processing applications. Since the semantics of the

individual operations, and the mechanisms that are used to insure various

properties of the meta-operation joined by the protocol, are left up to the

individual objects, variations of the usual properties required by transaction

processing systems are possible using this protocol, as long as those variances

can be resolved by this protocol. A group of objects could use the protocol, for

example, as part of a process allowing synchronization of data that have been

allowed to drift for efficiency reasons. While this use is not generally

considered to be a classical use of transactions, the protocol defined here could

be used for this purpose. Some variations will not be possible under these

protocols, requiring subinterfaces and subclasses of the ones provided, or

entirely new interfaces and classes.

Because of the possibility of application to situations that are beyond the usual

use of transactions, calling the two-phase commit protocol a transaction

mechanism is somewhat misleading. However, since the most common use of

such a protocol is in a transactional setting, and because we do define a

particular set of default transaction semantics, we will follow the usual naming

conventions used in such systems rather than attempting to invent a new,

parallel vocabulary.
Page 2 Jini™ Transaction Specification–1.0

1

The classes and interfaces defined by this specification are in the packages

net.jini.core.transaction and

net.jini.core.transaction.server . In this document you will usually

see these types used without a package prefix; as each type is defined, the

package it is in is specified.

1.2 Model and Terms
A transaction is created and overseen by a manager. Each manager implements

the interface TransactionManager . Each transaction is represented by a long
identifier that is unique with respect to the transaction’s manager.

Semantics are represented by semantic transaction objects, such as the ones that

represent the default semantics for services. Even though the manager only

needs to know how to complete transactions, clients and participants need to

share a common view of the semantics of the transaction. Therefore, clients

typically create, pass, and operate on semantic objects that contain the

transaction identifier instead of using the transaction’s identifier directly, and

transactable services typically accept parameters of a particular semantic type,

such as the Transaction interface used for the default semantics.

A client creates a transaction by a request to the manager, typically by using a

semantic factory class such as TransactionFactory to create a semantic

object. The semantic object created is then passed as a parameter when

performing operations on a service. If the service is to accept this transaction

and govern its operations thereby, it must join the transaction as a participant.
Participants in a transaction must implement the TransactionParticipant

Client

Manager

ParticipantB

long id

create

opB(Transaction, …)

join

ParticipantA opA(Transaction, …)

join TransactionFactory
(semantic class)

create
Transaction

(semantic class)
Page 3

1

interface. Particular operations associated with a given transaction are said to

be performed under that transaction. The client which created the transaction

may or may not be a participant in the transaction.

A transaction completes when any entity either commits or aborts the transaction.

If a transaction commits successfully, then all operations performed under that

transaction will complete. Aborting a transaction means that all operations

performed under that transaction will appear never to have happened.

Committing a transaction requires each participant to vote, where a vote is

either prepared (ready to commit), not changed (read-only), or aborted (the

transaction should be aborted). If all participants vote “prepared” or “not

changed,” the transaction manager will tell each “prepared” participant to roll
forward, thus committing the changes. Participants that voted “not changed”

need do nothing more. If the transaction is ever aborted, the participants are

told to roll back any changes made under the transaction.

1.3 Distributed Transactions and ACID Properties
The two-phase commit protocol is designed to enable objects to provide ACID

properties. The default transaction semantics define one way to preserve these

properties. The ACID properties are:

◆ Atomicity: All the operations grouped under a transaction occur or none of

them do. The protocol allows participants to discover which of these

alternatives is expected by the other participants in the protocol. However, it

is up to the individual object to determine if it wishes to operate in concert

with the other participants.

◆ Consistency: The completion of a transaction must leave the system in a

consistent state. Consistency includes issues known only to humans, such as

that an employee should always have a manager. The enforcement of

consistency is outside of the realm of the transaction itself—a transaction is

a tool to allow consistency guarantees, and not itself a guarantor of

consistency.

◆ Isolation: Ongoing transactions should not affect each other. Participants in a

transaction should only see intermediate states resulting from the operations

of their own transaction, not the intermediate states of other transactions.

The protocol allows participating objects to know what operations are being

done within the scope of a transaction. However, it is up to the individual
Page 4 Jini™ Transaction Specification–1.0

1

object to determine if such operations are to be reflected only within the

scope of the transaction or can be seen by others who are not participating

in the transaction.

◆ Durability: The results of a transaction should be as persistent as the entity

on which the transaction commits. However, such guarantees are up to the

implementation of the object.

The dependency on the participant’s implementation for the ACID properties

is the greatest difference between this two-phase commit protocol and more

traditional transaction processing systems. Such systems attempt to insure that

the ACID properties are met, and go to considerable trouble to insure that no

participant can violate any of the properties.

This approach differs for both philosophical and practical reasons. The

philosophical reason is centered around the basic tenet of object-oriented

programming, which is that the implementation of an object should be hidden

from any part of the system outside the object. Ensuring the ACID properties

generally requires that an object’s implementation correspond to certain

patterns. We believe that, if these properties are needed, the object (or, more

precisely, the programmer implementing the object) will know best how to

guarantee the properties. For this reason, the manager is solely concerned with

completing transactions properly. Clients and participants must agree on

semantics separately.

The practical reason for leaving the ACID properties up to the object is that

there are situations in which only some of the ACID properties make sense, but

which can still make use of the two-phase commit protocol. A group of

transient objects may wish to group a set of operations in such a way that they

appear atomic; in such a situation it makes little sense to require that the

operations be durable. An object might want to enable the monitoring of the

state of some long-running transactions; such monitoring would violate the

isolation requirement of the ACID properties. Binding the two-phase commit

protocol to all of these properties limits the use of such a protocol.

We also know that particular semantics are needed for particular services. The

default transaction semantics provide useful general-purpose semantics built

on the two-phase commit completion protocol.

Distributed transactions differ from single-system transactions in the same way

that distributed computing differs from single-system computing. The clearest

difference is that a single system can have a single view of the state of several

services. It is possible in a single system to make it appear to any observer that
Page 5

1

all operations performed under a transaction have occurred or none have,

thereby achieving isolation. In other words, no observer will ever see part of

the changes made under the transaction but not others. In a distributed system

it is possible for a client using two servers to see the committed state of a

transaction in one server and the pre-committed state of the same transaction

in another server. This can only be prevented by coordination with the

transaction manager or the client that committed the transaction. Coordination

between clients is outside the scope of this specification.

1.4 Requirements
The transaction system has the following requirements:

◆ Define types and contracts that allow the two-phase commit protocol to

govern operations on multiple servers of differing types or

implementations.

◆ Allow participation in the two-phase commit protocol by any object in the

Java programming language, where “participation” means to perform

operations on that object under a given transaction.

◆ Each participant may provide ACID properties with respect to that

participant to observers operating under a given transaction.

◆ Use standard Java™ programming language techniques and tools to

accomplish these goals. Specifically, transactions will rely upon Java Remote

Method Invocation (RMI) to communicate between participants.

◆ Define specific default transaction semantics for use by services.

1.5 Dependencies
This document relies upon the following other specifications:

◆ Java Remote Method Invocation Specification

◆ Jini™ Distributed Leasing Specification

1.6 Comments
Please direct comments to jini-comments@java.sun.com .
Page 6 Jini™ Transaction Specification–1.0

The Two-Phase Commit Protocol 2
The two-phase commit protocol is defined using three primary types:

◆ TransactionManager — A transaction manager creates new transactions

and coordinates the activities of the participants.

◆ NestableTransactionManager — Some transaction managers are

capable of supporting nested transactions.

◆ TransactionParticipant — When an operation is performed under a

transaction, the participant must join the transaction, providing the manager

with a reference to a TransactionParticipant object that will be asked

to vote, roll forward, or roll back.

All code in this specification assumes that java.rmi.Remote ,

java.rmi.RemoteException , java.rmi.NoSuchObjectException ,

java.io.Serializable ,

net.jini.core.lease.LeaseDeniedException , and

net.jini.core.lease.Lease have been imported. All methods defined to

throw RemoteException will do so in the circumstances described by the

RMI specification.

Each type is shown where it is first described. Each method is described where

it occurs in the lifecycle of the two-phase commit protocol. By the end of this

chapter, all methods, fields, and exceptions that can occur during the lifecycle

of the protocol will be specified. The section in which each method or field is

specified is shown in a comment.
Page 7

2

2.1 Starting a Transaction
The TransactionManager interface is implemented by servers that manage

the two-phase commit protocol:

package net.jini.core.transaction.server;

public interface TransactionManager
extends Remote, TransactionConstants // §2.4

{
public static class Created implements Serializable { // §2.1

public final long id ;
public final Lease lease ;
public Created(long id, Lease lease) ;

}
Created create(long leaseFor) // §2.1

throws LeaseDeniedException, RemoteException;
void join(long id, TransactionParticipant part,

long crashCount) // §2.3
throws UnknownTransactionException, CannotJoinException,

CrashCountException, RemoteException;
int getState(long id) // §2.7

throws UnknownTransactionException, RemoteException;
void commit(long id) // §2.5

throws UnknownTransactionException, CannotCommitException
RemoteException;

void commit(long id, long waitFor) // §2.5
throws UnknownTransactionException, CannotCommitException,

TimeoutExpiredException, RemoteException;
void abort(long id) // §2.5

throws UnknownTransactionException, CannotAbortException,
RemoteException;

void abort(long id, long waitFor) // §2.5
throws UnknownTransactionException, CannotAbortException,

TimeoutExpiredException, RemoteException;
}

A client obtains a reference to a TransactionManager object via a lookup

service or some other means. The details of obtaining such a reference are

outside the scope of this specification.

A client creates a new transaction by invoking the manager’s create method,

providing a desired leaseFor time in milliseconds. This invocation is

typically indirect via creating a semantic object. The time is the client’s

expectation of how long the transaction will last before it completes. The
Page 8 Jini™ Transaction Specification–1.0

2

manager may grant a shorter lease, or may deny the request by throwing

LeaseDeniedException . If the granted lease expires or is cancelled before

the transaction manager receives a commit or abort of the transaction the

manager will abort the transaction.

The purpose of the Created nested class is to allow the create method to

return two values—the transaction identifier and the granted lease. The

constructor simply sets the two fields from its parameters.

2.2 Starting a Nested Transaction
The TransactionManager.create method returns a new top-level
transaction. Managers that implement just the TransactionManager
interface only support top-level transactions. Nested transactions, also known

as subtransactions, can be created using managers that implement the

NestableTransactionManager interface:

package net.jini.core.transaction.server;

public interface NestableTransactionManager
extends TransactionManager

{
TransactionManager.Created create(

NestableTransactionManager parentMgr,
long parentID, long leaseFor) // §2.2

throws UnknownTransactionException, CannotJoinException,
LeaseDeniedException, RemoteException;

void promote(long id, TransactionParticipant[] parts,
 long[] crashCounts, TransactionParticipant drop)

throws UnknownTransactionException, CannotJoinException,
CrashCountException, RemoteException; // §2.7

}

The create method takes a parent transaction, represented by the manager for

the parent transaction and the id for that transaction, and a desired lease time

in milliseconds, and returns a new nested transaction that is enclosed by the

specified parent along with the granted lease.

When you use a nested transaction you allow changes to a set of objects to abort

without forcing an abort of the parent transaction, and you allow the commit of

those changes to still be conditional on the commit of the parent transaction.
Page 9

2

When a nested transaction is created, its manager joins the parent transaction.

When the two managers are different, this is done explicitly via join (§2.3).

When the two managers are the same this may be done in a manager-specific

fashion.

The create method throws UnknownTransactionException if the parent

transaction is unknown to the parent transaction manager, either because the

transaction id is incorrect or the transaction is no longer active and its state has

been discarded by the manager.

package net.jini.core.transaction;

public class UnknownTransactionException
extends TransactionException

{
public UnknownTransactionException() ;
public UnknownTransactionException(String desc) ;

}

public class TransactionException extends Exception {
public TransactionException() ;
public TransactionException(String desc) ;

}

The create method throws CannotJoinException if the parent transaction

is known to the manager but is no longer active.

package net.jini.core.transaction;

public class CannotJoinException extends TransactionException {
public CannotJoinException() ;
public CannotJoinException(String desc) ;

}

2.3 Joining a Transaction
The first time a client tells a participant to perform an operation under a given

transaction, the participant must invoke the transaction manager’s join
method with an object that implements the TransactionParticipant
interface. This object will be used by the manager to communicate with the

participant about the transaction.
Page 10 Jini™ Transaction Specification–1.0

2

package net.jini.core.transaction.server;

public interface TransactionParticipant
extends Remote, TransactionConstants // §2.4

{
int prepare(TransactionManager mgr, long id) // §2.6

throws UnknownTransactionException, RemoteException;
void commit(TransactionManager mgr, long id) // §2.6

throws UnknownTransactionException, RemoteException;
void abort(TransactionManager mgr, long id) // §2.6

throws UnknownTransactionException, RemoteException;
int prepareAndCommit(TransactionManager mgr, long id) // §2.7

throws UnknownTransactionException, RemoteException;
}

If the participant’s invocation of the join method throws RemoteException
the participant should not perform the operation requested by the client, and

should rethrow the exception or otherwise signal failure to the client.

The join method’s third parameter is a crash count that uniquely defines the

version of the participant’s storage that holds the state of the transaction. Each

time the participant loses the state of that storage (for example because of a

system crash, if the storage is volatile) it must change this count. For example,

the participant could store the crash count in stable storage.

When a manager receives a join request, it checks to see if the participant has

already joined the transaction. If it has, and the crash count is the same as the

one specified in the original join , the join is accepted but is otherwise

ignored. If the crash count is different, the manager throws

CrashCountException and forces the transaction to abort.

package net.jini.core.transaction.server;

public class CrashCountException extends TransactionException {
public CrashCountException() ;
public CrashCountException(String desc) ;

}

The participant should reflect this exception back to the client. This check

makes join idempotent when it should be, but forces an abort for a second

join of a transaction by a participant that has no knowledge of the first join ,

and hence has lost whatever changes were made after the first join .

An invocation of join can throw UnknownTransactionException , which

means the transaction is unknown to the manager, either because the

transaction id was incorrect, or the transaction is no longer active and its state
Page 11

2

has been discarded by the manager. The join method throws

CannotJoinException if the transaction is known to the manager but is no

longer active. In either case the join has failed, and the method that was

attempted under the transaction should reflect the exception back to the client.

This is also the proper response if join throws a NoSuchObjectException .

2.4 Transaction States
The TransactionConstants interface defines constants used in the

communication between managers and participants.

package net.jini.core.transaction.server;

public interface TransactionConstants {
int ACTIVE = 1;
int VOTING = 2;
int PREPARED = 3;
int NOTCHANGED = 4;
int COMMITTED = 5;
int ABORTED = 6;

};

These correspond to the states and votes that participants and managers go

through during the lifecycle of a given transaction.

2.5 Completing a Transaction: The Client’s View
In the client’s view, a transaction goes through the following states:

Client

commitcreate

returns

participant

ABORTED

otherwise

cleanup

abort

ACTIVE VOTING

ABORTED

COMMITTED
Page 12 Jini™ Transaction Specification–1.0

2

For the client, the transaction starts out ACTIVE as soon as create returns.

The client drives the transaction to completion by invoking commit or abort
on the transaction manager, or by cancelling the lease or letting the lease expire

(both of which are equivalent to an abort).

The one-parameter commit method returns as soon as the transaction

successfully reaches the COMMITTED state, or if the transaction is known to

have previously reached that state due to an earlier commit . If the transaction

reaches the ABORTED state, or is known to have previously reached that state

due to an earlier commit or abort , then commit throws

CannotCommitException .

package net.jini.core.transaction;

public class CannotCommitException extends TransactionException
{

public CannotCommitException() ;
public CannotCommitException(String desc) ;

}

The one-parameter abort method returns as soon as the transaction

successfully reaches the ABORTED state, or if the transaction is known to have

previously reached that state due to an earlier commit or abort . If the

transaction is known to have previously reached the COMMITTED state due to

an earlier commit , then abort throws CannotAbortException .

package net.jini.core.transaction;

public class CannotAbortException extends TransactionException {
public CannotAbortException() ;
public CannotAbortException(String desc) ;

}

Both commit and abort can throw UnknownTransactionException ,

which means the transaction is unknown to the manager. This may be because

the transaction id was incorrect, or because the transaction has proceeded to

cleanup due to an earlier commit or abort, and has been forgotten.

Overloads of the commit and abort methods take an additional waitFor
timeout parameter specified in milliseconds that tells the manager to wait until

it has successfully notified all participants about the outcome of the transaction

before the method returns. If the timeout expires before all participants have

been notified, a TimeoutExpiredException will be thrown. If the timeout

expires before the transaction reaches the COMMITTED or ABORTED state, the
Page 13

2

manager must wait until one of those states is reached before throwing the

exception. The committed field in the exception is set to true if the

transaction committed or false if it aborted.

package net.jini.core.transaction;

public class TimeoutExpiredException extends TransactionException
{

public boolean committed ;
public TimeoutExpiredException(boolean committed) ;
public TimeoutExpiredException(String desc, boolean committed) ;

}

2.6 Completing a Transaction: A Participant’s View
In a participant’s view, a transaction goes through the following states:

For the participant, the transaction starts out ACTIVE as soon as join returns.

Any operations attempted under a transaction are valid only if the participant

has the transaction in the ACTIVE state. In any other state, a request to perform

an operation under the transaction should fail, signaling the invoker

appropriately.

Participant

prepare

commit

abort

join

returns

abort

abort

NOTCHANGED

ABORTED

PREPARED

COMMITTED

cleanupVOTINGACTIVE
Page 14 Jini™ Transaction Specification–1.0

2

When the manager asks the participant to prepare , the participant is VOTING
until it decides what to return. There are three possible return values for

prepare :

◆ The participant had no changes to its state made under the transaction—that

is, for the participant the transaction was read-only. It should release any

internal state associated with the transaction. It must signal this with a

return of NOTCHANGED, effectively entering the NOTCHANGED state. As noted

below, a well-behaved participant should stay in the NOTCHANGED state for

some time to allow idempotency for prepare .

◆ The participant had its state changed by operations performed under the

transaction. It must attempt to prepare to roll those changes forward in the

event of a future incoming commit invocation. When the participant has

successfully prepared itself to roll forward (§2.8), it must return PREPARED,
thereby entering the PREPARED state.

◆ The participant had its state changed by operations performed under the

transaction, but is unable to guarantee a future successful roll forward. It

must signal this with a return of ABORTED, effectively entering the ABORTED
state.

For top-level transactions, when a participant returns PREPARED it is stating

that it is ready to roll the changes forward by saving the necessary record of

the operations for a future commit call. The record of changes must be at least

as durable as the overall state of the participant. The record must also be

examined during recovery (§2.8) to ensure that the participant rolls forward or

rolls back as the manager dictates. The participant stays in the PREPARED state

until it is told to commit or abort . It cannot, having returned PREPARED,
drop the record except by following the “roll decision” described for crash

recovery (§2.8.1).

For nested transactions, when a participant returns PREPARED it is stating that

it is ready to roll the changes forward into the parent transaction. The record of

changes must be as durable as the record of changes for the parent transaction.

If a participant is currently executing an operation under a transaction when

prepare is invoked for that transaction, the participant must either wait until

that operation is complete before returning from prepare ; know that the

operation is guaranteed to be read-only, and so not affect its ability to prepare;

or abort the transaction.
Page 15

2

If a participant has not received any communication on or about a transaction,

over an extended period, it may choose to invoke getState on the manager.

If getState throws UnknownTransactionException or

NoSuchObjectException , the participant may safely infer that the

transaction has been aborted. If getState throws a RemoteException the

participant may choose to believe that the manager has crashed and abort its

state in the transaction—this is not to be done lightly, since the manager may

save state across crashes, and transient network failures could cause a

participant to drop out of an otherwise valid and committable transaction. A

participant should only drop out of a transaction if the manager is unreachable

over an extended period. However, in no case should a participant drop out of

a transaction it has PREPARED but not yet rolled forward.

If a participant has joined a nested transaction and it receives a prepare call

for an enclosing transaction, the participant must complete the nested

transaction, using getState on the manager to determine the proper type of

completion.

If a participant receives a prepare call for a transaction that is already in a

post-VOTING state, the participant should simply respond with that state.

If a participant receives a prepare call for a transaction that is unknown to it,

it should throw UnknownTransactionException . This may happen if the

participant has crashed and lost the state of a previously active transaction, or

if a previous NOTCHANGED or ABORTED response was not received by the

manager and the participant has since forgotten the transaction.

Note that a return value of NOTCHANGED may not be idempotent. Should the

participant return NOTCHANGED it may proceed directly to clean up its state. If

the manager receives a RemoteException because of network failure, the

manager will likely retry the prepare . At this point a participant that has

dropped the information about the transaction will throw

UnknownTransactionException and the manager will be forced to abort. A

well-behaved participant should stay in the NOTCHANGED state for a while to

allow a retry of prepare to again return NOTCHANGED, thus keeping the

transaction alive, although this is not strictly required. No matter what it

voted, a well-behaved participant should also avoid exiting for a similar period

of time in case the manager needs to reinvoke prepare .

If a participant receives an abort call for a transaction, whether in the

ACTIVE, VOTING, or PREPARED state, it should move to the ABORTED state and

roll back all changes made under the transaction.
Page 16 Jini™ Transaction Specification–1.0

2

If a participant receives a commit call for a PREPARED transaction, it should

move to the COMMITTED state, and roll forward all changes made under the

transaction.

The participant’s implementation of prepareAndCommit must be equivalent

to the following:

public int prepareAndCommit(TransactionManager mgr, long id)
throws UnknownTransactionException, RemoteException

{
int result = prepare(mgr, id);
if (result == PREPARED) {

commit(mgr, id);
result = COMMITTED;

}
return result;

}

The participant can often implement prepareAndCommit much more

efficiently than shown, but it must preserve the above semantics. The

manager’s use of this method is described in the next section.

2.7 Completing a Transaction: The Manager’s View
In the manager’s view, a transaction goes through the following states:

When a transaction is created using create , the transaction is ACTIVE. This is

the only state in which participants may join the transaction. Attempting to

join the transaction in any other state throws a CannotJoinException .

Manager

commitcreate

returns

participant

ABORTED or

otherwise

cleanup

abort

ACTIVE VOTING

ABORTED

COMMITTED

timeout
Page 17

2

Invoking the manager’s commit method causes the manager to move to the

VOTING state, where it attempts to complete the transaction by rolling forward.

Each participant that has joined the transaction has its prepare method

invoked to vote on the outcome of the transaction. The participant may return

one of three votes: NOTCHANGED, ABORTED, or COMMITTED.

If a participant votes ABORTED, the manager must abort the transaction. If

prepare throws UnknownTransactionException or

NoSuchObjectException , the participant has lost its state of the transaction,

and the manager must abort the transaction. If prepare throws

RemoteException the manager may retry as long as it wishes until it decides

to abort the transaction.

To abort the transaction, the manager moves to the ABORTED state. In the

ABORTED state, the manager should invoke abort on all participants that have

voted PREPARED. The manager should also attempt to invoke abort on all

participants on which it has not yet invoked prepare . These notifications are

not strictly necessary for the one-parameter forms of commit and abort , since

the participants will eventually abort the transaction either by timing out or by

asking the manager for the state of the transaction. However, informing the

participants of the abort can speed up the release of resources in these

participants, and so attempting the notification is strongly encouraged.

If a participant votes NOTCHANGED it is dropped from the list of participants,

and no further communication will ensue. If all participants vote NOTCHANGED
then the entire transaction was read-only and no participant has any changes

to roll forward. The transaction moves to the COMMITTED state and then can

immediately move to cleanup, where resources in the manager are cleaned up.

There is no behavioral difference to a participant between a NOTCHANGED
transaction and one that has completed the notification phase of the

COMMITTED state.

If no participant votes ABORTED and at least one participant votes PREPARED,
the transaction also moves to the COMMITTED state. In the COMMITTED state the

manager must notify each participant who returned PREPARED to roll forward

by invoking the participant’s commit method. When the participant’s commit
method returns normally the participant has rolled forward successfully and

the manager need not invoke commit on it again. As long as there exists at

least one participant that has not rolled forward successfully, the manager

must preserve the state of the transaction and repeat attempts to invoke

commit at reasonable intervals. If a participant’s commit method throws

UnknownTransactionException this means that the participant has
Page 18 Jini™ Transaction Specification–1.0

2

already successfully rolled the transaction forward even though the manager

did not receive the notification, either due to a network failure on a previous

invocation that was actually successful, or due to the participant calling

getState directly.

If the transaction is a nested one, and the manager is prepared to roll the

transaction forward, the members of the nested transaction must become

members of the parent transaction. This promotion of participants into the

parent manager must be atomic—all must be promoted simultaneously, or

none must be. The multi-participant promote method is designed for this use

in the case where the parent and nested transactions have different managers.

The promote method takes arrays of participants and crash counts, where

crashCounts[i] is the crash count for parts[i] . If any crash count is

different from a crash count already known to the parent transaction manager,

the parent manager throws CrashCountException and the parent

transaction must abort. The drop parameter allows the nested transaction

manager to drop itself out of the parent transaction as it promotes its

participants into the parent transaction if it no longer has any need to be a

participant itself.

The manager for the nested transaction should remain available until it has

successfully driven each participant to completion and promoted its

participants into the parent transaction. If the nested transaction’s manager

disappears before a participant is positively informed of the transaction’s

completion, that participant will not know whether to roll forward or back,

forcing it to vote ABORTED in the parent transaction. The manager may cease

commit invocations on its participants if any parent transaction is aborted.

Aborting any transaction implicitly aborts any uncommitted nested

transactions. Additionally, since any committed nested transaction will also

have its results dropped, any actions taken on behalf of that transaction can be

abandoned.

Invoking the manager’s abort method, cancelling the transaction’s lease, or

allowing the lease to expire also moves the transaction to the ABORTED state as

described above. Any transactions nested inside that transaction are also

moved directly to the ABORTED state.

The manager may optimize the VOTING state by invoking a participant’s

prepareAndCommit method if the transaction has only one participant that

has not yet been asked to vote and all previous participants have returned

NOTCHANGED. (Note that this includes the special case where the transaction
Page 19

2

has exactly one participant.) If the manager receives an ABORTED result from

prepareAndCommit , it proceeds to the ABORTED state. In effect, a

prepareAndCommit moves through the VOTING state straight to operating on

the results.

A getState call on the manager can return any of ACTIVE, VOTING,

ABORTED, NOTCHANGED, or COMMITTED. A manager is permitted, but not

required, to return NOTCHANGED if it is in the COMMITTED state and all

participants voted NOTCHANGED.

2.8 Crash Recovery
Crash recovery ensures that a top-level transaction will consistently abort or

roll forward in the face of a system crash. Nested transactions are not involved.

The manager has one commit point, where it must save state in a durable

fashion. This is when it enters the COMMITTED state with at least one

PREPARED participant. The manager must, at this point, commit the list of

PREPARED participants into durable storage. This storage must persist until all

PREPARED participants successfully roll forward. A manager may choose to

also store the list of PREPARED participants who have already successfully

rolled forward or to rewrite the list of PREPARED participants as it shrinks, but

this optimization is not required (although it is recommended as good

citizenship). In the event of a manager crash, the list of participants must be

recovered, and the manager must continue acting in the COMMITTED state until

it can successfully notify all PREPARED participants.

The participant also has one commit point, which is prior to voting PREPARED.
When it votes PREPARED, the participant must have durably recorded the

record of changes necessary to successfully roll forward in the event of a future

invocation of commit by the manager. It can remove this record when it is

prepared to successfully return from commit .

Because of these commitments, manager and participant implementations

should use durable forms of RMI references, such as the Activatable
references introduced in the Java™ Development Kit software (JDK), version

1.2. An unreachable manager causes much havoc, and should be avoided as

much as possible. A vanished PREPARED participant puts a transaction in an

untenable permanent state where some, but not all, of the participants have

rolled forward.
Page 20 Jini™ Transaction Specification–1.0

2

2.8.1 The “Roll Decision”

If a participant votes PREPARED for a top-level transaction, it must guarantee

that it will execute a recovery process should it crash between completing its

durable record and receiving a commit notification from the manager. This

recovery process must read the record of the crashed participant and make a

“roll decision”—whether to roll the recorded changes forward or roll them

back.

To make this decision it invokes the getState method on the transaction

manager. This can have the following results:

◆ getState returns COMMITTED — The recovery should move the participant

to the COMMITTED state.

◆ getState throws UnknownTransactionException or

NoSuchObjectException — The recovery should move the participant to

the ABORTED state.

◆ getState throws RemoteException — The recovery should repeat the

attempt after a pause.

2.9 Durability
Durability is a commitment, but it is not a guarantee. It is impossible to

guarantee that any given piece of stable storage can never be lost; one can only

achieve decreasing probabilities of loss. Data that is force-written to a disk may

be considered durable, but it is less durable than data committed to two or

more separate, redundant disks. When we speak of “durability” in this system

it is always used relative to the expectations of the human who decided which

entities to use for communication.

With multi-participant transactions it is entirely possible that different

participants have different durability levels. The manager may be on a tightly

replicated system with its durable storage duplicated on several host systems,

giving a high degree of durability, while a participant may only be using one

disk. Or a participant may always store its data in memory, expecting to lose it

on a system crash (a database of people currently logged into the host, for

example, need not survive a system crash). When humans make a decision to

use a particular manager and set of participants for a transaction they must

take into account these differences and be aware of the ramifications of
Page 21

2

committing changes that may be more durable on one participant than another.

Determining, or even defining and exposing, varying levels of durability is

outside the scope of this specification.
Page 22 Jini™ Transaction Specification–1.0

Default Transaction Semantics 3
The two-phase commit protocol defines how a transaction is created and later

driven to completion by either committing or aborting. It is neutral with

respect to the semantics of locking under the transaction or other behaviors

that impart semantics to the use of the transaction. Specific clients and servers,

however, must be written to expect specific transaction semantics. This model

is to separate the completion protocol from transaction semantics, where

transaction semantics are represented in the parameters and return values of

methods by which clients and participants interact.

This chapter defines the default transaction semantics of services. These

semantics preserve the traditional ACID properties (you will find a brief

description of the ACID properties in §1.3). The semantics are represented by

the Transaction and NestableTransaction interfaces and their

implementation classes ServerTransaction and

NestableServerTransaction . Any participant that accepts as a parameter

or returns any of these types is promising to abide by the semantics defined in

this chapter for any activities performed under that transaction.

3.1 Transaction and NestableTransaction Interfaces
The client’s view of transactions is through two interfaces: Transaction for

top-level transactions, and NestableTransaction for transactions under

which nested transactions can be created. First, the Transaction interface:
Page 23

3

package net.jini.core.transaction;

public interface Transaction {
public static class Created implements Serializable {

public final Transaction transaction ;
public final Lease lease ;
Created(Transaction transaction, Lease lease) ;

}
void commit() // §2.5

throws UnknownTransactionException, CannotCommitException,
RemoteException;

void commit(long waitFor) // §2.5
throws UnknownTransactionException, CannotCommitException,

TimeoutExpiredException, RemoteException;
void abort() // §2.5

throws UnknownTransactionException, CannotAbortException,
RemoteException;

void abort(long waitFor) // §2.5
throws UnknownTransactionException, CannotAbortException,

TimeoutExpiredException, RemoteException;
}

The Created nested class is used in a factory create method for top-level

transactions (defined in the next section) to hold two return values: the newly

created Transaction object and the transaction’s lease, which is the lease

granted by the transaction manager. The commit and abort methods have the

same semantics as discussed in §2.5.

Nested transactions are created using NestableTransaction methods:

package net.jini.core.transaction;

public interface NestableTransaction extends Transaction {
public static class Created implements Serializable {

public final NestableTransaction transaction ;
public final Lease lease ;
Created(NestableTransaction transaction, Lease lease) ;

}
Created create(long leaseFor) // §2.2

throws UnknownTransactionException, CannotJoinException,
LeaseDeniedException, RemoteException;

Created create(NestableTransactionManager mgr,
long leaseFor) // §2.2

throws UnknownTransactionException, CannotJoinException,
LeaseDeniedException, RemoteException;

}

Page 24 Jini™ Transaction Specification–1.0

3

The Created nested class is used to hold two return values: the newly created

Transaction object and the transaction’s lease, which is the lease granted by

the transaction manager. In both create methods, leaseFor is the requested

lease time in milliseconds. In the one-parameter create method, the nested

transaction is created with the same transaction manager as the transaction on

which the method is invoked. The other create method can be used to

specify a different transaction manager to use for the nested transaction.

3.2 TransactionFactory Class
The TransactionFactory class is used to create top-level transactions.

package net.jini.core.transaction;

public class TransactionFactory {
public static Transaction.Created

create(TransactionManager mgr, long leaseFor) // §2.1
throws LeaseDeniedException, RemoteException;

public static NestableTransaction.Created
create(NestableTransactionManager mgr,

long leaseFor) // §2.2
throws LeaseDeniedException, RemoteException;

}

The first create method is usually used when nested transactions are not

required. However, if the manager passed to this method is in fact a

NestableTransactionManager , then the returned Transaction can in

fact be cast to a NestableTransaction . The second create method is used

when it is known that nested transactions need to be created. In both cases, a

Created instance is used to hold two return values: the newly created

transaction object and the granted lease.

3.3 ServerTransaction and NestableServerTransaction Classes
The ServerTransaction class exposes functionality necessary for writing

participants that support top-level transactions. Participants can cast a

Transaction to a ServerTransaction to obtain access to this functionality.
Page 25

3

public class ServerTransaction implements Transaction, Serializable
{

public final TransactionManager mgr;
public final long id ;
public ServerTransaction(TransactionManager mgr, long id) ;
public void join(TransactionParticipant part,

 long crashCount) // §2.3
throws UnknownTransactionException, CannotJoinException,

CrashCountException, RemoteException;
public int getState() // §2.7

throws UnknownTransactionException, RemoteException;
public boolean isNested() ; // §3.3

}

The mgr field is a reference to the transaction manager that created the

transaction. The id field is the transaction identifier returned by the

transaction manager’s create method.

The constructor should not be used directly; it is for use by the

TransactionFactory implementation.

The methods join , commit , abort , and getState invoke the corresponding

methods on the manager, passing the transaction identifier. They are provided

as a convenience to the programmer, primarily to eliminate the possibility of

passing an identifier to the wrong manager. For example, given a

ServerTransaction object tr , the invocation

tr.join(participant, crashCount);

is equivalent to

tr.mgr.join(tr.id, participant, crashCount);

The isNested method returns true if the transaction is a nested transaction

(that is, if it is a NestableServerTransaction with a non-null parent),

and false otherwise. It is provided as a method on ServerTransaction for

the convenience of participants that do not support nested transactions.

The hashCode method returns the id cast to an int XORed with the result of

mgr.hashCode() . The equals method returns true if the specified object is

a ServerTransaction object with the same manager and transaction

identifier as the object on which it is invoked.
Page 26 Jini™ Transaction Specification–1.0

3

The NestableServerTransaction class exposes functionality necessary for

writing participants that support nested transactions. Participants can cast a

NestableTransaction to a NestableServerTransaction to obtain

access to this functionality.

package net.jini.core.transaction.server;

public class NestableServerTransaction extends ServerTransaction
implements NestableTransaction

{
public final NestableServerTransaction parent ;
public NestableServerTransaction(

NestableTransactionManager mgr,
long id,
NestableServerTransaction parent) ;

public void promote(TransactionParticipant[] parts,
long[] crashCounts,
TransactionParticipant drop) // §2.7

throws UnknownTransactionException, CannotJoinException,
CrashCountException, RemoteException;

public boolean enclosedBy(NestableTransaction enclosing) ;
}

The parent field is a reference to the parent transaction if the transaction is

nested (§2.2) or null if it is top-level.

The constructor should not be used directly; it is for use by the

TransactionFactory and NestableServerTransaction
implementations.

Given a NestableServerTransaction object tr , the invocation

tr.promote(parts, crashCounts, drop)

is equivalent to

((NestableTransactionManager)tr.mgr).promote(tr.id, parts,
crashCounts, drop)

The enclosedBy method returns true if the specified transaction is an

enclosing transaction (parent, grandparent, etc.) of the transaction on which

the method is invoked; otherwise it returns false .
Page 27

3

3.4 CannotNestException Class
If a service implements the default transaction semantics, but does not support

nested transactions, it usually needs to throw an exception if a nested

transaction is passed to it. The CannotNestException is provided as a

convenience for this purpose, although a service is not required to use this

specific exception.

package net.jini.core.transaction;

public class CannotNestException extends TransactionException {
public CannotNestException() ;
public CannotNestException(String desc) ;

}

3.5 Semantics
Activities performed as pure transactions (meaning all access to shared

mutable state is performed under transactional control) are subject to

sequential ordering, meaning the overall effect of executing a set of sibling (all

at the same level, whether top-level or nested) pure transactions concurrently

is always equivalent to some sequential execution.

Ancestor transactions can execute concurrently with child transactions, subject

to the locking rules below.

Transaction semantics for objects are defined in terms of strict two-phase

locking. Every transactional operation is described in terms of acquiring locks

on objects; these locks are held until the transaction completes. The most

typical locks are read and write locks, but others are possible. Whatever the

lock types are, conflict rules are defined such that if two operations do not

commute, then they acquire conflicting locks. For objects using standard read

and write locks, read locks do not conflict with other read locks, but write

locks conflict with both read locks and other write locks. A transaction can

acquire a lock if the only conflicting locks are those held by ancestor

transactions (or itself). If a necessary lock cannot be acquired and the operation

is defined to proceed without waiting for that lock, then serializability might

be violated. When a subtransaction commits, its locks are inherited by the

parent transaction.
Page 28 Jini™ Transaction Specification–1.0

3

In addition to locks, transactional operations can be defined in terms of object

creation and deletion visibility. If an object is defined to be created under a

transaction, then the existence of the object is only visible within that

transaction and its inferiors, but will disappear if the transaction aborts. If an

object is defined to be deleted under a transaction, then the object is not visible

to any transaction (including the deleting transaction) but will reappear if the

transaction aborts. When a nested transaction commits, visibility state is

inherited by the parent transaction.

Once a transaction reaches the VOTING stage, if all execution under the

transaction (and its subtransactions) has finished, then the only reasons the

transaction can abort are:

◆ The manager crashes (or has crashed)

◆ One or more participants crash (or have crashed)

◆ There is an explicit abort

Transaction deadlocks are not guaranteed to be prevented or even detected,

but managers and participants are permitted to break known deadlocks by

aborting transactions.

An active transaction is an orphan if it or one of its ancestors is guaranteed to

abort. This can occur because an ancestor has explicitly aborted, or because

some participant or manager of the transaction or an ancestor has crashed.

Orphans are not guaranteed to be detected by the system, and as such

programmers using transactions must be aware that orphans can see internally

inconsistent state and take appropriate action.

Causal ordering information about transactions is not guaranteed to be

propagated. First, given two sibling transactions (at any level), it is not possible

to tell if they were created concurrently or sequentially (or in what order).

Second, if two transactions are causally ordered and the earlier transaction has

completed, the outcome of the earlier transaction is not guaranteed to be

known at every participant used by the later transaction, unless the client is

successful in using the variant of commit or abort that takes a timeout

parameter. Programmers using non-blocking forms of operations must take

this into account.
Page 29

3

As long as a transaction persists in attempting to acquire a lock that conflicts

with another transaction, the participant will persist in attempting to resolve

the outcome of the transaction that holds the conflicting lock. Attempts to

acquire a lock include making a blocking call, continuing to make non-blocking

calls, and registering for event notification under a transaction.

3.6 Serialized Forms
The serialVersionUID for each class is as follows:

◆ Transaction.Created : -5199291723008952986

◆ NestableTransaction.Created : -2979247545926318953

◆ TransactionManager.Created : -4233846033773471113

◆ ServerTransaction : 4552277137549765374

◆ NestableServerTransaction : -3438419132543972925

◆ TransactionException : -5009935764793203986

◆ CannotAbortException : 3597101646737510009

◆ CannotCommitException : -4497341152359563957

◆ CannotJoinException : 5568393043937204939

◆ CannotNestException : 3409604500491735434

◆ TimeoutExpiredException : 3918773760682958000

◆ UnknownTransactionException : 443798629936327009

◆ CrashCountException : 4299226125245015671

In each case the serialized fields are the declared public fields, if any.
Page 30 Jini™ Transaction Specification–1.0

	Jini™ Transaction Specification
	This document provides a two-phase commit protocol...
	Contents
	1. Introduction 1
	1.1 Overview 1
	1.2 Model and Terms 3
	1.3 Distributed Transactions and ACID Properties 4...
	1.4 Requirements 6
	1.5 Dependencies 6
	1.6 Comments 6

	2. The Two-Phase Commit Protocol 7
	2.1 Starting a Transaction 8
	2.2 Starting a Nested Transaction 9
	2.3 Joining a Transaction 10
	2.4 Transaction States 12
	2.5 Completing a Transaction: The Client’s View 12...
	2.6 Completing a Transaction: A Participant’s View...
	2.7 Completing a Transaction: The Manager’s View 1...
	2.8 Crash Recovery 20
	2.9 Durability 21

	3. Default Transaction Semantics 23
	3.1 Transaction and NestableTransaction Interfaces...
	3.2 TransactionFactory Class 25
	3.3 ServerTransaction and NestableServerTransactio...
	3.4 CannotNestException Class 28
	3.5 Semantics 28
	3.6 Serialized Forms 30

	Introduction
	1
	1.1 Overview
	1.2 Model and Terms
	1.3 Distributed Transactions and ACID Properties
	1.4 Requirements
	1.5 Dependencies
	1.6 Comments
	The Two-Phase Commit Protocol
	2

	2.1 Starting a Transaction
	2.2 Starting a Nested Transaction
	2.3 Joining a Transaction
	2.4 Transaction States
	2.5 Completing a Transaction: The Client’s View
	2.6 Completing a Transaction: A Participant’s View...
	2.7 Completing a Transaction: The Manager’s View
	2.8 Crash Recovery
	2.8.1 The “Roll Decision”

	2.9 Durability
	Default Transaction Semantics
	3

	3.1 Transaction and NestableTransaction Interfaces...
	3.2 TransactionFactory Class
	3.3 ServerTransaction and NestableServerTransactio...
	3.4 CannotNestException Class
	3.5 Semantics
	3.6 Serialized Forms

