C Library Functions random(3C)

NAME

 random, srandom, initstate, setstate - pseudorandom number functions

SYNOPSIS

 #include <stdlib.h>

 long random(void);

 void srandom(unsigned int seed);

 char *initstate(unsigned int seed, char *state, size_t size);

 char *setstate(const char *state);

DESCRIPTION

 The random() function uses a nonlinear additive feedback

 random-number generator employing a default state array size

 of 31 long integers to return successive pseudo-random

 numbers in the range from 0 to 2**31-1. The period of this

 random-number generator is approximately 16 x (2**31-1). The

 size of the state array determines the period of the

 random-number generator. Increasing the state array size

 increases the period.

 The srandom() function initializes the current state array

 using the value of seed.

 The random() and srandom() functions have (almost) the same

 calling sequence and initialization properties as rand() and

 srand() (see rand(3C)). The difference is that rand(3C) pro-

 duces a much less random sequence-in fact, the low dozen

 bits generated by rand go through a cyclic pattern. All the

 bits generated by random() are usable. For example,

 random()&01

 will produce a random binary value.

 Unlike srand(), srandom() does not return the old seed

 because the amount of state information used is much more

 than a single word. Two other routines are provided to deal

 with restarting/changing random number generators. With 256

 bytes of state information, the period of the random-number

 generator is greater than 2**69.

 Like rand(3C), random() produces by default a sequence of

 numbers that can be duplicated by calling srandom() with 1

 as the seed.

SunOS 5.7 Last change: 29 Dec 1996 1

C Library Functions random(3C)

 The initstate() and setstate() functions handle restarting

 and changing random-number generators. The initstate()

 function allows a state array, pointed to by the state argu-

 ment, to be initialized for future use. The size argument,

 which specifies the size in bytes of the state array, is

 used by initstate() to decide what type of random-number

 generator to use; the larger the state array, the more ran-

 dom the numbers. Values for the amount of state information

 are 8, 32, 64, 128, and 256 bytes. Other values greater

 than 8 bytes are rounded down to the nearest one of these

 values. For values smaller than 8, random() uses a simple

 linear congruential random number generator. The seed argu-

 ment specifies a starting point for the random-number

 sequence and provides for restarting at the same point. The

 initstate() function returns a pointer to the previous state

 information array.

 If initstate() has not been called, then random() behaves as

 though initstate() had been called with seed=1 and size

 =128.

 If initstate() is called with size <8, then random() uses a

 simple linear congruential random number generator.

 Once a state has been initialized, setstate() allows switch-

 ing between state arrays. The array defined by the state

 argument is used for further random-number generation until

 initstate() is called or setstate() is called again. The

 setstate() function returns a pointer to the previous state

 array.

RETURN VALUES

 The random() function returns the generated pseudo-random

 number.

 The srandom() function returns no value.

 Upon successful completion, initstate() and setstate()

 return a pointer to the previous state array. Otherwise, a

 null pointer is returned.

ERRORS

 No errors are defined.

USAGE

 After initialization, a state array can be restarted at a

 different point in one of two ways:

 o The initstate() function can be used, with the desired

 seed, state array, and size of the array.

 o The setstate() function, with the desired state, can

SunOS 5.7 Last change: 29 Dec 1996 2

C Library Functions random(3C)

 be used, followed by srandom() with the desired seed.

 The advantage of using both of these functions is that

 the size of the state array does not have to be saved

 once it is initialized.

EXAMPLES

 Example 1: Example to initialize an array and pass it in to

 initstate.

 /* Initialize an array and pass it in to initstate. */

 static long state1[32] = {

 3,

 0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342,

 0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd,

 0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86,

 0xda672e2a, 0x1588ca88, 0xe369735d, 0x904f35f7,

 0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc,

 0xde3b81e0, 0xdf0a6fb5, 0xf103bc02, 0x48f340fb,

 0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b,

 0xf5ad9d0e, 0x8999220b, 0x27fb47b9

 };

 main() {

 unsigned seed;

 int n;

 seed = 1;

 n = 128;

 initstate(seed, state1, n);

 setstate(state1);

 printf("%d,random());

 }

ATTRIBUTES

 See attributes(5) for descriptions of the following attri-

 butes:

 __

 | ATTRIBUTE TYPE | ATTRIBUTE VALUE |

 |_____________________________|_____________________________|

 | MT-Level | See NOTES below. |

 |_____________________________|_____________________________|

SEE ALSO

 drand48(3C), rand(3C), attributes(5)

NOTES

 The random() and srandom() functions are unsafe in mul-

 tithreaded applications.

 Use of these functions in multithreaded applications is

 unsupported.

 The random() and srandom() functions operate at about two-

 thirds the speed of rand(3C).

SunOS 5.7 Last change: 29 Dec 1996 3

C Library Functions rand(3C)

NAME

 rand, srand, rand_r - simple random-number generator

SYNOPSIS

 #include <stdlib.h>

 int rand(void);

 void srand(unsigned int seed);

 int rand_r(unsigned int *seed);

DESCRIPTION

 The rand() function uses a multiplicative congruential

 random-number generator with period 2**32 that returns suc-

 cessive pseudo-random numbers in the range of 0 to RAND_MAX

 (defined in <stdlib.h>).

 The srand() function uses the argument seed as a seed for a

 new sequence of pseudo-random numbers to be returned by sub-

 sequent calls to rand(). If srand() is then called with the

 same seed value, the sequence of pseudo-random numbers will

 be repeated. If rand() is called before any calls to

 srand() have been made, the same sequence will be generated

 as when srand() is first called with a seed value of 1.

 The rand_r() function has the same functionality as rand()

 except that a pointer to a seed seed must be supplied by

 the caller. The seed to be supplied is not the same seed as

 in srand().

USAGE

 The spectral properties of rand() are limited. The

 drand48(3C) function provides a better, more elaborate

 random-number generator.

ATTRIBUTES

 See attributes(5) for descriptions of the following attri-

 butes:

 __

 | ATTRIBUTE TYPE | ATTRIBUTE VALUE |

 |_____________________________|_____________________________|

 | MT-Level | See NOTES below. |

 |_____________________________|_____________________________|

SEE ALSO

 drand48(3C), attributes(5)

NOTES

 The rand_r() function is as proposed in the POSIX.4a Draft

 #6 document, and is subject to change to be compliant with

 the standard when it is accepted.

 The rand() is unsafe in multithreaded applications. The

 rand_r() function is MT-Safe, and should be used instead.

 The srand() function is unsafe in multithreaded applica-

 tions.

 When compiling multithreaded applications, the _REENTRANT

 flag must be defined on the compile line. This flag should

 only be used in multithreaded applications.

***************** C++ *******************************

rand

Generates a pseudorandom number.

int rand(void);

Routine

Required Header

Compatibility

rand

<stdlib.h>

ANSI, Win 95, Win NT

For additional compatibility information, see Compatibility in the Introduction.

Libraries

LIBC.LIB

Single thread static library, retail version

LIBCMT.LIB

Multithread static library, retail version

MSVCRT.LIB

Import library for MSVCRT.DLL, retail version

Return Value

rand returns a pseudorandom number, as described above. There is no error return.

Remarks

The rand function returns a pseudorandom integer in the range 0 to RAND_MAX. Use the srand function to seed the pseudorandom-number generator before calling rand.

Example

/* RAND.C: This program seeds the random-number generator

 * with the time, then displays 10 random integers.

 */

#include <stdlib.h>

#include <stdio.h>

#include <time.h>

void main(void)

{

 int i;

 /* Seed the random-number generator with current time so that

 * the numbers will be different every time we run.

 */

 srand((unsigned)time(NULL));

 /* Display 10 numbers. */

 for(i = 0; i < 10;i++)

 printf(" %6d\n", rand());

}

Output

 6929

 8026

 21987

 30734

 20587

 6699

 22034

 25051

 7988

 10104

**************** JAVA ***********************************

public class Random

extends Object

implements Serializable

An instance of this class is used to generate a stream of pseudorandom numbers. The class uses a 48-bit seed, which is modified using a linear congruential formula. (See Donald Knuth, The Art of Computer Programming, Volume 2, Section 3.2.1.)

If two instances of Random are created with the same seed, and the same sequence of method calls is made for each, they will generate and return identical sequences of numbers. In order to guarantee this property, particular algorithms are specified for the class Random. Java implementations must use all the algorithms shown here for the class Random, for the sake of absolute portability of Java code. However, subclasses of class Random are permitted to use other algorithms, so long as they adhere to the general contracts for all the methods.

The algorithms implemented by class Random use a protected utility method that on each invocation can supply up to 32 pseudorandomly generated bits.

Many applications will find the random method in class Math simpler to use.

 Constructor Summary

 Random()

 Creates a new random number generator.

 Random(long seed)

 Creates a new random number generator using a single long seed:

 Method Summary

 protected

 int

 next(int bits)

 Generates the next pseudorandom number.

 boolean

 nextBoolean()

 Returns the next pseudorandom, uniformly distributed boolean value from this random number generator's sequence.

 void

 nextBytes(byte[] bytes)

 Generates random bytes and places them into a user-supplied byte array.

 double

 nextDouble()

 Returns the next pseudorandom, uniformly distributed double value between 0.0 and 1.0 from this random number

generator's

 sequence.

 float

 nextFloat()

 Returns the next pseudorandom, uniformly distributed float value between 0.0 and 1.0 from this random number

generator's

 sequence.

 double

 nextGaussian()

 Returns the next pseudorandom, Gaussian ("normally") distributed double value with mean 0.0 and standard

deviation 1.0 from

 this random number generator's sequence.

 int

 nextInt()

 Returns the next pseudorandom, uniformly distributed int value from this random number generator's sequence.

 int

 nextInt(int n)

 Returns a pseudorandom, uniformly distributed int value between 0 (inclusive) and the specified value

(exclusive), drawn from this

 random number generator's sequence.

 long

 nextLong()

 Returns the next pseudorandom, uniformly distributed long value from this random number generator's sequence.

 void

 setSeed(long seed)

 Sets the seed of this random number generator using a single long seed.

 Methods inherited from class java.lang.Object

 clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

 Constructor Detail

Random

public Random()

 Creates a new random number generator. Its seed is initialized to a value based on the current time:

 public Random() { this(System.currentTimeMillis()); }

 See Also:

 System.currentTimeMillis()

Random

public Random(long seed)

 Creates a new random number generator using a single long seed:

 public Random(long seed) { setSeed(seed); }

 Used by method next to hold the state of the pseudorandom number generator.

 Parameters:

 seed - the initial seed.

 See Also:

 setSeed(long)

http://java.sun.com/products/jdk/1.2/docs/api/java/util/Random.html

http://www.npac.syr.edu/users/gcf/cps615D

http://www.npac.syr.edu/projects/k12javaspring99/classes/class7.html

pointing to

http://www.npac.syr.edu/projects/k12javaspring99/Gaussian/Gaussian.html

http://www.npac.syr.edu/projects/k12javaspring99/Gaussian/throwadice/Election.html

