A high level SPMD programming model: HPspmd
and its Java language binding

Guansong Zhang, Bryan Carpenter, Geoffrey Fox
Xinying Li, Yuhong Wen

111 College Place
NPAC at Syracuse University
Syracuse, NY 1524/

{zgs, dbe, gcf, zli, wen}@npac.syr.edu
Faz: (315)4431973

March 10, 1998

Abstract

This report introduces a new language, HPJava, for par-
allel programming on message passing systems. The lan-
guage is designed in a high level SPMD programming
model. From examples and performance in its Java bind-
ing, the features of the new programming style, and its
implementation are shown.

Keywords Parallel programming, SPMD, Java

1 Introduction

In this report, we introduce HPJava language, a program-
ming language extended from Java for parallel program-
ming on message passing systems, such as workstation
clusters.

Though its name comes directly from HPF[1], HPJava
does not inherit HPF completely. The language introduces
a high level SPMD programming style, HPspmd, which
can be summarized as following,

e Structured SPMD programming The program-
ming language presented here depends on a well or-
ganized process group as control threads. As in a
SPMD program, only the data owners are allowed to
share the current control thread when the data items
are accessed. The language offerers special constructs
for programs to achieve this conveniently.

e Global name space Besides local variables, the lan-
guage provides variables associated with data descrip-
tor, offering a global name space, especially, global ad-
dressed array with different distribute patterns. This

helps to relieve programmers of error-prone activi-
ties like local-to-global, global-to-local translations in
most data parallel applications.

e Collective communication Accessing data on dif-
ferent processors is through a powerful collective com-
munication library provided with the language. With
this library, data parallel applications may have dead-
lock free communication. As in SPMD style, the lan-
guage itself does not provide data movement seman-
tics implicitly. This encourages the programmer to
write algorithms that exploit locality and simplifies
the task of compiler writers.

e Hybrid of data and task parallel program-
ming The language provides constructs facilitating
both data parallel and task parallel programming.
Through language constructs, different processors can
not only work simultaneously on global addressed
data, but also execute independently complex pro-
cedures on their own local data. The conversion be-
tween these two phases is a seamless one.

e Flexible for future extension The language itself
only provides basic concepts to organize a group of
process grid. Different communication patterns are
implemented as library functions. This gives the pos-
sibility that when ever a new communication pattern
is needed, it is relatively easy to be integrated.

The reason we don’t follow HPF directly is that during
the practice of compiling HPF[2], “run-time” support is
emphasized in our approach, and we found the level of
runtime system can be effectively raised to a programming
model. In fact, the new programming style introduced

here is a language independent one, it also can be binded
with other programming languages such as C/C++ and
Fortran.

As Java language is simple, elegant, and more promis-
ing, we implemented our prototype based upon this lan-
guage, and found the efforts are quite rewarding.

2 Java language Binding

String is a class in Java, yet there is language syntax to
support it. In HPJava, we add more this kind of build-in
classes.

2.1 Basic concepts

The key concepts in the new programming style is built
around process groups, which will be used to support pro-
gram execution control in a parallel program.

Process group A Group is defined to represents a pro-
cess group, typically with a grid structure and an asso-
ciated set of process dimensions. It has its subclasses to
represent different grid shape, such as Procsi, Procs2,
etc. For example,

Procs2 p = new Procs2(2,4);

Naturally, an HPJava program will be executed parallel
in each process of a group grid.

Distributed dimension and index with position
For an ordinary array, its elements can be represented
by an integer sequence. By doing so, we have two con-
cepts reflected by int value here, an index to access each
array element and a range where the index can be cho-
sen from. When describing a distributed array, we use
two new build-in classes in HPJava to represent the above
concepts, a) A range maps an integer interval into a pro-
cess dimension according to certain distribution format.
Ranges describe the extent and mapping of array dimen-
sions. b) A location, or slot, is an abstract element of a
range. A range can be regarded as a set of locations, ac-
tually it is a one-to-one mapping between the global index
and locations. For example,

Range x = new BlockRange(100, p.dim(0)) ;
Range y = new CyclicRange(200, p.dim(1)) ;

will create two ranges on the different process dimen-
sions of group p, one is block distributed, the other is
cyclic distributed.

We can get 100 different items as Location references
mapped by the range x from integers, for example, the

first one is?,

Location i = x[0];

THere “[17 is used to construct a new location, it is also used to
construct a new range in the following code.

Subgroup and Subrange A subgroup is some slice of
a process array, formed by restricting the process coordi-
nates in one or more dimensions to single values.

Suppose i is a location in a range distributed over a
dimension of group p. The expression

p/i

represents a smaller group—the slice of p to which lo-
cation i is mapped.

Similarly, a subrange is a section of a range, parameter-
ized by a global index triplet. Logically, it represents a
subset of the locations of the original range.

The syntax for a subrange expression is

x[1:49]

The symbol “:” is a special separator. It is used to
compose a triplet expression?, with optional int expres-
sions to represent an integer subset. The default initial
and finial value are zero and the extend of the range re-

spectively. The default stride size is 1.

Structured SPMD programming When a process
group is defined, a set of Range and Location reference
also have been defined, as in figure 1.

Group p (‘

! | | Renge u
\

Group q H"_‘ TFTT T T ﬂ
M

Range V[1::2]

Figure 1: Structured processes

The two ranges associated with the group p are,

Range u=p.dim(0);
Range v=p.dim(1);

dim(int) is a member function return a range reference,
which corresponds to a processor dimension.

Further more, we can get a location in range u, and use
it to create a new group,

uli;
Group q = p/i;

Location i =

As shown in the figure, group p is a highly structured
concept, and all the notions introduced around it con-
tribute to program execution control in the new program-
ming language.

2Unlike other expressions in Java, there is no type information
associate with a triplet expression.

In a traditional SPMD program, execution control is
based on if statements and process id or rank numbers.
In the new programming language, switching execution
control is based on the structured process group. For ex-
ample, it is not difficult to imagine, and we will see that
the following code,

on(p) {
}

will switch the execution control inside the bracket to
processes in group p.

The language also provided well defined constructs to
switch execution control among processes according to
data items we want to access. This will be introduced
later.

2.2 Global variables

As a SPMD programming language, when a program
starts on a group of n processes, there will be n logical
control threads, which mapping to utmost n physical pro-
Cessors.

On each control thread, the program can define vari-
ables in the same way as in a sequential one. The variables
created in this way are local variables, they are replicated
names on each process, which will be accessed individually.

Besides local variables, HPJava allows a program to de-
fine global variables, which are distributed on a process
group. The global variables will be considered a single
entity during the execution on each process which creates
it.

The language has special syntax for the definition of
global data. And the global variables are all defined by
using the new operator from free storage. When a global
variable is created, a data descriptor is also allocated to
describe where the data are created.

Data descriptor and global data Actually, the con-
cept of data descriptor is not entirely new. It exists in Java
language itself. The field length in Java array reflects that
Java array is accessed through a data descriptor.

On a single processor, an array variable can be labeled
by a simple value like memory addresses and an int value
as length. On a multi-processor, a more complicated struc-
ture is needed to label a distributed array. We also call it
data descriptor.

The data descriptor portrays where the data is created,
and how are they distributed. A logical structure of a
descriptor is shown in figure 2.

New syntax were added in HPJava to define data with
descriptors.

on(p)

int # s = new int #;

Data owner

Descriptor handle Information

Dimension
Information

1=

Data
reference

Figure 2: Descriptor

creates a global scalar on the current executing process
group. In the statement, s is a data descriptor handle, in
HPJava term, a global scalar reference. And the scalar is
of an integer value. Global scalar references can be defined
for each primitive type and class type in Java.

The symbol # in the right hand side of the assignment
indicates a data descriptor is allocated as the scalar is
created.

Also it will be used to access this int value, as in the
following,

on(p) {
int #
s =
}

s = new int #;

100;

Note, the value of s is duplicated on each process in
the current executing processes. Duplicated variables are
different from replicated local variables. The descriptors
they have can be used to keep their value identical on each
process during the program execution.

The group inside a descriptor is called data owner group,
it defines where the global variable belongs.

on(p)

int # s = new int # on q;

will set data owner field in the descriptor as group q,
instead of the default p.

When defining a global array, it is not necessary to al-
locate a data descriptor for each array element, so the
syntax to define a global array is not derived directly from
the one for scalar.

on(p)

float [[]] a = new float [[100]];

will create a global array of size 100 on group p. Here a
is a descriptor handle, which describes an one dimension
float type array. Its distribution format is a collapsed
one, with its elements duplicated in that process dimen-
sion. We call it a collapsed dimension. In HPJava term, a
is also called a global or distributed array reference.

A distributed array can also be defined with different
kinds of ranges we introduced before.

on(q)
float [[#]] b = new float [[x]];

will create a global array with range x on group q.
Again, b is a descriptor handle, which describes an one
dimension float type array of size 100, distributed with
block range.

When defining a global array, # is used to mark a non-
collapsed dimension.

The accessing pattern of a global array element is not
the same as a global scalar reference, neither exactly same
as a local array element. Since global arrays may have
position information in their dimensions, we may need lo-
cation references as their indexes when their dimensions
are not collapsed.

Location i=x|3;
at (i)
b[il=3;

Here the forth element of array a is assigned to 3. We
will leave at construct and how to access array elements
in section 2.3, and look at simpler example here.

When a global array is defined with a collapsed dimen-
sion, accessing its element is as usual,

for(int i=0; i<100; i++)
blil=1i;

will assign the loop index to each corresponding element
in the array.

When defining a multi-dimension global array, one de-
scriptor can describe a rectangular array of any dimen-
sions,

Range x = new BlockRange(100, p.dim(0)) ;
Range y = new CyclicRange(100, p.dim(1)) ;
float [[#,#]] ¢ = new float [[x, yl];

will create a two-dimension global array, with the first
dimension block distributed and the second cyclic dis-
tributed. ¢ is a global array reference, its element can
be accessed by putting a single bracket with two location
references inside.

The global array introduced here is Fortran-style multi-
dimension arrays rather than C-like array-of-arrays, hence
it can be clearly shown that which dimensions the descrip-
tor is describing.

The array-of-arrays in Java is still useful. For example,
one can define a distributed array of local arrays.

Array section and type signature HPJava provides
array section of global arrays. The syntax of section sub-
scripting a global array is similar to its definition, a dou-
ble bracket is used. The subscripts can be locations or
ranges>.

Suppose we still have array c defined as above, then,
c,clli, y[1::2]11]1, c[[i, 2]] and b[[i]] are all array

3When section is made in a collapsed dimension, an integer or
triplet expression is used directly.

sections. Here i is a location in the first range of b and c,
and z is a subrange of the second range of c.

Expression c[[i, y[1::2]]1] and c[[i, z]] represent
a one-dimensional distributed array, providing an alias for
a subset of elements of c¢. Expression b[[i]] contains a
single element of b, yet the result is a global scalar refer-
ence, not a simple variable.

Array section expression will be used as arguments in
function calls*. Table 1 shows the type relations of global
data with different dimensions.

global var array section type
2-dimension c

cllx,yl] float [[#,#]]
1-dimension | c[[i,y]]

clli,y[1::2]1]1]1 float [[#]1]
scalar(0-dim) | c[[i,j]] float #

Table 1: Section expression and type signature

In the table, both i and j are location references.

2.3 Program execution control

HPJava has all the Java statements for program execu-
tion control within a single process. It also introduces
three new control constructs, on, at and over for execu-
tion control among processes.

A new concept, active process group, is introduced. It is
the set of processes sharing the current thread of control.

In a traditional SPMD program, the concept of switch-
ing the active process group is reflected by if statement,

if (myid>=0 && myid<4) {
}

means that inside the brace bracket, the processes num-
bered as 0 to 3 share the control thread.

In HPJava, this concept is expressed by a Group refer-
ence. When a HPJava program starts, the active process
group is a system pre-defined value. During the execution,
the active process group can be changed explicitly through
an on construct in the language.

In a shared memory program, accessing the value of a
variable is straight forward. In a message passing system,
only the process which holds data can read and write the
data. A traditional SPMD program achieves this by using
if statements. For example,

if (myid==1)
my_data=3;

4“When used in method calls, # marked type is a super-type of
the one without the symbol. i.e. an argument of float[[,]],
float[[#,]] and float[[,#]] type can all be passed to a dummy
of type float [[#,#]]. But it is not true vise versa.

will make sure that only my_data on process 1 is assigned
to 3.

In the language we present here, the same thing is re-
quired, and not only for local variables but also for global
variables, i.e. when assigning data, the data owner must
be the active process group.

Besides on construct, there is a more convenient way
to change the active process group according to the array
element we want to access, at construct.

Suppose we still have b defined in previous section,

on (q) {
Location i=x[1];
at (i)
b[i]=3; //correct

b[il=3;
}

//error

The assign statement guarded by an at construct is cor-
rect, the one without it may cause run time error if there
is run time range checking.

In HPJava, a more powerful construct over can be used
to combine the switching of the active process group with
a loop,

on(q)
over(i= x[0:3)
b[il=3;

is semantically equivalent to®

on(q)
for(int n=0;n<4;n++)
at (i=x[n])
b[il=3;

Inside each iteration, the active process group is changed
to q/1i.

In section 3, we will use more programs to show that by
using the at and over construct it is quite convenient for
a program to keep the active process group equal to the
data owner group of the assigned data.

When accessing data on another process, HPJava needs
explicit communication as in a ordinary SPMD program.

2.4 Communication library functions

Communication libraries are provided as packages in HP-
Java. Detailed function specifications will be introduced in
other papers. Here we will only introduce a small number
of top level collective communication functions, through
which data parallel applications may have dead-lock free
communication.

5But a compiler can implement over construct in a more efficient
way. For detail definition on over construct, please refer to 3]

In the current design, the collective communications are
member functions of a static class Ad1ibin a HPJava pack-
age. Adlib.remap will copy the corresponding element
from one to another, regardless of their distribution for-
mat. Adlib.shift will shift certain amount in a specific
dimension of the array in either cyclic or off-edge mode.
Adlib.writeHalo is used to support ghost region.

Since the basic programming style is SPMD, it is also
possible to allow other communication library be inte-
grated as part of the communication packages of the lan-
guage. We have already implemented Java MPI interface.
Currently CHAOS [4] and GA [5] are being considered as

“add-on” packages.

3 Programming examples

In this section we only give out example programs to show
the new language features.
The first example is Choleski decomposition,

Procsl p = new Procsi(4);
on(p) {
Range x = new CyclicRange(size, p.dim(0));
float all,#]] = new float [[size, x11;
// initialize the array here;
float b[[]] = new float [[sizell; // as a buffer
at(j=x[0])
al0,jl=Math.sqrt(al0,jl);

for(int k=0; k<size-1; k++) {
for(int s=k+1; s<size; s++)
at(j=x[k])
als,jl/=alj,jl;

Adlib.remap (b[[k+1:11,al[x[k+1:1, k11);

over (j=xlk+1:)
for (int i=x; i<size; i++)
ali,jl-=b[il*b[j1;

at (j=x[k+11)
alk+1,jl=Math.sqrt (alk+1,jl);

Here, remap is used to broadcast one updated column
to each process.
The second example is Jacobi iteration,

Procs2 p = new Procs2(2, 4);
Range x = new BlockRange (100, p.dim(0), 1);
Range y = new BlockRange(200, p.dim(1), 1);
on(p) {

float [[#,#]] a = new int [[x,y1] ;

// ... some code to initialize ‘a’

float [[#,2#]] b = new int [[x,y11;

Adlib.writeHalo(a);

over(i=x]|:)
over(j=yl:)
bli,jl = (ali-1,j] + ali+1,j] +
ali,j-1] + ali,j+1]) #* 0.25;
over(i=x|:)
over(j=yl:)
ali,jl = bli,jl;

In the above code, there is only one iteration, it is used
to demonstrate how to define range reference with halo
area, and how to use the writeHalo function.

4 Project in progress

The related projects of our work may include development
of MPI, HPF, and other parallel languages such as ZPL
and Spar, which are introduced else where®. Here we ex-
plain more backgrounds and future developments about
our own project.

The work originated in our compilation practice in HPF.
As introduced in [2], our compiler emphasize runtime sys-
tem support. Adlib[6], as PCRC runtime kernel library,
provides a rich set of collective communication functions.
During the practice, it is realized that the runtime inter-
face can be effectively raised to a higher level, and a rather
straight-forward (compared to HPF) compiler can be de-
veloped to translate the high level language code to a node
program calling runtime interface functions.

Currently, Java interface has been implemented on top
of the Adlib library. With classes such as Group, Rang
and Location in the Java interface, one can write Java
programs quite similar to HPJava we proposed here. Yet,
the program executed in this way will have large overhead
due to function calls (such as address translation) when
accessing data inside loop constructs.

Given the knowledge of data distribution plus inquiry
functions inside runtime library, one can substitute ad-
dress translation calls with linear operation on the loop
variable, and keep most of the inquiry function calls out
side loop constructs. This is the basic idea of the HPJava
compiler.

At present time, we are working on the design and
implementation of the prototype of this kind “transla-
tor”. Further research works may include optimization
and safety-checking techniques in the compiler for HP-
spmd programming.

Figure 3 shows a preliminary benchmark for hand trans-
lated codes of our examples. The parallel programs are
executed on 4 sparc-sun-solaris2.5.1 with mpich MPI and
Java JIT compiler in JDK 1.2Beta2. For Jacobi iteration,
the timing is for about 90 iterations.

We also compared the sequential C++ version of the
code. As shown in the figure.

Similar test was made on an 8-node SGI challenge(mips-
sgi-irix6.2), the communication time is much smaller than
the one on solaris, due to MPI device using shared mem-
ory. Yet the overall performance is not as good, because
the JIT compiler is not supported on irix. The whole sys-
tem are being ported to Windows NT, where we may use
both shared memory and JIT techniques.

8 For analysis, please refer to documents at

http://www.npac.syr.edu/projects/pcrc/doc

more our

50

T

30

T

20

T

Time (in sec)

T

10

e

0 e T
0 200 400 600
Array size
Jacobi iteration
70 , , , , ,

60 f

800 1000

Time (in sec)

20

o

e

0 = ,;T,,ﬁr:: f.‘,,‘.{, . ‘
0O 200 400 600
Array size

800 1000

Figure 3: Preliminary performance

5 Summary

Through the simple examples in the report, we can see
the programming language presented here has the flexi-
bility of a SPMD program, and the convenience of HPF.
The language encourages programmers to express paral-
lel algorithms in a more explicit way. We believe it will
help programmers to solve real application problems eas-
ier compared with using communication packages such as
MPI directly, and allow the compiler writer to implement
the language compiler without the difficulties met in the
HPF compilation.

The Java binding is only an introduction of the new pro-
gramming style. (A Fortran binding is being developed.)
It can be used as a software tool for teaching parallel pro-
gramming. And as Java for scientific computation become
more mature, it will be a practical programming language
to solve real application problems in parallel and distribute
environments.

References

(1]

[2]

High Performance Fortran Forum, “High Perfor-
mance Fortran Language Specification”, version 2.0,

Oct. 1996

Guansong Zhang, Bryan Carpenter, Geoffrey Fox, Xi-
aoming Li, Xinying Li, and Yuhong When. “PCRC-
based HPF compilation”, 10th International Work-
shop on Languages and Compilers for Parallel Com-
puting, 1997.

Bryan Carpenter, Guansong Zhang, Geoffrey Fox,
Xinying Li, and Yuhong Wen. “Introduction to Java-
Ad”. http://www.npac.syr.edu/projects/pcrec/doc.

R. Das, M. Uysal, J.H. Salz, and Y.-S. Hwang.
“Communication optimizations for irregular scientific
computations on distributed memory architectures”.

Journal of Parallel and Distributed Computing, Sep.
1994

J. Nieplocha, R.J. Harrison, and R.J. Littlefield. The
Global Array: Non-uniform memory access program-
ming model for high-perfomance computers. The
Journal of Supercomputing, 1996.

Bryan Carpenter, Guansong Zhang and Yuhong Wen,
“NPAC PCRC Runtime Kernel (Adlib) definition”,
http://www.npac.syr.edu/projects/pcrc/doc

