1. For what activities does a client use a component’s Iunknown interface?

        Navigating between multiple interfaces on an object through the QueryInterface function.

        Controlling the object’s lifetime through a reference counting mechanism handled with functions called AddRef and              Release

2.     How COM solve the version problem?

COM use immutable interfaces and allowing supporting multiple interfaces in one object to solve the version problem.

2. Describe the steps taken by client, COM and component when an in-process component is activated?

See handout .

3. Describe the steps taken by client, COM and component when an out-process component is activated?

See handout.

4. Sketch the vtable structure for the interface.

[image: image1.wmf]lpVtbl

Interface Function Table

Interface Pointer

Pointer to Function1

Object Implementation

of interface functions

Pointer to Function2

Pointer to Function3

...

Object

State

Data


5. Describe how client use of the #import statement for a type library affects the way the designer can implement client code?

The #import directive instructs the compiler to process the designated type library, converting the contents to C++  code that describes the COM interfaces contained within the type library. When it encounters the #import directive, the C++ compiler generates two header files that reconstructs the type library’s contents in C++ source code. The primary header file has the same name as the type library with the .tlh extension. This file is similar to the header file produced by the MIDL compiler, as it contains the abstract base class definitions for the interfaces. The secondary header file, also with the same name as the type library but with the .tli extension, contains the implementation of compiler generated member functions and is included by using the primary header file. Both header files are placed in the compiler’s output directory. They are then read and compiled as if the .tlj file were named by using #include directive in the source code. And also in the header files, they  use microsoft smarter pointer template classes which encapsulates interface pointers and eliminates the need to call the AddRef, Release, and QueryInterface methods of the Iunknown interface, in addition, it wraps the call the CoCreateInstance when instantiating a new COM object.

6. How does COM ensure that interfaces carry no implementation details? Why  is it important that OCM interfaces are designed that way?

The interfaces in COM are made of pure abstract functions, which guarantees no implementation details. By doing this, can break compilation dependencies.

7. What  is the importance in COM of the STA?

Methods calls to objects in an STA are automatically synchronized and dispatched using window message queues,

This message queue architecture solves the problem of multiple clients making concurrent calls to an object running in an STA. Since all the calls are submitted as window messages posted to the message queue, the calls will be serialized automatically.

8. What functions are provided by the IclassFactory interface and for what are they used ? Who uses those functions?

Why is it important?

IclassFactory interfaces provides two methods: CreateInstance and LockServer. It is the job of CreateInstance method to actually  instantiate a COM object. The client calls the lockserver method to keep  a component open in memory, thus allowing instances to be created more quickly. The client call CoCreateInstance(), then indirectly calls the CreateInstance function in the IclassFactory.

It is important because it helps break the compilation dependencies and create objects for requested component.

9. Describe the structure of the Active Template Library, that is , what are its important parts?

There are 4 fundamental ATL classes used to implement a COM object: CcomObjectRootEx, CcomCoclass, IdispatchImpl, IsupportErrorINfo

CcomObjectEx is the essential ATL class. It provides the default table driven QueryInterface mechanism and is a required part of every ATL object. The CcomCoClass class defines the default class factory and aggregation model for an object.

10. What is meaning by term marshaling?

When making out-of-process calls to a local component running on the same machine or to a remote machine, all the data that needs to be shared by the client and components must be neatly packaged and transmitted by any means available. This process is called marshaling. It includes type-library marshaling, standard marshaling, and customer marshaling.

12,  How the SCM knows which proxy/stub DLL to load?

       The SCM loads the proxy/stub DLL based on the IID of the  interface pointer being returned to the client. In the HKEY_CLASSES_ROOT\Interface section of the registry, the IID must be declared along with the subkey ProxyStubClsid32, This subkey must contain the CLSID of the proxy/stub component for this interface. The SCM then proceeds to the HKEY_CLASSES_ROOT\CLSID section of the registry to locate the CLSID and the InprocServer32 specifying the name of the proxy/stub DLL to load

13. How proxy/stub DLL turns into a proxy in the client space and into a stub into a component space?

In both the client and server address spaces, a proxy or stub object is born at  the IPSFactoryBuffer Interface. Then something dramatic happens. In the client’s address space, the IPSFactoryBuffer::CreatePorxy method is called to create an object that implements the IrpcProxyBuffer interface; in the server address, the IPSFactoryBuffer::CreatedStub is called to create an object that implements the IrpcStubBuffer interface, from there, the proxy calls IrpcProxyBuffer::Connect and then communicate with the stub using the IrpcChannelBuffer interface. In response to the proxy’s request, the stub using the IrpcStubBuffer::Invode method.

14. Is it important that an interface be composed of only pure abstract functions? Please explain why or why not in some detail?
Yes, use pure abstract functions in interface can break the compilation dependencies between client and component. Client can only see interfaces but not the implementation details of the component. COM must create component for the client.

15. Write a IDL  for an interface that has a single function, appendString, which is passed a string by the client, appends another string and returns the result to the client. How it decides what to append is not relevant to this question. What responsibility does the client assume when using this function?

#import “unknown.idl”

[ object, uuid(xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx)]

interface IappendString : Iuknown

{

       HRESULT AppenString( [ in, string] wchar_t* FromClient,

                                                [out, string] wchar_t** retString);

}

The client must free the memory allocated by the component by using ComTaskMemFree() function.

16. How is STA created?

The client and EXE based component can create STA by calling CoInitialize(NULL) or CoInitializeEx(NULL, COINIT_APARTMENTTHREADED),  In_process components declares their supported threading model with one of the following registry entries: Apatrment(STA), Free(MTA), or Both(STA and MTA).

17. When will COM marshal data transfers between client and component?
When the client and the component are in different processes( in the same machine or different machine), and when the client and component are in the same process but have uncompatible threading model.

18. What does a client of a in_process compnent need to know about the component in order to use it?

How does the client acquire that information? This question also applied to out_process component.

Should include customer interface and automation interface. May also regarding to whether have type library.

For customer interface:  the CLSID_class, IID_interface, the signature of the methods the interface provides.

a. hr = CoCreateInstance(CLISD_class, NULL, CLSCTX_INPROC_SERVER, IID_interface, (void**)&pUnknown);

b. hr = pUnknown->QueryInterface(IID_interface, (void**) &pInterface).

c. Use pInterface to call the methods

For automation interface: the CLSID_class, if type information is available, then all set, it not, may need name of the method or DISPID of the method also the signature of the method. 

19. What is an apartment?

The basic unit of thread safety in COM is called an apartment. Two types of apartments are defined in COM: STA can have only on e thread executing per apartment, MTA can have more than one threads executing in the apartment.

20. What traits do all COM interfaces share?

All COM interfaces inherit from Iuknown interface, all the method in the interface are pure virtual function, return type is HRESULT, using _stdcall calling convention.

21. What is DDL, what are its attributes and why are they important?

 A dynamic-link library is a library of procedures that applications can link to and use at run time rather than link to statically at compile time. This means that dlls  can be updated without updating the application, and many applications can share a single dlls. The dlls reside in their own executable files and are not copied into applications' executable files. DLLs are compiled and linked  independently of the applications that use them; they can be updated without requiring applications to be recompiled or relinked.

22. What is GUID? Why is it important? Where does it come from?

GUID stands for globally unique identifier, it  is a 128 bit number represented in Hex, use GUID to distinguish one interface from other interfaces, guaranteed to be unique across time and space, so no confusion will result. It comes from UUID.

23. What support is required from the COM library and run-time system for client to communicate with an in-inprocess component?

The task of locating and loading the component.

When a client makes a request to create an object of a CLSID, the COM Library contacts the local SCM (the one on the same machine) and requests that the appropriate server be located or launched, and a class factory returned to the COM Library. After that, the COM Library, or the client, can ask the class factory to create an object

