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Branches

Direct jump: 1 target
jmp  0x0abba004

Conditional branch: 2 targets
br C1,0x0abba004
  

Indirect branch: n targets
load R2,R3+#vftable

load R1,R2+#selector

jmpl R1
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Indirect Branch Sources

Inter-module linkage pointers
target changes only during dynamic linking

Large switch statements
jump table (> 7 cases)

Function pointers
table-based control structures (table-driven parsers)
procedure parameters (Pascal)
...

Message dispatch
virtual function calls (C++,Java: 2 loads and an IB)
selector table indexing (dynamically typed OO-languages: RDC)
target caches (Java interface dispatch optimization)
...
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Indirect Branch Prediction

avoids pipeline bubble, enables // execution
enables prefetching of code which enables parallel and speculative 
execution

depends on the capacity of the execution engine to take advantage of 
instruction level parallellism

is adaptive
is language-independent
has little run-time overhead

information gathering happens in parallel with program execution
optimizing for performance (updating) happens in parallel

is limited
in complexity (transistor budget must fit the logic)

in available memory (all ultrafast on-chip)
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Simple Predictors
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Two-level branch predictor
last p targets + branch address -> target

Branch Address

History Table

XOR

History Buffer

8 recent targets
3 lower order bits per target

24 bit key pattern

Unconstrained 2level Prediction
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History Pattern Interference

32 * p bits  -> compress by bit selection [2..b+1] 
           with largest b so that b * p <= 24
           xor with branch address
missrate goes up from 5.8% to 6.0% for p=6
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Limited Associativity: Index / Tag 

Concatenation:
Index has all bits from few targets

Tag stores older targets

Interleaving:
Index has lower order bits from many targets
Tag stores higher precision bits
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target2 target1

Concatenation t2 t1

indextag

Interleaving t3 t1

target3

Concatenation t3 t1

Interleaving t2 t1



Conflict Misses

Concatenated history pattern
Index has all bits from most recent targets
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pattern interference performance loss is small

best path length grows with table size 

tables fill up really fast for longer path lengths

capacity misses dominate misprediction rate

interleaved target addresses reduce conflict misses
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Opcode Based Classification
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Separate path length for each branch class
Switch (JMP)

Indirect (JMPL)
Virtual (LD,LD,JMPL)

Branch Address

History Table

Branch ClassBranch Target

Pvirtual

Pindirect

Pswitch

Branch 
Class?

XOR

24 bit key pattern

Misprediction Rates per Opcode 
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Opcode Based Classification
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Arity Based Classification
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• Arity = #targets encountered in program run

• Separate history buffer path length for each arity 
class 

• classes: 1 target, 2 targets, >2 targets

• ISA extension necessary: annotate branch 
instructions with arity count

• We test best case. In practice:
• profiling run != production run
• program analysis may not be accurate enough 

Misprediction Rate per Arity
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Summary: Classifying Prediction

Opcode based classes are too similar 

Arity based classification works, but requires ISA 
change and gives no big improvement

Treating monomorphic branches differently is a 
winning strategy

Capacity misses are reduced when table handles 
only polymorphic branches
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Hybrid predictors
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Combine 2 or more simple component predictors, 
predict separately in each component

Two problems to solve:

  Meta-prediction: which component is most 
  likely to predict a particular branch correctly ?

   Which component predictors work well 
  together ?

Dual Path Length Predictors

combine 2 predictors with different path length
keep track of hits per entry with 2-bit confidence
counter (choose highest confidence entry)
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Dual Path Length Predictors

Short + long path length components reduce cold 
start misses

But:

  Metaprediction with 2-bit counters breaks down 
 for large number of components

  Components store all patterns even for branches  
 that are prefectly predicted by other component
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Cascaded Prediction

Branch Address

First-stage predictor

Second-stage predictor

Branch Target Update 

PredictionFilter update:
add new entry only if 
first stage mispredicts

Predict:
use second stage 
unless table miss

Filter Update Rule

• Strict filtering:
new entry on first-stage mispredict 
  (pattern is there, target is wrong)
not on first-stage table miss
  (pattern is absent, nothing is known)
prevents compulsory misses to get to 2nd stage
branch must stay in table until target change 
occurs

• Leaky filtering:
new entry on first-stage table miss or mispredict
lets compulsory misses go to 2nd stage
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Strict Filter Update Rule
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Leaky Filter Update Rule
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Cascaded Predictors
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Metaprediction rule “use longest path length 
prediction available” scales to multiple stages

The leaky filter update rule uses  table space 
adaptively and economically (reduced #entries by 
factor 5  in staged 0,2,6,16 predictor on eqn & ixx)

=> 90+% accuracy for realistic table sizes

Current work: path length and table size tuning for 
2-staged and multi-staged cascaded predictors

Could also predict conditional branches, memory 
addresses (prefetching) and values (value prediction)
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Indirect branches are more predictable, for practical 
transistor budgets, than current practice indicates

Cascaded prediction, at 1K table entries, reduces 
indirect branch misprediction rate from 25% to 8% on 
OOCSB benchmark suite

Much work to be done:

  Tuning of component path lengths and table sizes 

  Latency issues

  Predict ahead: use predicted target in history   
                 pattern until branch is resolved

More Info

The Direct Cost of Virtual Function Calls in C++
       (OOPSLA96) http://www.cs.ucsb.edu/oocsb/papers/.oopsla96.shtml

Limits of Indirect Branch Prediction
        (techreport) http://www.cs.ucsb.edu/oocsb/papers/TRCS97-10.html

Accurate Indirect Branch Prediction
      (ISCA’98) http://www.cs.ucsb.edu/oocsb/papers/TRCS97-19.html

Improving Indirect Branch Prediction With 
Source-and Arity-based Classification and 
Cascaded Prediction

(submitted) http://www.cs.ucsb.edu/oocsb/papers/TRCS98-07.html
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Benchmarks
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See papers for tables.
See website for samples.


