
1

Indirect Branch
Predictor Architectures

Karel Driesen & Urs Hölzle

University of California Santa Barbara

http://www.cs.ucsb.edu/oocsb

Overview

2

Intro
Simple predictors

Pattern interference

Capacity misses

Conflict misses

Classifying predictors
Opcode based

Arity based

Hybrid predictors
Dual path length

Cascaded

Conclusions

Branches

Direct jump: 1 target
jmp 0x0abba004

Conditional branch: 2 targets
br C1,0x0abba004

Indirect branch: n targets
load R2,R3+#vftable

load R1,R2+#selector

jmpl R1

3

Indirect Branch Sources

Inter-module linkage pointers
target changes only during dynamic linking

Large switch statements
jump table (> 7 cases)

Function pointers
table-based control structures (table-driven parsers)
procedure parameters (Pascal)
...

Message dispatch
virtual function calls (C++,Java: 2 loads and an IB)
selector table indexing (dynamically typed OO-languages: RDC)
target caches (Java interface dispatch optimization)
...

4

Indirect Branch Prediction

avoids pipeline bubble, enables // execution
enables prefetching of code which enables parallel and speculative
execution

depends on the capacity of the execution engine to take advantage of
instruction level parallellism

is adaptive
is language-independent
has little run-time overhead

information gathering happens in parallel with program execution
optimizing for performance (updating) happens in parallel

is limited
in complexity (transistor budget must fit the logic)

in available memory (all ultrafast on-chip)

5

Overview

Intro
Simple predictors

Pattern interference

Capacity misses
Conflict misses

Classifying predictors
Opcode based
Arity based

Hybrid predictors
Dual path length
Cascaded

Conclusions

6

Simple Predictors

7

Two-level branch predictor
last p targets + branch address -> target

Branch Address

History Table

XOR

History Buffer

8 recent targets
3 lower order bits per target

24 bit key pattern

Unconstrained 2level Prediction

8

1
1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2

2

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

bt
b

p=
1

p=
2

p=
3

p=
4

p=
5

p=
6

p=
7

p=
8

p=
9

p=
10

p=
11

p=
12

p=
13

p=
14

p=
15

p=
16

p=
17

p=
18

0%

5%

10%

15%

20%

25%

30%

35%

40%
AVG

1 AVG-100

2 AVG-200

AVG-infreq

Infinite table size
Full precision history pattern and branch address
32 target bits per table entry

History Pattern Interference

32 * p bits -> compress by bit selection [2..b+1]
 with largest b so that b * p <= 24
 xor with branch address
missrate goes up from 5.8% to 6.0% for p=6

9

1

1

1
1

1
1

1 1 1 1 1 1

2

2

2
2

2
2 2 2 2 2 2 2

3

3

3
3

3 3 3 3

4

4

4
4

4 4

8

8

8

p=
1

p=
2

p=
3

p=
4

p=
5

p=
6

p=
7

p=
8

p=
9

p=
10

p=
11

p=
12

0%

5%

10%

15%

20%

25%
1 1 bit

2 2 bit

3 3 bit

4 4 bit

8 8 bit

full address

Capacity Misses

Limited table size
Full associativity, true LRU replacement

10

1 1 1 1 1 1

2

2
2

2 2 2

3

3
3

3
3 3

4

4

4
4

4 4

6

6

6

6

6
6

8

8

8

8

8

a

a

a

a

c

c

c

51
2

10
24

20
48

40
96

81
92

nl
im

ite
d

5%

6%

7%

8%

9%

10%

11%

12%

13%

14%

15%
0 btb

1 p=1

2 p=2

3 p=3

4 p=4

6 p=6

8 p=8

a p=10

c p=12

0
0

0 0 0 0 0 0 0 0

1

1
1

1 1 1 1 1 1 1

2

2

2

2
2 2 2 2 2 2

3

3

3

3
3 3 3 3 3

4

4

4

4

4
4 4 4 4

6

6

6

6

6
6

6 6

8

8

8

8
8

8
8

a

a

a

a

a
a

a

c

c

c

c
c

c

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

U
nl

im
ite

d

0%

5%

10%

15%

20%

25%

30%

Capacity Misses (large)

11

1 1 1 1 1 1

2

2
2

2 2 2

3

3
3

3
3 3

4

4

4
4

4 4

6

6

6

6

6
6

8

8

8

8

8

a

a

a

a

c

c

c

51
2

10
24

20
48

40
96

81
92

U
nl

im
ite

d

5%

6%

7%

8%

9%

10%

11%

12%

13%

14%

15%
0 btb

1 p=1

2 p=2

3 p=3

4 p=4

6 p=6

8 p=8

a p=10

c p=12

Limited Associativity: Index / Tag

Concatenation:
Index has all bits from few targets

Tag stores older targets

Interleaving:
Index has lower order bits from many targets
Tag stores higher precision bits

12

target2 target1

Concatenation t2 t1

indextag

Interleaving t3 t1

target3

Concatenation t3 t1

Interleaving t2 t1

Conflict Misses

Concatenated history pattern
Index has all bits from most recent targets

13

0

0 0
0 0 0 0 0 0 0 0 0 0

1

1

1

1

1
1

1
1

1

1
1

1
1

2

2

2
2

2 2

2
2

2

2
2

2
2

4

4 4 4
4 4

4 4
4

4
4

4
4

bt
b

p=
1

p=
2

p=
3

p=
4

p=
5

p=
6

p=
7

p=
8

p=
9

p=
10

p=
11

p=
12

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%
0 Direct

1 Assoc01

2 Assoc02

4 Assoc04

FullAs.

4K entry table

Conflict Misses

Interleaved history pattern
Index has lower order bits of all targets

14

0

0
0 0 0 0 0 0 0 0 0 0 0

1

1
1 1

1 1
1 1

1 1
1

1
12

2
2 2 2 2 2 2

2 2
2

2 2
4

4
4 4 4 4 4 4 4 4

4 4 4

bt
b

p=
1

p=
2

p=
3

p=
4

p=
5

p=
6

p=
7

p=
8

p=
9

p=
10

p=
11

p=
12

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Practical 2level Prediction

Best: Associativity 4
1K: p=3 9.8% misprediction (10.7% Associativity 2)
8K: p=5 7.3% misprediction (8.0% Associativity 2)

15

0
0

0 0 0 0 0 0 0
1

1

1
1 1 1 1 1 1

2

2

2
2

2 2 2 2

3

3

3

3
3

3 3 3

4

4

4

4
4

4 4

6

6

6

6
6

6

8

8

8

8
8

a

a

a

a

a

c

c

c

c

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0%

5%

10%

15%

20%

25%

30%
1

1 1 1 1

2

2
2

2 2

3

3

3
3

3

4

4

4

4
4

6

6

6

6

8

8

a

51
2

10
24

20
48

40
96

81
92

5%

6%

7%

8%

9%

10%

11%

12%

13%

14%

15%

Summary: Simple Predictors

16

pattern interference performance loss is small

best path length grows with table size

tables fill up really fast for longer path lengths

capacity misses dominate misprediction rate

interleaved target addresses reduce conflict misses

Overview

Intro
Simple predictors

Pattern interference

Capacity misses
Conflict misses

Classifying predictors
Opcode based
Arity based

Hybrid predictors
Dual path length
Cascaded

Conclusions

17

Opcode Based Classification

18

Separate path length for each branch class
Switch (JMP)

Indirect (JMPL)
Virtual (LD,LD,JMPL)

Branch Address

History Table

Branch ClassBranch Target

Pvirtual

Pindirect

Pswitch

Branch
Class?

XOR

24 bit key pattern

Misprediction Rates per Opcode

19

0 1 2 3 4 5 6 7 8 9 10 11 12

0%

2%

4%

6%

8%

10%

12%

14%

M
is

pr
ed

ic
tio

n
ra

te
 fo

r 1
K-

en
try

 ta
bl

e

History Path Length

indirect

virtual

switch

total

20

Opcode Based Classification

64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

0%

5%

10%

15%

20%

25%

30%

M
is

pr
ed

ic
tio

n
ra

te

Table size

Separate

Shared

Mono

Arity Based Classification

21

• Arity = #targets encountered in program run

• Separate history buffer path length for each arity
class

• classes: 1 target, 2 targets, >2 targets

• ISA extension necessary: annotate branch
instructions with arity count

• We test best case. In practice:
• profiling run != production run
• program analysis may not be accurate enough

Misprediction Rate per Arity

22

0 1 2 3 4 5 6 7 8 9 10 11 12

0%

2%

4%

6%

8%

10%

12%

14%

M
is

pr
ed

ic
tio

n
ra

te
 fo

r
1K

-e
nt

ry
 ta

bl
e

History Path Length

1 target

2 targets

> 2 targets

total

Arity Based Classification

23

64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

0%

5%

10%

15%

20%

25%

M
is

pr
ed

ic
tio

n
ra

te

Table size

Separate

Shared

Mono

24

Summary: Classifying Prediction

Opcode based classes are too similar

Arity based classification works, but requires ISA
change and gives no big improvement

Treating monomorphic branches differently is a
winning strategy

Capacity misses are reduced when table handles
only polymorphic branches

Overview

Intro
Simple predictors

Pattern interference

Capacity misses
Conflict misses

Classifying predictors
Opcode based
Arity based

Hybrid predictors
Dual path length
Cascaded

Conclusions

25

Hybrid predictors

26

Combine 2 or more simple component predictors,
predict separately in each component

Two problems to solve:

 Meta-prediction: which component is most
 likely to predict a particular branch correctly ?

 Which component predictors work well
 together ?

Dual Path Length Predictors

combine 2 predictors with different path length
keep track of hits per entry with 2-bit confidence
counter (choose highest confidence entry)

27
0

1
2

3
4

5
P1 6

7
8

9
10

11
12

0
1

2
3

4
5 P26

7
8

9
10

11
12

95%
94%
93%
92%
91%
90%

95%
94%
93%
92%
91%
90%

0
1

2
3

4
5

P1 6
7

8
9

10
11

12

0
1

2
3

4
5 P26

7
8

9
10

11
12

95%
94%
93%
92%
91%
90%

95%
94%
93%
92%
91%
90%

2K per component 8K per component

Dual Path Length Prediction

Best: 1K-entry: p=3.1 9.0% miss (9.8% mono)
 8K-entry: p=6.2 6.0% miss (7.3% mono)

28

20
48

40
96

81
92

16
38

4

32
76

8

5%

6%

7%

8%

9%

10%

11%
direct

assoc2

assoc4

fullassoc

direct hybrid

assoc2 hybrid

assoc4 hybrid

Dual Path Length Predictors

Short + long path length components reduce cold
start misses

But:

 Metaprediction with 2-bit counters breaks down
 for large number of components

 Components store all patterns even for branches
 that are prefectly predicted by other component

29

30

Cascaded Prediction

Branch Address

First-stage predictor

Second-stage predictor

Branch Target Update

PredictionFilter update:
add new entry only if
first stage mispredicts

Predict:
use second stage
unless table miss

Filter Update Rule

• Strict filtering:
new entry on first-stage mispredict
 (pattern is there, target is wrong)
not on first-stage table miss
 (pattern is absent, nothing is known)
prevents compulsory misses to get to 2nd stage
branch must stay in table until target change
occurs

• Leaky filtering:
new entry on first-stage table miss or mispredict
lets compulsory misses go to 2nd stage

31

Strict Filter Update Rule

32

0 4 8 16 32 64 12
8

25
6

51
2

10
24

5%

6%

7%

8%

9%

10%

11%

12%

13%

14%

15%

M
is

pr
ed

ic
tio

n
ra

te

First-stage table size

nofilter-256

nofilter-1K

nofilter-4K

strict-256

strict-1K

strict-4K

Leaky Filter Update Rule

33

0 4 8 16 32 64 12
8

25
6

51
2

10
24

5%

6%

7%

8%

9%

10%

11%

12%

13%

14%

15%
M

is
pr

ed
ic

tio
n

ra
te

First-stage table size

nofilter-256

nofilter-1K

nofilter-4K

leaky-256

leaky-1K

leaky-4K

Cascaded Prediction (small)

34

10
24

20
48

40
96

81
92

16
38

4

5%

6%

7%

8%

9%

10%

M
is

re
di

ct
io

n
ra

te

Table size

mono

8/mono

128/mono

hybrid

8/hybrid

128/hybrid

64

12
8

25
6

51
2

10
24

6%

8%

10%

12%

14%

16%

18%

20%

M
is

pr
ed

ic
tio

n
ra

te

Table size

1K entry table:

mono -> 8/mono
9.8% -> 8.4%

hybrid -> 8/hybrid
9.0% -> 8.0%

Cascaded Prediction (large)

35

10
24

20
48

40
96

81
92

16
38

4

5%

6%

7%

8%

9%

10%

M
is

pr
ed

ic
tio

n
ra

te

Table size

mono

8/mono

128/mono

hybrid

8/hybrid

128/hybrid

8K entry table:

mono -> 8/mono
7.3% -> 6.3%

hybrid -> 8/hybrid
6.0% -> 5.5%

Cascaded Predictors

36

Metaprediction rule “use longest path length
prediction available” scales to multiple stages

The leaky filter update rule uses table space
adaptively and economically (reduced #entries by
factor 5 in staged 0,2,6,16 predictor on eqn & ixx)

=> 90+% accuracy for realistic table sizes

Current work: path length and table size tuning for
2-staged and multi-staged cascaded predictors

Could also predict conditional branches, memory
addresses (prefetching) and values (value prediction)

Overview

37

Intro
Simple predictors

Pattern interference

Capacity misses
Conflict misses

Classifying predictors
Opcode based
Arity based

Hybrid predictors
Dual path length
Cascaded

Conclusions

Conclusions

38

Indirect branches are more predictable, for practical
transistor budgets, than current practice indicates

Cascaded prediction, at 1K table entries, reduces
indirect branch misprediction rate from 25% to 8% on
OOCSB benchmark suite

Much work to be done:

 Tuning of component path lengths and table sizes

 Latency issues

 Predict ahead: use predicted target in history
 pattern until branch is resolved

More Info

The Direct Cost of Virtual Function Calls in C++
 (OOPSLA96) http://www.cs.ucsb.edu/oocsb/papers/.oopsla96.shtml

Limits of Indirect Branch Prediction
 (techreport) http://www.cs.ucsb.edu/oocsb/papers/TRCS97-10.html

Accurate Indirect Branch Prediction
 (ISCA’98) http://www.cs.ucsb.edu/oocsb/papers/TRCS97-19.html

Improving Indirect Branch Prediction With
Source-and Arity-based Classification and
Cascaded Prediction

(submitted) http://www.cs.ucsb.edu/oocsb/papers/TRCS98-07.html

39

Benchmarks

40

See papers for tables.
See website for samples.

