
Architecture Specification

Version Beta 2.0
September 1999

COPYRIGHT NOTICE

This document describes beta software, and is subject to substantial changes prior to public
release. No support will be provided for this beta release product beyond the public release
version.

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability or fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this
material.

This document contains proprietary information that is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett-Packard Company.

Hewlett-Packard Company
1501 Page Mill Road, M/S 5UE
Palo Alto, California 94304-1213
USA

© 1999 Hewlett-Packard Company

All other product names mentioned herein are the trademarks or registered trademarks of
their respective owners
ii Version Beta 2.0, September 1999

License Agreement

This license is reproduced from the license that you must agree to when the software is
installed:

ATTENTION: USE OF THE SOFTWARE IS SUBJECT TO THE HP SOFTWARE LICENSE
TERMS SET FORTH BELOW. USING THE SOFTWARE INDICATES YOUR ACCEPTANCE
OF THESE LICENSE TERMS. IF YOU DO NOT ACCEPT THESE LICENSE TERMS, YOU
MAY RETURN THE SOFTWARE FOR A FULL REFUND. IF THE SOFTWARE IS BUNDLED
WITH ANOTHER PRODUCT, YOU MAY RETURN THE ENTIRE UNUSED PRODUCT FOR A
FULL REFUND.

HP SOFTWARE LICENSE TERMS

The following License Terms govern your use of the accompanying Software unless you have
a separate signed agreement with HP.

License Grant. In return for payment of the applicable fee, HP grants you a license to use
one copy of the Software. “Use” means storing, loading, installing, executing or displaying the
Software. You may not modify the Software or disable any licensing or control features of the
Software. If the Software is licensed for “concurrent use”, you may not allow more than the
maximum number of authorized users to Use the Software concurrently.

Ownership. The Software is owned and copyrighted by HP or its third party suppliers. Your
license confers no title to, or ownership in, the Software and is not a sale of any rights in the
Software. HP’s third party suppliers may protect their rights in the event of any violation of
these License Terms.

Copies and Adaptations. You may only make copies or adaptations of the Software for
archival purposes or when copying or adaptation is an essential step in the authorized Use of
the Software. You must reproduce all copyright notices in the original Software on all copies
or adaptations. You may not copy the Software onto any public network.

No Disassembly or Decryption. You may not disassemble or decompile the Software
unless HP's prior written consent is obtained. In some jurisdictions, HP’s consent may not be
required for limited disassembly or decompilation. Upon request, you will provide HP with
reasonably detailed information regarding any disassembly or decompilation. You may not
decrypt the Software unless decryption is a necessary part of the operation of the Software.

Transfer. Your license will automatically terminate upon any transfer of the Software. Upon
transfer, you must deliver the Software, including any copies and related documentation, to
the transferee. The transferee must accept these License Terms as a condition to the transfer.
Version Beta 2.0, September 1999 iii

Termination. HP may terminate your license upon notice for failure to comply with any of
these License Terms. Upon termination, you must immediately destroy the Software,
together with all copies, adaptations and merged portions in any form.

Export Requirements. You may not export or re-export the Software or any copy or
adaptation in violation of any applicable laws or regulations.

U.S. Government Restricted Rights. The Software and any accompanying documentation
have been developed entirely at private expense. They are delivered and licensed as
“commercial computer software” as defined in DFARS 252.227-7013 (Oct 1988), DFARS
252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun 1995), as a “commercial item” as
defined in FAR 2.101(a), or as “Restricted computer software” as defined in FAR 52.227-19
(Jun 1987)(or any equivalent agency regulation or contract clause), whichever is applicable.
You have only those rights provided for such Software and any accompanying
documentation by the applicable FAR or DFARS clause or the HP standard software
agreement for the product involved.
iv Version Beta 2.0, September 1999

Table of Contents
Chapter 1 Introduction . 1

Vision . 1

Goals . 2

Architectural Philosophy . 3

Environment . 3

Intended Audience . 4

Structure . 4

Conventions . 5

Chapter 2 Architecture Overview 7

Mediation Architecture . 10

Resource Model . 11

Metadata System . 12

Naming Model . 13

Security Model . 14
Version Beta 2.0, September 1999 v

Table of Contents
Communication . 15

Service Access . 16

ESIP Architecture . 17

An End-to-End Example . 20

The E-speak Service Interface (Informational) 21

E-speak Services . 21

Standards . 22

Summary . 23

Future Developments . 24

Chapter 3 Resource Descriptions and Specifications 25

ResourceSpecification . 26

ResourceDescription . 30

Chapter 4 Core-Managed Resources 33

Conventions . 33

Key . 34

Key Ring . 35

Mailbox . 36

Name Frame . 39

Importer Exporter . 47
vi Version Beta 2.0, September 1999

Table of Contents
Protection Domain . 52

Repository View . 56

Resource Contract . 58

Resource Factory . 59

MetaResource . 60

System Monitor . 68

Vocabulary . 69

Chapter 5 Vocabularies .73

Vocabulary Overview . 73

Vocabulary Builder . 74

Base Vocabulary . 78

Translators (Informational) . 79

Chapter 6 Application Binary Interface.81

Message Flow Through the Core . 81

E-speak ABI Message Format . 84

Sending a Message to the Core . 85

Receiving a Message from the Core 87

Messages from the Resource Handler to the Client 89

Format of Payload for Core-Managed Resources 89
Version Beta 2.0, September 1999 vi i

Table of Contents
Initial Connection to the Core . 91

E-speak Serialization Format . 91

Security Implications (Informational) 103

Chapter 7 Inter-Core Communication 105

Design Objectives . 105

Communication Architecture Overview 106

The Connection Object . 109

The Connection Factory Interface 109

The Remote Resource Handler Interface 110

Payload Format . 112

Layer Factory Negotiation Protocol 112

Transport Layer Protocols . 115

Authentication Layer Protocols . 116

Security Layer Protocols . 116

Session Layer Protocols . 117

Core Interconnection Layer Protocols 117

ESIP . 117

Export Form for Resources . 122

Export by Value . 124
vii i Version Beta 2.0, September 1999

Table of Contents
Imported Resource Metadata (Informational) 124

Restriction on Export of Core-Managed Resources 126

Chapter 8 Exceptions .129

Overview . 129

Run-Time Exceptions . 129

Recoverable Exceptions . 130

Exception State . 133

Chapter 9 Events .137

Event Model . 137

Interaction Sequence . 138

Distributor Vocabulary . 141

Data Model . 142

Core-Generated Events . 145

Networks of Distributors . 147

Events in a Distributed Environment 148

Chapter 10 Management (Informational)149

Architecture . 149

Core Management . 150
Version Beta 2.0, September 1999 ix

Table of Contents
System Structure . 152

Security Models . 154

Chapter 11 Distributed Management (Informational). . . . 155

Management Middleware . 155

Architectural Model . 157

Chapter 12 Repository (Informational) 161

Repository Overview . 161

Repository Structure . 161

Information Flow . 162

Increasing Scalability . 164

Chapter 13 Intramachine Security (Informational) 167

Overview of Intramachine Security 167

Assumptions . 167

Keys, Permissions, and Locks . 168

Key Rings and the Mandatory Key Ring 170

Visibility Tests . 170

Protection Domains . 171

Example of an Intramachine Message 172
x Version Beta 2.0, September 1999

Table of Contents
Key Management . 173

Abstract Security Models . 173

Chapter 14 Intermachine Security (Informational)175

Overview of Intermachine Security 175

Controlling What Can Be Exported 177

Example of an Intermachine Message 177

Exporting a Key . 179

Secure Local and Remote Access (Informational) 180

Chapter 15 Future Developments185

Security . 185

Capabilities . 189

Unique Core Names . 190

Chapter 16 Glossary .193
Version Beta 2.0, September 1999 xi

Table of Contents
xii Version Beta 2.0, September 1999

List of Figures
Figure 1 Resource access in e-speak . 8

Figure 2 ESIP and the e-speak ABI . 9

Figure 3 Distributed e-speak. 21

Figure 4 Information flow through the e-speak Core 82

Figure 5 Connection and stack instantiation 107

Figure 6 The Inter-Core communication stack 108

Figure 7 LFNP header . 113

Figure 8 Messages exchanged during the negotiation
of the Transport Layer . 115

Figure 9 Format of Name Authentication Protocol 116

Figure 10 ESIP control messages opening a connection 121

Figure 11 ESIP control messages closing a connection 121

Figure 12 Interactions in the Event Model 137

Figure 13 Distributor Event Notification Process 139

Figure 14 Core Distributor configuration 146

Figure 15 Connecting local management into a system 156

Figure 16 Structural model of management system 158

Figure 17 E-speak domain model. 158

Figure 18 E-speak service model . 159
Version Beta 2.0, September 1999 xiii

List of Figures
Figure 19 Sending a message to a Resource on the
same machine . 172

Figure 20 Communication between two Logical Machines 176

Figure 21 Accessing the list Resource . 181

Figure 22 Revised e-speak security model 186
xiv Version Beta 2.0, September 1999

List of Tables
Table 1 Resource Model . 11

Table 2 Outbox message format . 16

Table 3 Inbox message format . 17

Table 4 Mapping Object accessor types and descriptions 40

Table 5 Name Frame Resource permissions 46

Table 6 Metadata Permissions for all Resources 67

Table 7 Components of an attribute property 75

Table 8 Supported value types . 76

Table 9 Base Vocabulary description . 78

Table 10 Exceptions for unresolved identification of a
Resource Handler 87

Table 11 Negotiation levels and corresponding values 113

Table 12 Metadata export . 123

Table 13 Core-managed Resource export restrictions 127

Table 14 Ranges for different exception classes 133

Table 15 Exception state . 133

Table 16 Distributor vocabulary . 141

Table 17 Event state common to all Events 146

Table 18 Management agents . 152
Version Beta 2.0, September 1999 xv

List of Tables
xvi Version Beta 2.0, September 1999

Chapter 1 Introduction
This document specifies the e-speak architecture. It defines the abstractions
presented by the system and the components that implement those abstractions,
and shows how the components interact to create useful services. The following
companion documents are also available:

■ E-speak Programmers Guide defines the interface for e-speak programmers
and system developers building e-speak-enabled applications.

■ E-speak Installation Guide shows how to install e-speak and how to run some
simple applications.

■ E-speak Contributed Services describes several sample applications included
with the distributed software.

■ E-speak Tools Documentation shows how to use tools provided for analyizing
the system.

Vision A

Computing with e-speak is a paradigm switch, aiming to bring a “just plug in, use the
services you need, and pay per usage” model to computation, as opposed to the
“install on your machine and pay per installation” model of computation prevalent
today. E-speak is the infrastructure that realizes the vision of such a model. Instead
of thinking of computing as some hardware you buy and the software you install on
it, e-speak encourages you to think of computing as a set of services you access as
needed.
Version Beta 2.0, September 1999 1

Goals Introduction
The reality of computing today is that it is much more complex than a utility like the
electric or water system. An immense variety of computing resources exists, both
in type and in power, and a newer, faster, cheaper, or better resource will probably
be invented by the time you finish reading this sentence. This dynamism is a formi-
dable challenge to interoperability.

At the same time, most of these resources are being connected to each other on a
range of scales, from homes to companies to the entire globe. The hardware neces-
sary to support such a computational utility is already available and getting better
by the day. On the software front, though the Web has essentially achieved the
status of a data utility, actual computation remains mainly confined to individual
machines and operating systems.

E-speak enables a computation utility by interposing on and mediating every
resource access in a process called virtualization. This broad abstraction yields a
model where machines, ranging from a supercomputer to a beeper, can be looked
at uniformly and can cooperate to provide and use services.

Goals A

E-speak aims at enabling ubiquitous services over the network—making existing
resources (e.g., files, printers, Java objects, or legacy applications) available as
services, as well as lowering the barriers to providers of new services. The infra-
structure’s goal is to provide the basic building blocks for service creation, includ-
ing:

■ Secure access to resources and service

■ Usage monitoring, billing, and access control

■ Advertising and discovery of new services

■ Mechanisms for negotiation to find the “best” service

■ Independence of operating system, language, and device

■ Ability to support large enterprise-wide, intra-enterprise, and global deploy-
ments
2 Version Beta 2.0, September 1999

Introduction Architectural Philosophy
Architectural Philosophy A

This document specifies the e-speak architecture. There are four key concepts:

■ Resource: Any computational service, such as a file or a banking service, that is
virtualized by e-speak.

■ Client: An active entity that requests access to Resources or responds to such
requests.

■ Protection domain: The part of the e-speak environment visible to a Client.
This is analogous to a Unix shell.

■ Logical machine: An active entity that performs the operations needed to
implement e-speak.

E-speak is based on the following:

■ All Resource access is mediated; e-speak sees all Resource requests.

■ All Resource access is virtualized; e-speak maps between virtual and actual
references.

■ Names for Resources are shared by convention only; e-speak keeps a separate
name space for each Client.

This document does not specify anything outside of the e-speak architecture.
However, some implementation details are included to illuminate some points.
These sections are marked “informational.”

Environment A

E-speak is designed to work in a hostile, networked environment such as the Inter-
net. It isolates service providers and their clients from an inherently insecure
medium while allowing them to negotiate safely, form contracts, and exchange
confidential information and services without fear of attack.
Version Beta 2.0, September 1999 3

Intended Audience Introduction
Intended Audience A

This E-speak Architecture Specification describes the lower-level interfaces of e-
speak for:

■ Implementors of Client libraries to provide a higher level of abstraction for e-
speak

■ Implementors of utilities and tools to manage and manipulate e-speak

■ Implementors of e-speak emulation routines that will be used in the run-time
environment for legacy applications

■ Implementors of extensions to existing services and resources used by Clients

■ System administrators who will implement policies for security and resource
lookup

■ Those designing and building their own implementations of e-speak

Structure A

This specification consists of the following major sections, in the order listed:

■ An overview of the e-speak architecture

■ A description of the data structures used by e-speak to describe Resources–
Resource metadata

■ The interfaces to the e-speak platform that are exposed as “Core-managed
Resources”

■ A description of Vocabularies, the mechanism for processing Resource descrip-
tions to discover and match Resources to the Client’s description of Resources
needed

■ The e-speak Application Binary Interface (ABI), which is used by Clients to
communicate with the e-speak platform
4 Version Beta 2.0, September 1999

Introduction Conventions
■ The Inter-Core Communication Architecture and the E-speak Service Inter-
change Protocol (ESIP), which is used by e-speak plaforms to communicate

■ The exceptions that can be generated by the e-speak platform

■ The e-speak Event Service

■ The e-speak management infrastructure (informational)

■ The e-speak Respository used for storing Resource metadata (informational)

■ A description of how the current e-speak security mechanisms are used (infor-
mational)

■ A glossary of terms

■ A brief description of probable future extensions to e-speak (informational)

Conventions A

There are several document conventions worth noting:

■ New terms are introduced in the document flow with italics.

■ Programmatically visible architectural abstractions are written with the first
letter of each word capitalized, such as Protection Domain.

■ Logical names, method names, and other programmatic labels are written in
Courier font.

■ Even though e-speak is independent of the programming language, the specifi-
cation uses Java syntax.

■ Sections describing material outside of the architecture are denoted with the
word “Informational” in the chapter or section title.
Version Beta 2.0, September 1999 5

Conventions Introduction
6 Version Beta 2.0, September 1999

Chapter 2 Architecture Overview
All system functionality and e-speak abstractions build on top of one single first-
class entity in the e-speak architecture—a Resource. A Resource is a uniform
description of active entities such as a service or passive entities such as hardware
devices. Unlike most platforms, e-speak deals only with data about Resources,
metadata, and not Resource-specific semantics. Thus, a file Resource within the
e-speak environment is simply a description of the attributes of the file and how it
may be accessed. The e-speak platform does not access the file directly. A
Resource-specific handler that is attached to the e-speak platform receives
messages from e-speak and directly accesses the Resource.

Access to e-speak is provided by the e-speak Service Interface (ESI). Client applica-
tions and Resource Handlers are linked with a library that provides this interface.
The library communicates with the e-speak platform using the e-speak Application
Binary Interface (ABI). The e-speak platform mediates all Resource access. Every
access to a Resource through e-speak involves two different sets of manipulations:

1 The e-speak platform uses its Resource descriptions for dynamic discovery of
the most appropriate Resource, fine and coarse-grained access control, trans-
parent access to remote Resources, and sending Events to management tools.

2 The Resource-specific handler directly accesses the Resource such as reading
the disk blocks for a file.

E-speak treats all Resource accesses in exactly the same manner. This mediated yet
uniform access is the design principle that allows the e-speak environment to
accommodate any kind of Resource type flexibly, even Resources dynamically
defined after the e-speak system has started.
Version Beta 2.0, September 1999 7

Architecture Overview
The e-speak platform maintains an environment for each of its Clients, called a
Protection Domain. A Protection Domain fixes the set of Resources available to the
Client at any given time. The e-speak platform will not allow a Client to access a
Resource that is not in the Client’s Protection Domain.

A single instance of the e-speak platform is called a Logical Machine. Figure 1
shows a single Logical Machine. There may be multiple Logical Machines on a single
physical machine, or the components of a Logical Machine may be distributed
across multiple machines. Logical Machines are independent entities that commu-
nicate using the E-speak Service Interchange Protocol (ESIP). The relationship
between ESIP and the e-speak ABI is shown in Figure 2.

Figure 1 Resource access in e-speak

Resource
Handler

e-speak
Core

Client
Library

Client

Repository

Protection
Domain

Logical
Machine
8 Version Beta 2.0, September 1999

Architecture Overview
Each e-speak Logical Machine has a single instance of the e-speak Core. All
Resource access is through the Core that uses the Resource metadata to mediate
and control each access. To access a Resource, a Client sends a message to the
e-speak Core naming the Resource. The e-speak Core uses the Resource metadata
to determine if access is allowed and to locate the Resource Handler. Assuming
access is granted, the e-speak Core forwards the message to the Resource Handler
that, in turn, physically accesses the Resource.

Although Figure 1 shows the Resource Handler being outside the Core (i.e., in a
separate process), the handler for some Resources is the Core itself; these
Resources are inside the Core and are called Core-managed Resources. E-speak
Clients can manage and interact with the Core by sending messages to these
Resources. For example, one kind of Core-managed Resource is a Resource
Factory. When a Client wants to create a new Resource instance, it sends a message
to the Resource Factory to register the Resource metadata with e-speak.

Figure 2 ESIP and the e-speak ABI

e-speak
Logical Machine

Clients

Logical
Machine

Network

Application
Binary
Interface

ESIP

Client
Library

ClientClient
Library

Client

ESI

Logical
Machine
Version Beta 2.0, September 1999 9

Mediation Architecture Architecture Overview
Logically, there are three categories of Resource access:

■ A service provider may choose to register the metadata of its service. The
e-speak Resource model describes the contents of this metadata.

■ A Client or service provider may look up a service and bind to it, prior to access-
ing it. The search rules and the information model for descriptions are defined
by the registered Resource metadata.

■ A Client or service provider may invoke an entry point on a service. The previous
two are special cases of this last one, because they may be considered as invo-
cations on entry points of Core-managed services.

In all cases, the mediating Cores perform access-control checks and name resolu-
tions and generate monitoring information as part of this access.

Clients who wish to access a service do so through the e-speak Core, which uses the
appropriate Resource metadata to route the Client request to the correct handler,
after having performed all desired access control, name translation, and other
e-speak functionality.

The following sections outline the various components of the e-speak architecture
and describe the steps in a service access.

Mediation Architecture B

Following are the main components of the mediation architecture:

■ A set of Core-managed Resources inside the e-speak Core. The Core-managed
services present the system functionality for managing the e-speak platform,
including creating Protection Domains and their contents and managing
Resource metadata.

■ A Repository containing Resource metadata available to Clients of the Logical
Machine. These are the metadata that the Core evaluates during any service
access.
10 Version Beta 2.0, September 1999

Architecture Overview Resource Model
■ A routing engine that mediates all service access messages based on the
contents of the Protection Domain of the sender and the contents of the meta-
data of Resources referred to in the parameters of the message. The implications
of this for naming and security are discussed below.

Resource Model B

The Resource is a representation of an e-service within e-speak. Service providers
register the metadata of their services (e-speak Resources) with the Core. This
includes the information depicted in Table 1.

The Resource metadata is maintained in the mediating Core’s Repository. All func-
tionality presented through the Core must have metadata within the Core. This is
true even for the functionality provided by the Core itself.

Table 1 Resource Model

Description An attribute-based specification of the Resource

Vocabulary The definition of the attribute grammar used in the
specification

Resource Handler Mailbox The process/thread/task that handles the Resource

Contract Denotes the Application Programming Interface (API)
supported by the provider, including version and
similar information

Visibility and permissions Access control information

Private Resource-specific
data

Not interpreted by e-speak; meaningful to the
provider; delivered to the Resource Handler as part of
incoming messages

Public Resource-specific
data

Not interpreted by e-speak; meaningful to the
provider and the user of the Resource
Version Beta 2.0, September 1999 11

Metadata System Architecture Overview
Metadata System B

The e-speak metadata system is based on the following architectural and semantic
entities:

■ Vocabularies are created as first-class Core-managed services through a Vocab-
ularyBuilder service. Thus, the model includes a metalanguage for creating a
whole range of vocabularies with which to describe services, much like that of
XML. XML document type definitions (DTDs) can be handled through the e-
speak VocabularyBuilder.

The representation of vocabularies as Resources ensures that they can be
dynamically discovered and protected from illegal access, and that access to
them is mediated as required, like any other service in e-speak. In the e-speak
architecture, a created Vocabulary decides the validity of an attribute descrip-
tion provided by a registering service provider.

The Core-managed Vocabulary service also includes a matching engine that is
used to match Resource descriptions available in the Repository with search
requirements of Clients of e-speak.

■ Attribute-based service descriptions are used by service providers as part of
service registration. These attribute descriptions are sets of name-value pairs in
a specific vocabulary. The Vocabulary is either one that the service provider
previously created (using the Vocabulary Builder) or discovered through the
discovery facilities provided by the e-speak Core services.

■ Search Recipes are objects that hold a Client’s recipe for discovering a
Resource. The Core uses this to process the Resource discovery request. A
Search Recipe specifies what Resources the Client is looking for, how the
lookup should be done, and what should be done if multiple matches occur. The
Search Recipe contains the predicates and a Repository view mechanism with
which to constrain the search. A search predicate is constructed with a Vocabu-
lary and a constraint string expressed in that Vocabulary based on the Object
Management Group trader services constraint grammar.
12 Version Beta 2.0, September 1999

Architecture Overview Naming Model
■ The operational realization of the metadata system includes support for includ-
ing arbitrary advertising services as part of extended searches, arbiters to opti-
mize matches found through the Core Repositories, and integration of
Vocabulary translation services with the lookup/discovery process. Advertising
services provide scalability to service lookup in e-speak by supplying connec-
tions to machines that may possess the required service. Arbiters are used to
effect special purpose optimizations such as handling multiple hits in lookups.
Translation services can be integrated with Core-managed Vocabulary services
or created as external services, thus allowing for translation between schemas
and Vocabularies.

Naming Model B

The e-speak naming system is based on the following principles:

■ A naming system based on a Client-visible per-Protection Domain name space.
Each Client has its own name space maintained in the Core (in the Client’s
Protection Domain) on behalf of the Client. Name spaces are maintained in
container Core-managed Resources called Name Frames. The Name Frame in
the Client’s Protection Domain is called its default Name Frame. When the Client
specifies the name of a service, the Core, starting with the default Name Frame,
finds a mapping between the name and a name unique to this Core.

■ The e-speak Core provides the only valid reference to a service as a name in the
Client-specific name space. This is like a virtual address of a service. The physi-
cal address of a service, the Core’s name is not a valid Client reference for a
service.

■ There are two ways for a Client to get a name for a service. First, another Client,
application, or service provider can pass it the name. The receiver’s reference
for the passed service is not necessarily the same as the sender’s, but both will
map to the same Core name. Second, a Client may obtain a per-Client name
through a bind call that requires a Search Recipe as a parameter. The e-speak
system (Core and Client libraries) looks up the name in local Repositories,
Version Beta 2.0, September 1999 13

Security Model Architecture Overview
known remote Repositories, and if necessary a global advertising service to
locate the appropriate service and create a binding for the Client in its name
space.

■ Bindings in e-speak are objects that capture an algorithm. At their simplest,
bindings may capture a Search Recipe. These bindings may be resolved and
frozen to a specific Core name or names, resolved and cached, or simply
resolved on each access. This gives the e-speak system an active naming model.
Even when resolved, a Client reference may be bound to multiple Core names,
which may be arbitrated prior to service access. This may be done by using a
Client-specified arbitration service that picks one particular service from a list
of services represented in a binding.

Security Model B

E-speak security is built upon something like capabilities called Keys. (These are
not cryptographic keys; they are a metaphor for something that opens a lock.)
Clients possess sets of Keys that they send with each message. The Core tests these
Keys against the metadata of the named Resources to see what privileges the Client
has to access these Resources.

The metadata of a service contains two types of fields that specify how the e-speak
security mechanisms will handle requests sent to the Resource:

■ Visibility fields

■ Permission fields

Each Resource’s metadata has an Allow field and a Deny field (the Visibility fields),
each containing a list of locks. When a Client sends a message to a Resource, the
Core tests the Keys against these fields:

■ Unless at least one of the Keys in the message opens a Lock in the Allow field,
the Core acts as if the Resource does not exist. The test is bypassed if the Allow
field is empty.

■ If any of the Keys in the message opens a Lock in the Deny field, the Core acts
as if the Resource does not exist.
14 Version Beta 2.0, September 1999

Architecture Overview Communication
The Visibility fields allow the Core to decide if a Client should be able to send a
message to a Resource—should it be visible to the Client or not.

Once the Core has finished checking the Visibility fields, it checks the Keys against
the Permission fields. The metadata describing a Resource can contain zero or more
permissions. Each Permission field contains a string that is protected by one or
more Locks. If any of the Keys sent by the Client in the message opens one of the
Locks in the Permission field, the Permission string is delivered to the Resource
Handler along with the message. The Resource Handler can interpret the string in
any way it chooses; no semantics are associated with the string by the Core. For
example, the handler for a file Resource might interpret the string “read” as mean-
ing that the sender of the request is allowed to read the file. The Core checks each
Permission field in the way described above, so the Resource Handler will receive
a list of Permission strings such as “read”, “write”, “execute”, and so on.

Keys are Core-managed Resources, so they can also be passed as parameters in
messages (secondary Resources). This gives the receiver of the message possession
of the Key and the privileges associated with that possession. A container Resource,
called a Key Ring, is also defined for holding sets of Keys.

Communication B

E-speak uses a mailbox metaphor to describe the interactions between Clients and
the Core. This metaphor does not imply that any actual messaging is required, only
that the interfaces are defined in terms of mailboxes. Mailboxes consist of two
forms: an Outbox and a Core-managed Resource called an Inbox.

When a Client wants to use a Resource, it constructs a message consisting of a
message header and a payload and inserts the message in the Client’s Outbox. The
Outbox is connected to the Core, which processes the information in the message
header. If there is no error, the Core will construct a new header for the Inbox, add
the payload from the sender, and forward the message to the designated Inbox. The
Resource Handler reads the message header and the inserted payload to determine
how to deal with the request.
Version Beta 2.0, September 1999 15

Service Access Architecture Overview
E-speak uses peer-to-peer communication. The Core has no concept of a reply
message. If the Resource Handler needs to return a value to the Client, it must spec-
ify a Resource listing an Inbox connected to the Client in the handler field of its
metadata. Hence, in replying to a message, the Resource Handler changes roles with
the Client.

Service Access B

The basic mechanism Clients use to operate the e-speak Core is message passing.
The Client libraries implement ESI, which is a more abstract interface wrapped
around the message-passing layer.

All Clients have a communication point with the Core, the Outbox, from which they
send Outbox messages composed of the elements shown in Table 2.

The primary Resource is the Client’s name for the Resource that it is accessing. The
secondary Resources are the names of other Resources that will be delivered to the
Resource Handler as parameters that it may need to handle the incoming message.

The e-speak Core then proceeds as follows:

1 Identifies the Client’s name space from its Protection Domain.

2 Resolves all Resources specified in the message headers in that name space.

3 Finds the corresponding metadata in its Repository, checking visibility rights.

Table 2 Outbox message format

Field Processed by Core Contents

Message header Yes Message ID, primary Resource, other
(secondary) Resources, and Key Rings

Payload No Request in handler API or straight data
if this is a reply from a handler
16 Version Beta 2.0, September 1999

Architecture Overview ESIP Architecture
4 Extracts private Resource-specific data (RSD) and appropriate permissions of
the primary Resource and all secondary Resources that have the same handler
Inbox.

5 Monitors the operation for appropriate logging/filtering.

6 Creates a new message header appropriate for the handler.

7 Deposits new message header with the unchanged payload in the handler’s com-
munication point with the Core, called the Inbox.

The Inbox messages are formatted as shown in Table 3:

Names for all Resources specified in the message header have to be created in the
handler’s name space.

ESIP Architecture B

E-speak is designed to run in a distributed environment such as the Internet. To
support distribution, e-speak introduces a new component: the Remote Resource
Handler. The Remote Resource Handler is provided as part of the e-speak infra-
structure and handles all requests for remote Resources; application programmers
do not have to build their own remote Resource Handlers.

Table 3 Inbox message format

Field Processed by Core Contents

Message header Yes Primary Resource RSD and
permissions, secondary Resources,
RSD and permissions if same handler

Payload No Request in handler language, or
straight data
Version Beta 2.0, September 1999 17

ESIP Architecture Architecture Overview
To obtain services from another Core, a Core must first obtain a Connection Object
for that Core. A Client may receive a Connection Object in the payload of a message;
for example, it might receive one in response to a request sent to an advertising
service.

Using the e-speak Application Binary Interface (ABI), the Client’s library passes the
Connection Object to its Core, asking it to establish a connection to the remote
Core. The Client’s connection contacts the remote Factory and engages in a negoti-
ation to establish various communication parameters such as the security of the
communication channel. This communication channel is established between two
Remote Resource Handlers (one at each Core) that are created during the initial
phase of setting up the connection. The protocol used by the Remote Resource
Handlers to communicate is ESIP—E-speak Service Interchange Protocol.

Once the communication channel is set up, the two Remote Resource Handlers
export the metadata of a set of Resources to each other. To export a Resource’s
metadata to a remote Logical Machine, a Remote Resource Handler sends that
metadata to its corresponding Remote Resource Handler on the remote Logical
Machine—the importing Remote Resource Handler. The importing Remote
Resource Handler registers the metadata with its local Core. Once the Resource is
registered with the local Core, Clients on that Core can discover it by using
attribute-based lookup, as described above. Some minor changes are made to an
imported Resource’s metadata. The most important is that the importing Remote
Resource Handler registers itself as the Resource Handler for that Resource.

Now when a Client sends a message to a remote Resource, the local Core will route
that message to the Remote Resource Handler. This forwards the message to the
corresponding Remote Resource Handler on the remote Logical Machine. On the
remote Logical Machine, the Remote Resource Handler forwards the message to its
Core using the e-speak ABI, naming the destination Resource. The remote Core’s
metadata for the Resource contains the real Resource handler to which the message
is sent. It is important to realize that the e-speak Core communicates with Remote
Resource handlers using the e-speak ABI. Only Remote Resource Handlers use
ESIP to communicate; this is intended to make it easy to replace the default imple-
mentation of a Remote Resource Handler and ESIP.
18 Version Beta 2.0, September 1999

Architecture Overview ESIP Architecture
Both Cores test the Visibility fields: the Client’s and the Resource’s. There are two
reasons for the tests by the Client’s Core:

■ The Client will get an early rejection if it cannot access the remote Resource, and
no message will be sent on the network.

■ It is possible to place extra controls on the Client’s machine. If the machine is
shared, not all users may be allowed to access the remote Resource. One way of
doing this is to restrict which Clients get Keys that open Locks in the Resource’s
Allow field.

However, the Resource’s Core takes ultimate responsibility for performing the visi-
bility tests; it does not trust the Client’s Core to do the checks correctly.

Once initial import and export have occurred, Clients on the two Cores can use
Resources on the Core to which a connection has been made. When a Client sends
a message to a Resource, it will likely include other Resources as parameters. When
this happens, these Resources are exported by the Remote Resource Handler on the
Client’s Core as a side effect of sending the message. This makes the Resources
available to the receiver of the message.

The basic mechanisms described above for importing and exporting metadata
implement a pass-by reference model; the Resource’s state is not migrated or
copied. A pass-by value model is also supported: The Resource Handlers are
responsible for generating and rebuilding a Resource state.

Remote Resource Handlers do not make all Resources available to other Cores.
Two mechanisms restrict what will be exported:

■ The Core will not accept a message from a Remote Resource Handler for a
Resource whose name is not already in that Remote Resource Handler’s Protec-
tion Domain. The set of Resources in the Protection Domain will grow as
Resources are added to it that are implicitly exported as a side effect of sending
them as parameters.

■ The Remote Resource Handler will be given Keys that will be attached to
messages before they are processed by the Core. Some of these Keys will open
Locks in Allow and Deny fields. These Keys will ultimately determine what
Resource will be exported to remote Cores.
Version Beta 2.0, September 1999 19

An End-to-End Example Architecture Overview
An End-to-End Example B

When the Client on Logical Machine A sends a message to its Core for a Resource
on Logical Machine B, the following steps take place (see Figure 3):

1 The Client attaches any Keys it chooses and sends a message (using the e-speak
ABI) to Core A naming the Resource.

2 Core A retrieves the Resource’s metadata and tests the Visibility fields; this may
cause the message to be rejected.

3 The metadata tells Core A to send the message to Remote Resource Handler A,
using the e-speak ABI.

4 Remote Resource Handler A sends the message to Remote Resource Handler B
using ESIP.

5 Remote Resource Handler B sends a message for the named Resource to Core B
using the e-speak ABI.

6 Core B retrieves the Resource’s metadata. The Visibility fields are tested. If this
does not cause the message to be rejected, the Core attempts to match all Keys
attached to the message to any locks in the Resource Permission fields.

7 Using the e-speak ABI, Core B sends the message to the Resource Handler, to-
gether with any Permission strings that have been unlocked. The Resource Han-
dler interprets the Permissions to see if the requested action is allowed.

8 The Resource Handler sends the appropriate message to the Resource (if the Re-
source is an active entity such as a process) or executes the appropriate action
20 Version Beta 2.0, September 1999

Architecture Overview The E-speak Service Interface (Informational)
(in the case of a passive Resource such as a file). (This step is not shown in
Figure 3, because this interaction is not part of the e-speak architecture.)

The E-speak Service Interface (Informational) B

An e-speak Client is an application running in its own address space written using
an e-speak Service Interface (ESI). There is one ESI for each programming language
supported. An example ESI is given in Chapter 1 of the E-speak Programmer’s

Guide. This provides a rich environment offering rapid, secure-service develop-
ment, deployment, and management in a heterogeneous networked environment.

E-speak Services B

E-speak has Event, management, authentication, and advertising services:

■ The Event Service allows applications to collaborate by publishing Events and
subscribing to Event distributors. The e-speak Core uses the Event Service to
publish Events to the management service.

Figure 3 Distributed e-speak

Remote
Resource
Handler

Client
Library

Client

Repository

Protection
Domain

Resource
Handler

Remote
Resource
Handler

Repository

Protection
Domain

Logical Machine A Logical Machine B
Version Beta 2.0, September 1999 21

Standards Architecture Overview
■ The Management Services manage interconnecting sets of e-speak Cores,
managing the distribution of Keys, metadata, and e-services registered as
e-speak Resources.

■ The Authentication Service provides a basic authentication mechanism for
Clients based on password and user name. Other authentication mechanisms
can be plugged into this service.

■ The Advertising Service is used for distributed Resource discovery in large-scale
environments.

Standards B

The e-speak platform builds upon and uses existing industry standards wherever
possible. In some cases, integration with industry standards is under way or
planned. The specific areas of integration include:

■ Database access—The persistent back-end for the Repository uses Java Data-
base Connectivity, thus making it possible to send Repository queries to almost
any relational database.

■ Advertising services—The Advertising Service back-end is provided by Light-
weight Directory Access Protocol.

■ Transport protocols: The ESIP messaging stack supports pluggable transports.
TCP/IP, IrDA, WAP, and HTTP are all candidate transports.

■ Service description: The Vocabulary Builders support multiple different Vocab-
ularies, including forthcoming support for XML and X.500 schemas.

■ Component models: These models integrate the e-speak service abstraction
with standard component models such as Java Beans and COM+.

■ Management protocols and standards: Support for SNMP, ARM, and DEN is
planned.

■ Languages: An E-speak library exists for Java. Others such as C++, Python, and
Perl are planned.
22 Version Beta 2.0, September 1999

Architecture Overview Summary
Summary B

E-speak presents a uniform service abstraction, mediated access, and manipulation
of Resource metadata. This creates an open service model, allowing all kinds of
digital functionality to be reasoned about through a common set of APIs. New
service types and semantics can be dynamically modeled using the common service
representation of an e-speak Resource. Mediated access allows transformer
services to be interposed seamlessly, allowing services such as text-to-speech trans-
lations, depending on Client appliance characteristics. Similarly, mediation allows
third-party monitoring entities to throttle service access based, for example, on
nonpayment.

The naming system provides active bindings and personal name spaces. The
connection between Clients and Resources can be reasoned about and formed at
run-time (upon each access if necessary) based on arbitrary search characteristics.
Personalization of views and environments and hot-plug replacement of Resources
all become possible.

The security model is based on a novel Key-Lock mechanism that can be used as
electronic rights in e-commerce transactions. Keys allow fine-grained protected
access to services. The Core processes Keys to control access, relieving the appli-
cation programmer from much of the burden of determining whether to grant
access.

The metadata system defines Vocabulary models as first-class entities in the system
that can be reasoned about in the same manner as all other services. Translation
and lookup through scalable advertising services are integrated into the model.
Service location and discovery can thus seamlessly deal with a situation where the
Client describes its requirement in an X.500 schema, while the service provider
describes its service using an XML DTD.

The distribution model supports a flexible set of access methods. Thus, download-
ing printer drivers and the remote access of a file are equally well supported by the
model. The separation of the infrastructure into interacting Logical Machines builds
on the autonomous machine model provided by the Web.
Version Beta 2.0, September 1999 23

Future Developments Architecture Overview
These are the defining features of an open services platform. The collection of the
capabilities discussed above will create an environment where services on the
Internet can interact in a secure, dynamic, manageable way. The next chapter of the
Internet (e-services) is being written, and e-speak will help us understand it.

Future Developments B

Chapter 15, “Future Developments” describes an authenticated capability mecha-
nism that is under development.
24 Version Beta 2.0, September 1999

Chapter 3 Resource Descriptions and
Specifications
E-speak makes a distinction between the data representing the state of a Resource
and the data describing the management of the Resource. The Core mediates access
to any registered Resource. However, e-speak is concerned only with the Resource
state of Core-managed Resources, not with the Resource state of non-Core-
managed Resources.

A Resource is described to e-speak by its metadata. The metadata is composed of a
Resource Specification and a Resource Description. The Resource Description
consists of information that provides the means of discovery for Clients. The
Resource Specification includes:

■ An Inbox that can be connected to the Resource Handler responsible for manag-
ing the Resource

■ A specification of the security restrictions

■ A variety of control fields

A Client registers a Resource by sending a message to a Contract Resource contain-
ing a Resource Description and a Resource Specification.

Together, Resource Descriptions and Resource Specifications include all informa-
tion the Core needs to enforce the policies specified by the Client registering the
Resource. If the registration succeeds, the Core returns a name bound to this
Resource to the Inbox specified by the Callback Resource in the Outbox envelope.
Version Beta 2.0, September 1999 25

ResourceSpecification Resource Descriptions and Specifications
ResourceSpecification C

The ResourceSpecification class is defined below.

public class ResourceSpecification

{

boolean byValue;

ESName contract ;

ESName[] DenyKeys;

ESName[]AllowKeys;

ESMap metadataLocks;

ESMap resourceSpecificLocks;

ESMap publicRSD;

ESMap privateRSD;

ESName owner;

ESName ResourceHandler;

int eventControl;

ESUID uid;

}

The type ESMap is serialized as ESArray (see Chapter 6, “Application Binary Inter-
face” for the e-speak serialization format for ESArray). The e-speak convention for
ESArray is that it consists of a sequence of pairs. Thus, the first and second
element are a pair, the third and fourth element are a pair, and so on.

The current implementation of ResourceSpecification uses the type
ResourceReference where ESName is given. ResourceSpecification is the
abstract base class for ESName. ESName and not ResourceReference is passed
by the e-speak Application Binary Interface (ABI).

boolean byValue; C

If the byValue flag is True, the internal state of this Resource will be included with
the Resource Specification and Resource Description sent to another Logical
Machine. The Core will provide the value for Core-managed Resources. Currently,
no mechanism is defined for providing the value of non-Core-managed Resources.
26 Version Beta 2.0, September 1999

Resource Descriptions and Specifications ResourceSpecification
ESName contract; C

The contract field is the name of the Contract Resource associated with the
Resource. A Contract embodies the contract between the user and the provider of
a Resource. It denotes such things as the Application Programmer Interface (API)
passed through the payload of a message, as well as the name bindings that must be
transferred and the access rights that must be presented. Every Resource must be
registered in some Contract.

ESName[] DenyKeys; C

The DenyKeys field is an array of Key names. When a Client sends a message to the
Resource, if any of these Keys are included in the message, the Core acts as if this
Resource does not exist. If the test is done as part of a lookup request, the Core will
not check the attributes for a match. It is an error if any of the names in this field
are not bound to a Key.

ESName[] AllowKeys; C

The AllowKeys field is an array of Key names. When a Client sends a message to
the Resource, if none of the Keys in this field are included in the message, the Core
acts as if this Resource does not exist. If the test is done as part of a lookup request,
the Core will not check the attributes for a match. If this field is empty, the test is
bypassed. It is an error if any of the names in this field are not bound to a Key.

ESMap metadataLocks; C

The first element in each pair of ESMap is an ESName that is the name of a Key. The
second element is an array of strings: String[] . These strings are the Permissions
that will be delivered to the Meta-Resource when access to the metadata for this
Resource is requested by a Client. It is an error if ESName is not bound to a Key or
if any of the Permission strings are not among those recognized by the Meta-
Resource. These metadata Permissions are used in place of the Resource Permis-
sions of the Meta-Resource.
Version Beta 2.0, September 1999 27

ResourceSpecification Resource Descriptions and Specifications
ESMap resourceSpecificLocks; C

The first element in each pair of ESMap is an ESName that is the name of a Key. The
second element is an array of strings: String[] . These strings are the Permissions
that will be delivered to the Resource Handler if the named Key is included in the
message. The Resource Handler interprets these strings to determine what privi-
leges the Client that sent the message has. For example, the string “read” might be
interpreted by the Resource Handler that the Client has permission to read that file.
It is an error if ESName is not bound to a Key.

ESMap publicRSD; C

The first element in each pair of ESMap is a string used to tag the second element.
The second element is of type byte[] . The PublicRSD field (public Resource-
specific data) may be of interest to users of the Resource. Therefore, the Client
registering the Resource may include information in this field. It is an error if either
the tag or byte array is null or if the tags are not unique. This field can be used to
carry code the Client can use for network object computing.

ESMap privateRSD; C

The first element in each pair of ESMap is a string used to tag the second element.
The second element is of type byte[] . The privateRSD field (private Resource-
specific data) is used by the Resource Handler when a Client sends a message to
this Resource. Therefore, the Client registering the Resource includes information
in this field. This data is delivered to the Resource Handler. The intent is that only
the Resource Handler have access to this data, but permission can be granted to any
task using the e-speak security mechanisms. It is an error if either the tag or byte
array is null or if the tags are not unique. This field is most often used to carry the
Resource Handler's designation for the Resource.
28 Version Beta 2.0, September 1999

Resource Descriptions and Specifications ResourceSpecification
ESName owner; C

The owner field is the ESName of the active Protection Domain of the Client that
registered the Resource. This field can be changed to another Protection Domain by
any Client that unlocks the proper permission. It is an error if the ESName is not
bound to a Protection Domain.

ESName ResourceHandler; C

Messages sent to this Resource will be delivered to this Inbox. This field is NULL for
Core-managed Resources. The Client that has connected to this Inbox will receive
messages for this Resource. (The format of these messages is defined in Chapter 6,
“Application Binary Interface.”) This field may be NULL only if the Resource being
registered is Core managed. It is an error if the ESName specified by the Client is not
bound to an Inbox.

int eventControl; C

If eventControl is non-zero, then whenever the Meta-Resource changes the
Resource metadata (the Resource Description or the Resource Specification), it
will publish an Event to the Core’s Event distributor.

ESUID C

public class ESUID

{

private static final short COREID_MIN_BYTE_SIZE= 20;

private static final short RESOURCEID_MIN_BYTE_SIZE= 12;

private static final short ID_MAX_BYTE_SIZE= 64;

byte[] coreId;

byte[] resourceId;

boolean local;

}

Version Beta 2.0, September 1999 29

ResourceDescription Resource Descriptions and Specifications
An ESUID contains a Core identity component and Resource identity component as
well as an indication if the associated Resource is local or remote (imported). The
Core identity is unique (to a high probability) while the Resource identity is unique
within a given Core. Both identities have a minimum and maximum length as spec-
ified above.

ResourceDescription C

ResourceDescription contains an array of Vocabularies and the attributes
associated with each. Clients can specify a search request and ask the Lookup
Service to find Resources with attributes that match the lookup request. An
attribute specification includes a Vocabulary in which to interpret the attributes
that describe the Resource.

ResourceDescription is an array of AttributeSet as shown below.

public class ResourceDescription

{

AttributeSet[] attribSets;

}

AttributeSet consists of the ESName of a Vocabulary Resource and an ESMap
of name-attribute pairs. The first element of an ESMap pair is a string, the second
element is an Attribute . The string is the name of the Attribute . It is an error
if ESName is not bound to a Vocabulary or if Attributes or their values are not
valid in the named Vocabulary.
30 Version Beta 2.0, September 1999

Resource Descriptions and Specifications ResourceDescription
public class AttributeSet

{

ESName attrVocab;

ESMap attributes;

}

public class Attribute

{

String name;

Value value;

ESList valueSet;

Boolean essential;

}

The name field is the name associated with Attribute . The Value field contains
any primitive type defined in the e-speak serialization format definition of
ValueAlt .

The valueSet field is a set of Value types. This field is used if the attribute is
multivalue; otherwise, the value field is used.

If essential is true, then this attribute must be included in any search request to
discover a Resource with this attribute in its Resource Description.
Version Beta 2.0, September 1999 31

ResourceDescription Resource Descriptions and Specifications
32 Version Beta 2.0, September 1999

Chapter 4 Core-Managed Resources
Clients interact with the e-speak Core by sending messages to Core-managed
Resources. For example, the Contract Resource is used to register new Resource
metadata. This section specifies the methods of each Core-managed Resource. It
also describes the internal state that is passed if the Core-managed Resource is
exported by value to another Logical Machine.

Conventions D

In the following descriptions, before each method is a comment of the following
form:

//Permissions: “String1”, “String2”, ..., “Stringn”

These comments should be interpreted as Permission strings, at least one of which
must be delivered to the Resource Handler for it to invoke the method. If the Client
does not include a Key that causes one of these Permission strings to be delivered,
it does not have the privilege to execute the named method. A comment field of the
following form should be interpreted as no Permission strings being required (no
Keys are needed to execute the method):

//Permissions: NULL

All the methods described in this Chapter throw ESInvocationException (see
Chapter 8, “Exceptions”), the base class for exceptions thrown by the Core to the
Client during message processing. The Core throws the specific exception, allowing
the programmer to deal with individual exceptions where appropriate and throw
others up the call chain. Some methods also throw ESServiceException . The
Version Beta 2.0, September 1999 33

Key Core-Managed Resources
same rules apply. Programmers can catch or declare the parent class or deal with
the specific exceptions thrown. Any of these method can throw any of the ESRun-
timeExceptions , which need not be declared by the programmer.

For example, a programmer not wishing to deal with naming problems need only
include throws ESInvocationException in the method declaration. That
same programmer can catch a specific exception, say QuotaExhaustedExcep-
tion , and still deal with all other exceptions with this same throws declaration.

Each class definition starts with a list of static declarations. Each represents the
code in the payload of the request that tells the Core which method to invoke.

Key D

E-speak Keys have nothing to do with encryption. They are unauthenticated capa-
bility Resources: having a name for a Key Resource gives a Client the ability to use
the Key to access Resources.

The import and export of Keys is explained in Chapter 7, “Inter-Core Communica-
tion”; Keys are not exported by value or by reference.

A Key Resource supports a single method: cloneKey . This creates a clone of the
Key and returns a name for that clone. The clone confers exactly the same privileges
as the original Key: It will match all the Allow , Deny, and Permission fields that
the original matched. However, the clone and the original are separate Resources:
They can be passed to Clients separately, and destroying one has no effect on the
other.

Having a name bound to a Key is all a Client needs to use that Key, gaining the priv-
ileges associated with it. Hence, guarding access to name bindings to Keys is criti-
cal. Although it is possible to use care when giving out the bindings, there is nothing
to prevent any Client from looking up a Key based on its attributes. It is highly
34 Version Beta 2.0, September 1999

Core-Managed Resources Key Ring
recommended that Keys be registered with an empty Resource Description.

If attributes must be provided, one of them should be an essential attribute that can
be thought of as a password:

public class Key

{

public static final int CLONEKEY = 20001;

//Permissions: "A", "C"

public ESName cloneKey()

throws ESInvocationException;

}

Key Ring D

The KeyRing class is defined below:

public class KeyRing

{

public static final int ADDKEY = 3001;

public static final int REMOVEKEY = 3002;

public static final int CONTAINS = 3003;

ESName[] Keys; //State for pass-by-value

//Permissions:"A", "C"

public void addKey(ESName key)

throws ESInvocationException;

//Permissions: "A", "C"

public void removeKey(ESName key)

throws ESInvocationException;
Version Beta 2.0, September 1999 35

Mailbox Core-Managed Resources
//Permissions: NULL

public boolean contains(ESName key)

throws ESInvocationException;

}

The method addKey adds a Key to the Key Ring. It will succeed only if ESName
refers to a Key.

The method removeKey removes the given Key from the Key Ring Resource if it
exists on the Key Ring.

The method contains checks for the existence of the given Key on the Key Ring
Resource. The method returns false if the Key is not on the Key Ring, true otherwise.

Mailbox D

E-speak has both Outboxes and Inboxes, but only Inboxes are exposed to Clients
as Core-managed Resources. An Inbox is where a Client gets messages from the
Core. A Client can have more than one Inbox, but each Inbox must be explicitly
connected by the Client before it can be used to receive messages.

An Inbox cannot be exported.

The Inbox class is defined below:

class Mailbox

{

public static final int ISCONNECTED = 4001;

public static final int CONNECT = 4002;

public static final int DISCONNECT = 4003;

public static final int RECONNECT = 4004;

//Permissions: NULL

public boolean isConnected()

throws ESInvocationException;
36 Version Beta 2.0, September 1999

Core-Managed Resources Mailbox
//Permissions: "A", "C"

public void connect(int slot)

throws ESInvocationException;

//Permissions: "A", "C"

public void disconnect()

throws ESInvocationException;

//Permissions: "A", "C"

public void reconnect(int slot)

throws ESInvocationException;

}

An Inbox is a Core-managed Resource that provides a unidirectional communica-
tion channel from the e-speak Core to a Client. When a Client registers a Resource
with the e-speak Core, it must assign an Inbox Resource as the “handler” for the
Resource. Any service requests directed to the Resource are delivered to the Client
on the I/O channel associated with the Inbox that was named the Resource Handler.

An Inbox can be in one of the two states: connected or disconnected. Upon
creation, the Inbox starts in the connected state. The creator of the Inbox becomes
the owner of the Inbox, and the Inbox is set up to use the I/O channel information
passed with the request to create the Inbox. The Inbox remains in the connected
state until the Client requests an explicit disconnect, or until the I/O channel asso-
ciated with the Inbox is closed, at which time it is put in the disconnected state. If
a Client sends a message to a Resource whose handler is an Inbox in the discon-
nected state, an exception is thrown by the e-speak Core.

One may argue that Inboxes are unnecessary and that the e-speak Core could store
the I/O channel information in the Resource Handler field directly. There are two
main reasons for having the Inbox store the I/O channel information and not the
Resource—one has to do with Client restart, and the other with delegation. These
are explained in the following subsections
Version Beta 2.0, September 1999 37

Mailbox Core-Managed Resources
Inbox and Client Restart D

In the e-speak environment, a Client can recover from some types of failures, one
of which is the failure of a Client process. In case a Client process dies and restarts,
it can reconnect to the Core, discover and activate its previous Protection Domain,
and discover and connect to the Inboxes owned by it. That way it can continue to
serve the Resources that were registered by it during its previous incarnation.

Connecting to an Inbox involves updating the I/O channel information maintained
by the Inbox. Keeping the I/O channel information in the Inbox helps simplify the
Client’s job at restart, because it has to discover and connect to only a few of them.
If, instead, the I/O channel information is stored in all the Resources registered by
the Client, it will somehow need to be updated all over the place upon reconnection
by the Client.

Inbox and Delegation of Resource Handling D

Under certain circumstances, a Client may want to delegate the handling of one or
more Resources served by it to another Client. Inboxes make the delegation easy.
Let’s say Client A has registered 100 Resources, and named Inbox IB as its handler.
After a while, Client A wants Client B to take over the handling of all these
Resources. This can be achieved as follows:

1 Client A passes the name of the Inbox IB to the other Client, along with a Key/
capability to perform a reconnect operation on the Inbox.

2 Client B requests the e-speak Core to reconnect it to the Inbox IB. The Core re-
places Client A’s I/O channel information with the information passed by
Client B with a request to reconnect.

3 Any further service requests directed to any of the 100 Resources are diverted to
the I/O channel specified by Client B. The process of reconnection is performed
atomically; though logically the reconnect operation involves a disconnect oper-
ation on behalf of Client A and connect operation by Client B, no one really sees
the transient disconnected state.
38 Version Beta 2.0, September 1999

Core-Managed Resources Name Frame
Name Frame D

A Name Frame manages the bindings of ESNames to Resources. A Client’s default
Name Frame is part of its Protection Domain. This section first describes the struc-
ture of an ESName and a binding and then describes Name Frames and data struc-
tures used by Name Frames.

ESNames D

The only way a Client can refer to a Resource when communicating with the Core
is to specify an ESName for the Resource. An ESName consists of a string and a
Name Frame for resolving that string. If the Name Frame is not specified, the string
is resolved in the Client’s root Name Frame. Hence, an ESName is defined as
follows:

class ESName{

ESName frame;

String name;

}

The e-speak serialization format defines the serialization of ESName as an array of
strings; the last element of this is the name of the Resource. All previous elements
are the names of Name Frames.
Version Beta 2.0, September 1999 39

Name Frame Core-Managed Resources
Bindings D

In e-speak, a name is bound to a Mapping Object, which consists of an array of
accessors. An accessor can be one of two types, as represented in Table 4.

Thus, a name can be bound to:

■ Zero or more Resources

■ Zero or more Search Recipes

■ Some combination of explicit bindings and search request bindings

The term simple binding is applied to a name bound to a Mapping Object that has
a single explicit binding. The term complex binding is used otherwise.

Search Predicates, Search Recipes, and Name Search Policies D

When a Client wants to find a Resource in e-speak, its query is translated to a Search
Recipe. A Search Recipe specifies three search criteria and a view on the set of
Resources registered in the Core. Each search criterion is expressed by a Search
Predicate. The first criterion is used to reduce the set of Resources to a subset
matching the Client’s requirements. The second criterion expresses the Client’s
preferences for Resources in this subset. It is used to reduce the subset to return a
singleton. Finally, the third criterion is used for arbitration when the subset cannot
be reduced to one element.

Table 4 Mapping Object accessor types and descriptions

Accessor Type Descriptions

Search request A set of attributes, their corresponding values, and a
Vocabulary to use in interpreting them

Explicit binding Binding to a single instance of a Resource
40 Version Beta 2.0, September 1999

Core-Managed Resources Name Frame
A Client may use the same name for Resources of different types (file name, user
name, and machine name, all called nancy , for example). Because the Core doesn't
know the intent of the Client when doing the name resolution, it might match an
ESName to the user nancy when the Client is trying to find the file nancy . There-
fore, the Client should provide the Core with additional information to define the
query. This information is defined in a Name Search Policy.

The class Search Predicate is described below:

class SearchPredicate

{

AttributePredicate[] attrPredicates;

}

class AttributePredicate

{

ESName Vocabulary;

byte[] predicate;

}

SearchPredicate is an array of AttributePredicates . AttributePredi-
cate consists of the name of a Vocabulary Resource and a predicate that is a
constraint expression contained in a byte array. The constraint expression must be
valid in the given Vocabulary.

Class SearchRecipe is defined below:

class SearchRecipe

{

SearchPredicate constraint;

SearchPredicate preference;

SearchPredicate arbitrationPolicy;

ESName repositoryView;

}

The constraint field specifies the first criterion.

The preference field specifies the second criterion. If the evaluation fails, the
resulting set as computed previously is simply returned. Otherwise, a new set is
returned.
Version Beta 2.0, September 1999 41

Name Frame Core-Managed Resources
If the result of the evaluation of preference has more than one Resource, and if
a Client needs to restrict the set of Resources returned, it can specify an arbitration
policy using a list of constraints defined in an Arbitration Vocabulary. Complex poli-
cies require the use of external arbitrators, and the tasks are responsible for imple-
menting the requester’s Arbitration Policy. These tasks may perform complex
actions outside of the Core.

ArbitrationPolicy specifies the third criterion and defines what action is to be
taken if there are multiple matches for a particular lookup.

The Repository View is a Core-managed Resource that constrains which set of
Resources will be available to SearchRecipe . This will be a subset of all the
Resources registered with the Core.

Class NameSearchPolicy is defined below:

public class NameSearchPolicy

{

public static final int NSP_ANY = 0;

public static final int NSP_SIMPLE = 1;

public static final int NSP_EXPLICIT = 2;

public static final int NSP_PARTIAL = 3;

ESName contract;

int bindingType;

boolean matchSense;

}

NSP_ANY means match any binding types. NSP_SIMPLE means match simple bind-
ing types. NSP_EXPLICIT means match explicit binding types. NSP_PARTIAL
means match partial binding types (this is not implemented in the current release,
and will cause undefined behavior if used).

If matchSense is false, the meaning of the Name Search Policy is negated, so
listBindings will return the names of bindings that do not satisfy the Name
Search Policy.
42 Version Beta 2.0, September 1999

Core-Managed Resources Name Frame
Name Frame Methods D

Some NameFrame methods throw ESServiceException . Chapter 8, “Excep-
tions” lists the exception hierarchy for NameFrame methods.

The NameFrame class is defined below:

public class NameFrame

{

public static final int LOOKUP = 5001;

public static final int ISBOUND = 5002;

public static final int BIND = 5003;

public static final int REBIND = 5004;

public static final int UNBIND = 5005;

public static final int RENAME = 5006;

public static final int COPY = 5007;

public static final int ADD = 5008;

public static final int SUBTRACT = 5009;

public static final int LISTNAMES = 5010;

public static final int LISTBINDINGS = 5011;

ESMap bindings;

//Permissions: "A", "U"

public void lookup(String baseName,

SearchPredicate arbPolicy,

ESName targetFrameHandle,

String toBaseName)

throws ESInvocationException, ESServiceException;

//Permissions: "A", "L"

public boolean isBound(String baseName)

throws ESInvocationException;
Version Beta 2.0, September 1999 43

Name Frame Core-Managed Resources
//Permissions: "A", "+"

public void bind(String baseName, SearchRecipe recipe)

throws ESInvocationException, ESServiceException;

//Permissions: "A", "M"

public void rebind(String baseName, SearchRecipe recipe)

throws ESInvocationException;

//Permissions: "A", "-"

public void unbind(String name)

throws ESInvocationException;

//Permission: "A", "+"

public ESName rename(String oldName,String newName)

throws ESInvocationException, ESServiceException;

//Permissions: "A", "C"

public ESName copy(String toName, ESName from)

throws ESInvocationException, ESServiceException;

//Permissions: "A", "M"

public ESName add(String name, ESName from)

throws ESInvocationException;

//Permissions: "A", "M"

public ESName subtract(String name, ESName from)

throws ESInvocationException;

//Permissions: "A", "L"

public String[] listNames(NameSearchPolicy nsp)

throws ESInvocationException;
44 Version Beta 2.0, September 1999

Core-Managed Resources Name Frame
//Permissions: "A", "L"

public String[] listBindings(String aBaseName,

NameSearchPolicy nsp,

ESName targetFrame

)

throws ESInvocationException;

}

A Name Frame can be exported by value or by reference. In the case of export by
value, the Name Frame state is the bindings ESMap. The serialization for ESMap is
defined by the e-speak serialization format. ESMap is an ESArray in which the
convention is that consecutive elements are treated as pairs. In the case of bindings,
the first element of a pair is the string component of ESName; the second is a
MappingObject to which ESName is bound. The serialization format for a
Mapping Object is also specified by the e-speak serialization format. The process by
which Mapping Objects are serialized is described in the definition of the e-speak
Serialization Protocol (ESIP).

All methods that create a new entry in a Name Frame return a Name Collision
Exception if the name already appears in the target Name Frame. An explicit rebind
or unbind is required before the name can be reused.

The lookup method is used to convert search requests to Resources’ bindings. The
name within this NameFrame of the binding to a SearchRecipe to be looked up
is baseName. The policy used for arbitration is arbPolicy , in case a lookup
results in a binding to multiple Resources. The name of the target NameFrame
where the resultant name binding will be made is targetFrame . The name to bind
in the target frame with the the results of the lookup is toBaseName . A new
ESName is returned containing all the bindings obtained as a result of resolution.

The isBound method checks to see if the specified name (baseName) is bound in
this Name Frame. It returns true if the name is bound.

The method bind binds SearchRecipe to a specified name (baseName) in this
Name Frame.

The method rebind changes the binding of the specified name (baseName) in this
Name Frame to the new SearchRecipe .

The method unbind removes the binding from NameFrame.
Version Beta 2.0, September 1999 45

Name Frame Core-Managed Resources
The method rename renames the binding associated with oldname to newname.

The method copy copies the binding of from to toName .

The method add adds the binding of from to the binding of name to give a new
binding for name. It returns the ESName of the new binding of name.

The method subtract subtracts the bindings of from from the bindings associ-
ated with name to give a new binding for name. It returns an ESName for the new
binding of name.

The method listNames returns an array of strings corresponding to all bindings
that match NameSearchPolicy nsp . The Name Search Policy allows the Client to
specify the type of binding and/or Contract in which the Resource is registered.

The method listBindings lists all the bindings of the argument aBaseName that
match NameSearchPolicy nsp . These bindings are placed in the NameFrame
named by targetFrame . The return value is an array of String , each element
being the name of a new binding in targetFrame .

Table 5 lists the meanings of the Name Frame Resource Permission strings.

Table 5 Name Frame Resource permissions

String Interpretation

A All—All Resource Permissions

+ Add—Add bindings

- Remove—Remove bindings

M Modify—Modify bindings

C Copy—Copy bindings from this Name Frame

D Duplicate—Make a copy of the Name Frame

L List—Find names

U Use—Use name bindings
46 Version Beta 2.0, September 1999

Core-Managed Resources Importer Exporter
Importer Exporter D

The Importer Exporter Resource is used by the Remote Resource Handler to
construct the Export Form of Resources that it is exporting and to register
Resource Descriptions and Resource Specifications of any Resources it is import-
ing. Clients other than Remote Resource Handlers are unlikely to use this Core-
managed Resource.

The Importer Exporter cannot be exported.

The Importer Exporter interface is described below:

public interface ImporterExporterInterface

{

public static final int IMPORTRESOURCE = 11001;

public static final int IMPORTMESSAGE = 11002;

public static final int EXPORTRESOURCE = 11003;

public static final int REEXPORTRESOURCE = 11004;

//Permissions: "A", "IR"

public ImportContext importResource(

ImportContext importContext)

throws ESInvocationException;

//Permissions: "A", "IM"

public void importMessage(

ImportContext importContext,

byte[] targetMsg)

throws ESInvocationException;;

//Permissions: "A", "ER"

public ExportContext exportResource(

ExportContext exportContext)

throws ESInvocationException;
Version Beta 2.0, September 1999 47

Importer Exporter Core-Managed Resources
//Permissions: "A", "RR"

public ExportContext reExportResource(

ExportContext exportContext)

throws ESInvocationException;

}

The ImporterExporter Core-managed Resource is used by the Remote
Resource Handler to create the Export Form for Resources being exported and to
register Resource Descriptions and Resource Specifications of Resources being
imported with the local Core.

It uses ImportContext and ExportContext types as parameters. These are
defined below.

The importResource method is used to import the Resources contained in the
importContext argument. These Resources will have their ResourceDe-
scriptions and ResourceSpecifications registered in the local Core. The
return value should be ignored.

The importMessage method imports the Resources contained in importCon-
text and then forwards the Message contained in targetMessage . Because
Message can contain many Outbox Message Atoms, this can result in messages
being delivered to several Resource Handlers.

The ExportResource method is used to construct the Export Form for the
Resources contained in exportContext . The returned exportContext
contains these ExportForms and data required to construct the ESIP message as
defined in Chapter 7, “Inter-Core Communication.” The standard export policy is to
export each Resource to a remote Logical Machine only once. Hence, if the
Importer Exporter is asked to export a Resource more than once by the same
Remote Resource Handler, the Importer Exporter will not create the Export Form
for it.

The method reExportResource is used to force ImporterExporter to build
ExportForms for the Resources in exportContext . Normally, ImporterEx-
porter remembers if it has already built the Export Form of a Resource for a given
Remote Resource Handler and will not build the Export Form for that Resource if
it appears in subsequent calls of exportResource by the same Remote Resource
Handler.
48 Version Beta 2.0, September 1999

Core-Managed Resources Importer Exporter
exportContext Class D

The class exportContext is defined below:

class exportContext

{

public static final byte BYVALUE= 1;

public static final byte BYREFERENCE= 2;

public static final byte BYNAME= 3;

public static final byte RETURN= 4;

private static final byte EXPORTFE= 32;

//Note private FORCE is commented out

byte typeAndFlags;

public static final byte EXPORT_ONCE_ONLY = 1;

public static final byte EXPORT_REPEAT = 2;

public static final byte EXPORT_TOPLEVEL_ONLY = 4;

public static final byte EXPORT_RECURRSIVE = 8;

byte exportPolicy;

ESArray resources__;

ESArray bytesArray__;

ESArray tableArray__;

ESArray mappings;

ESArray mappingBytes;

ESArray mappingTables;

}

The resources__, bytesArray__ , and tableArray__ are those used in
ESIPExportMessage . These fields are described in “ESIP” on page 117. The
ImporterExporter uses the contents of resources__ to construct
bytesArray__ and tableArray__ as described in “ESIP” on page 117. The
bytesArray__ field will contain the Export Form for the Resources in
resources__ .
Version Beta 2.0, September 1999 49

Importer Exporter Core-Managed Resources
The value of typeAndFlags controls what data is placed in the remaining fields of
exportContext by the Importer Exporter. It can take one of the following values:

■ BYREFERENCE : The Importer Exporter will construct the resources__ ,
bytesArray__ , and tableArray fields as described in “ESIP” on page 117

■ BYVALUE : In the current implementation, this has the same effect as BYREFER-
ENCE for ordinary Resources; in the future, this will be used to support export
by value. Export by value is supported for some Core-managed Resources (see
“Export by Value” on page 124).

■ BYNAME: The Importer Exporter will not construct the bytesArray and
tableArray fields. This is intended to support an export by name model and is
currently not used.

■ RETURN: This indicates that this export context is used as a return value (from
importerExporter to the Remote Resource Handler).

■ EXPORTFE: The Importer Exporter will interpret the names in resources__ as
ExportFE (export name) and will construct ExportForm for all Resources in
resources__ . This is used with the importResources method of the
Remote Resource Proxy when the Remote Resource Proxy needs to send an
ESIPImportMessage .

BYVALUE, BYREFERENCE, BYNAME, and RETURN are mutually exclusive. The
Remote Resource Handler uses BYVALUE as a default. If any Client calling the
Importer Exporter fails to set one of BYVALUE, BYREFERENCE, BYNAME, or
RETURN, the Importer Exporter will throw an InvalidValueException .

The value of exportPolicy controls whether the Importer Exporter will export
the Resource. It can take any one of the following values:

■ EXPORT_ONCE_ONLY: Don’t build ExportForm for Resources that have
already been exported (the default behavior).

■ EXPORT_REPEAT: Build ExportForm for all Resources even if they have
already been exported.
50 Version Beta 2.0, September 1999

Core-Managed Resources Importer Exporter
■ EXPORT_TOPLEVEL_ONLY: Don’t build ExportForm for contained Resources.

■ EXPORT_RECURSIVE: Build ExportForm for contained Resources (the default
behavior).

EXPORT_ONCE_ONLY and EXPORT_REPEAT are mutually exclusive.
EXPORT_TOPLEVEL_ONLY and EXPORT_RECURSIVE are mutually exclusive. If an
incorrect combination of values is set, the Importer Exporter will throw an
InvalidValueException .

The fields mappings , mappingBytes , and mappingTables are currently
unused by Clients. They are used internally by the Importer Exporter.

importContext Class D

The importContext class is defined below:

class importContext

{

ESName exportFrame;

ESName importFrame;

ESArray bytesArray__;

ESArray tableArray__;

boolean retry;

boolean exportByName;

boolean updateFlag;

ESArray resourceTables;

ESArray retryTable;

ESName inbox;

}

The fields and use are very similar to that of exportContext .

The exportFrame field is the name of a Name Frame used to contain the names of
Resources that have been exported.

The importFrame field is the name of a Name Frame used to contain the names
of Resources that have already been imported.
Version Beta 2.0, September 1999 51

Protection Domain Core-Managed Resources
The resources__ , tableArray__ , and bytesArray__ fields are as defined in
“ESIP” on page 117.

Export by name is not supported, so if exportByName is set to true, it will cause
undefined behavior.

If updateFlag is true, importerExporter will register all the Resources in
bytesArray__ , even if they have been imported previously.

The following fields are not used: retry , update , and retryTable .

Protection Domain D

A Protection Domain encapsulates the Client’s view of the system. A Client can
have names for more than one Protection Domain, but messages to the Core will be
interpreted only in the currently active Protection Domain. A Client can change its
active Protection Domain to any Protection Domain for which it has a name.

When the Core receives a new message from a Client, it uses the default Name
Frame in the Client’s active Protection Domain for name resolution and extracts the
Keys on the Mandatory Key Ring.

This facility can be used to support a notion of logon. Initially, a Client will have a
very limited Protection Domain. Once the Client has been authenticated (i.e., logged
on), it gets a new, richer Protection Domain.

The only Resources visible to the Client are those reachable by names rooted in the
default Name Frame. The Keys on the Mandatory Key Ring control name visibility
and access rights. The metadata for a new Protection Domain, its Mandatory Key
Ring, and the root Name Frame are identical to that of the corresponding Resources
of the parent.

Each Protection Domain is associated with a quota. The goal of this is to track and
manage use of space in the Repository. To support this, each Protection Domain has
three fields associated with it: used, soft limit, and hard limit. A Protection Domain
is guaranteed to be able to allocate Resources up to its soft limit. A Protection
52 Version Beta 2.0, September 1999

Core-Managed Resources Protection Domain
Domain may be able to allocate Resources up to its hard limit, depending on the
memory usage of the Core. The default hard limit is 10,000,000 bytes, and the default
soft limit is 30,000 bytes.

A Protection Domain cannot be exported.

The ProtectionDomain class is defined below:

class ProtectionDomain

{

public static final int SWITCHPD = 6001;

public static final int GETQUOTAINFO = 6006;

public static final int SETQUOTA = 6007;

//Permissions: NULL

public BootstrapReply switchPD()

throws ESInvocationException;

//Permissions: A", "G"

public Object[] getQuotaInfo()

throws ESInvocationException;

//Permissions: A", "S"

public Object[] setQuota(long softQuota, long hardQuota)

throws ESInvocationException;

}

The method switchPD switches the Client’s active Protection Domain to this
Protection Domain (i.e., the Protection Domain receiving the method invocation).
It returns a BootstrapReply object.
Version Beta 2.0, September 1999 53

Protection Domain Core-Managed Resources
The BootstrapReply class is defined below:

public class BootstrapReply

{

ESName Inbox;

ESName CallbackResource;

ESName ExceptionInbox

ESName switchedFromPD;

}

The BootstrapReply object contains names for the Inbox, Callback Resource,
and Exception Inbox (or Exception Handler) associated with the Protection
Domain (see Chapter 6, “Application Binary Interface” for an explanation of how
these are used.) It also contains a name for the old Protection Domain.

The Object[] array returned by getQuotaInfo and setQuota contains at least
three values. The first is Long containing the total number of bytes currently
consumed in the Core by this Protection Domain. The second is Long containing
the soft limit in bytes. The third is Long containing the hard limit in bytes for this
Protection Domain.

The following defines the set of initial names in the default Name Frame of a new
Protection Domain:

public class CoreNames

{

public static final String CURRENT_PD = "CurrentPD";

public static final String MANDATORY_KEY_RING =

"MandatoryKeyRing";

public static final String INBOX_FRAME = "InboxFrame";

public static final String SWITCHPD_FRAME = "SwitchPDFrame";

public static final String CORE_FRAME = "Core";
54 Version Beta 2.0, September 1999

Core-Managed Resources Protection Domain
/* The following names appear in the name frame "core"*/

public static final String META_RESOURCE = "MetaResource";

public static final String RESOURCE_FACTORY = "ResourceFactory";

public static final String RESOURCE_CONTRACT_CONTRACT =

"ContractContract";

public static final String NAME_FRAME_CONTRACT =

"NameFrameContract";

public static final String KEY_CONTRACT = "KeyContract";

public static final String KEY_RING_CONTRACT = "KeyRingContract";

public static final String REPVIEW_CONTRACT =

"RepositoryViewContract";

public static final String PD_CONTRACT =

"ProtectionDomainContract";

public static final String VOCABULARY_CONTRACT =

"VocabularyContract";

public static final String INBOX_CONTRACT = "InboxContract";

public static final String METARESOURCE_CONTRACT =

"RepositoryViewContract";

public static final String DEFAULT_VOCABULARY =

"DefaultVocabulary";

public static final String DEFAULT_EXTCONTRACT =

"ExternalResourceContract";

public static final String IMPORTER_EXPORTER =

"ImporterExporter";

public static final String CORE_DISTRIBUTOR = "CoreDistributor";

public static final String EXPORT_EVERYWHERE_KEY =

"ExportEverywhereKey";

public static final String EXPORT_NOWHERE_KEY =

"ExportNowhereKey";

public static final String SYSTEM_MONITOR = "SystemMonitor";

}

“InboxFrame ” is the special Inbox frame in which all the names of the Resources
in the inbound message header get mapped.
Version Beta 2.0, September 1999 55

Repository View Core-Managed Resources
“Core ” is the name of the immutable frame that is shared by all the Clients where
all the names of standard Core-defined and -managed Resources get put.

“/Core/ResourceFactory ” creates all the Core-managed Resources
(see“Resource Factory” on page 59). It contacts the MetaResource Factory auto-
matically to create the corresponding MetaResource (see “MetaResource” on
page 60).

Many of the Resources in “Core ” are the names of Contract Resources for Core-
managed Resources (see “Resource Contract” on page 58). Also included are the
names of a number of other Resources such as the base Vocabulary (see “Vocabu-
lary” on page 69), the Importer Exporter, the Core Distributor (for Core Events)
(see Chapter 9, “Events”), and the System Monitor (see “System Monitor” on
page 68).

Repository View D

A Repository View contains references to a set of Resources.

When a Client does a lookup in a Repository View, the Core will attempt to match
only those Resources included in the view. If no match is found, no accessor is
added to the Mapping Object.

A Repository View can be exported by reference or by value.

The RepositoryView class is defined below:

class RepositoryView

{

ESName[] Resources;

public static final int ADD = 7001;

public static final int REMOVE = 7002;

public static final int CONTAINS = 7003;

public static final int CLEAR = 7004;

public static final int ADD_ELOOKUP = 7005;

public static final int REMOVE_ELOOKUP = 7006;
56 Version Beta 2.0, September 1999

Core-Managed Resources Repository View
//Permissions: "A", "+"

public void add (ESName res)

throws ESInvocationException;

//Permissions: "A", "-"

public void remove (ESName res)

throws ESInvocationException;

//Permissions: NULL

public boolean contains (ESName res)

throws ESInvocationException;

//Permissions: "A", "-"

public void clear ();

throws ESInvocationException;

//Permissions: "A", "L"

public void addExternalLookupHandler(ESName res);

throws ESInvocationException;

//Permissions: "A", "L"

public void removeExternalLookupHandler()

throws ESInvocationException;

}

An externalLookupHandler is not used in this release. Any attempt to use
addExternalLookupHandler or removeExternalLookupHandler will
cause undefined behavior.

Clients can add Resources to and remove Resources from a Repository View. The
method clear removes all Resources from the Repository View. The method
contains returns true if the Resource, res , is contained in the Repository View.
Version Beta 2.0, September 1999 57

Resource Contract Core-Managed Resources
Resource Contract D

A Resource Contract is an agreement between a Client of a Resource and the
Resource Handler. This agreement includes the format of the payload in the
OutboxMessageAtom and InboxMessageAtoms of message . The agreement
also includes the secondary Resources required by the Resource, the Permissions
that are needed, and so on. Hence, a Resource Contract denotes the Application
Programming Interface (API) that is understood by the Resource Handler. The
current release provides no means for enforcing this agreement; it is a convention.

Two Resource Contracts are available at system start-up in addition to those for
Core-managed Resources. The default Resource Contract allows any Client to regis-
ter a Resource. It is useful for Clients wishing to define Resources that don’t specify
a particular interface, such as Callback Resources. The second Resource Contract
is for creating new Resource Contracts.

A Resource Contract contains a type string. This denotes the Resource type that is
registered in this Resource Contract. A Resource Contract also contains a set of
Vocabularies that can be used to describe and discover Resources of this type.

A Contract can be exported by value or by reference.

The ResourceContract class is defined below:

class ResourceContract

{

ESName[] Vocabularies;

string type;

public static final int GETVOCABULARIES = 1002;

//Permissions: "A", "G"

public void getVocabularies(ESName targetFrame);

throws ESInvocationException;

}

The method getVocabularies populates the Name Frame, targetFrame , with
the names of the Vocabularies supported by the Resource Contract. The Name
Frame targetFrame is cleared before the operation.
58 Version Beta 2.0, September 1999

Core-Managed Resources Resource Factory
Resource Factory D

A Client wishing to register a Resource with an e-speak Core uses the Resource
Factory. This is also used for creating Core-managed Resources.

The ResourceFactoryInterface class is defined below:

public class ResourceFactoryInterface

{

public static final int REGISTERRESOURCE = 10001

//Permissions: NULL

public void registerResource (

ResourceDescription descr,

ResourceSpecification spec,

Boolean persistence,

Object param,

ESName targetFrame,

String toBaseName

)

throws ESInvocationException;

}

The registerResource method takes ResourceDescription and
ResourceSpecification as parameters. If persistence is true, the Core will
preserve the metadata after the connection is closed and, in the case of Core-
managed Resources only, also the state; otherwise metadata and state are not
preserved after the connection is closed. The Object parameter is Resource-
specific information used for creating Core-managed Resources. Object can be of
any type supported in the e-speak Application Binary Interface (ABI). The target-
Frame parameter is the ESName of a Name Frame in which the name for the new
Resource will be put. The toBaseName parameter is the string component of the
new Resource’s ESName.
Version Beta 2.0, September 1999 59

MetaResource Core-Managed Resources
MetaResource D

Every instance of e-speak provides a MetaResource that provides access to meta-
data (Resource Descriptions and Resource Specifications). Once a Resource has
been registered using a Resource Factory, the only way to access its metadata is
through a message sent to the MetaResource.

MetaResources are not exported.

The Resource Manipulation Interface is defined below:

public interface ResourceManipulationInterface

{

public static final int UNREGISTER = 9001;

public static final int SETRESOURCEOWNER = 9003;

public static final int GETRESOURCEPROXY = 9004;

public static final int SETRESOURCEPROXY = 9005;

public static final int GETRESOURCECONTRACT = 9006;

public static final int EVALUATECONSTRAINT = 9007;

public static final int GETPUBLICRSD = 9008;

public static final int SETPUBLICRSD = 9009;

public static final int GETPRIVATERSD = 9010;

public static final int SETPRIVATERSD = 9011;

public static final int GETRESOURCEDESCRIPTION = 9012;

public static final int SETRESOURCEDESCRIPTION = 9013;

public static final int INSTALLMETADATALOCKS = 9014;

public static final int UNINSTALLMETADATALOCKS = 9015;

public static final int INSTALLRESSPECIFICLOCKS = 9016;

public static final int UNINSTALLRESSPECIFICLOCKS = 9017;

public static final int INSTALLALLOWLOCKS = 9018;

public static final int UNINSTALLALLOWLOCKS = 9019;

public static final int INSTALLDENYLOCKS = 9020;

public static final int UNINSTALLDENYLOCKS = 9021;

public static final int ISEXPORTEDBYVALUE = 9024;

public static final int SETEXPORTTYPE = 9025;

public static final int SETMETADATALOCKS = 9027;
60 Version Beta 2.0, September 1999

Core-Managed Resources MetaResource
public static final int SETRESOURCESPECIFICLOCKS = 9029;

public static final int SETALLOWLOCKS = 9031;

public static final int SETDENYLOCKS = 9033;

public static final int GETEVENTCONTROL = 9034;

public static final int SETEVENTCONTROL = 9035;

public static final int ISPERSISTENT = 9036;

public static final int ISTRANSIENT = 9037;

public static final int SETTRANSIENT = 9038;

public static final int SETPERSISTENT = 9039;

public static final int GETESUID = 9040;

public static final int GETQUOTA = 9041;

//Permissions: "A", "U"

public void unregister (ESName resource)

throws ESInvocationException;

//Permissions: "A", "SO"

public void setResourceOwner (ESName resource)

throws ESInvocationException;

//Permissions: "A"

public ESName getResourceProxy (ESName resource)

throws ESInvocationException;

//Permissions: "A", "SH"

public void setResourceProxy (ESName resource,

ESName resourceHandler)

throws ESInvocationException;

//Permissions: "A", "GC"

public ESName getResourceContract (ESName resource)

throws ESInvocationException;
Version Beta 2.0, September 1999 61

MetaResource Core-Managed Resources
//Permissions: "A", "GU"

public ESMap getPublicRSD(ESName resource)

throws ESInvocationException;

//Permissions: "A", "SU"

public void setPublicRSD(ESName resource,ESMap rsds)

throws ESInvocationException;

//Permissions: "A", "GI"

public ESMap getPrivateRSD(ESName resource)

throws ESInvocationException;

//Permissions: "A", "SI"

public void setPrivateRSD(ESName resource, ESMap rsds)

throws ESInvocationException;

//Permissions: "A", "GA"

public ResourceDescription getResourceDescription(ESName target)

throws ESInvocationException;

//Permissions: "A", "SA"

public void setResourceDescription(ESName resource,

ResourceDescription desc)

throws ESInvocationException;

//Permissions: "A"

public void installMetadataLock (ESName resource,

LockedPermissions lperms)

throws ESInvocationException;

//Permissions: "A"

public void uninstallMetadataLock (ESName target, ESName key)

throws ESInvocationException;;
62 Version Beta 2.0, September 1999

Core-Managed Resources MetaResource
// Permissions: "A"

public void installResourceSpecificLock(ESName resource,

LockedPermissions lperms)

throws ESInvocationException;

//Permissions: "A"

public void uninstallResourceSpecificLock(ESName resource,

ESName key)

throws ESInvocationException;;

// Permissions: "A", "SV"

public void installAllowLock (ESName resource,

ESName key)

throws ESInvocationException;

// Permissions: "A", "SV"

public void uninstallAllowLock (ESName resource, ESName key)

throws ESInvocationException;

// Permissions: "A", "SV"

public void installDenyLock (ESName resource, ESName key)

throws ESInvocationException;

// Permissions: "A", "SV"

public void uninstallDenyLock (ESName resource, ESName key)

throws ESInvocationException;

//Permissions: "A"

public void setMetadataLocks(ESName resource, ESMap permKeyPairs)

throws ESInvocationException;
Version Beta 2.0, September 1999 63

MetaResource Core-Managed Resources
//Permissions: "A"

public void setResourceSpecificLocks(ESName resource,

ESMap PermKeyPairs)

throws ESInvocationException;

//Permissions: "A", "SV"

public void setAllowLocks(EsName resource, ESSet Keys)

throws ESInvocationException;

//Permissions: "A", "SV"

public void setDenyLocks(EsName resource, ESSet Keys)

throws ESInvocationException;

//Permissions: "A", "GE"

public int getEventControl (ESName resource)

throws ESInvocationException;

//Permissions: "A", "SE"

public void setEventControl (int setting)

throws ESInvocationException;

//Permissions: NULL

public boolean isPersistent (ESName target)

throws ESInvocationException;

//Permissions: NULL

public boolean isTransient (ESName target)

throws ESInvocationException;

//Permissions: "A", "U"

public void setPersistent (ESName target)

throws ESInvocationException;
64 Version Beta 2.0, September 1999

Core-Managed Resources MetaResource
//Permissions: "A", "U"

public void setTransient (ESName target)

throws ESInvocationException;

//Permissions: NULL

public ESUID getESUID(ESName target)

throws ESInvocationException;

//Permissions: NULL

public long getQuota(ESName target)

throws ESInvocationException;

}

The convention for a Resource-specific data (RSD) array is that is consists of a
sequence of pairs—the first element of each pair is a string used to tag the second
element. (This is how it is used here— see e.g., getPublicRSD).

Most of the methods in a MetaResource are for setting or getting the fields of its
Resource metadata. Some aspects of these methods warrant explanation and are
discussed below.

The unregister method removes (unregisters) the Resource, resource , from
the Repository. This removes ResourceDescription and ResourceSpecifi-
cation ; no more messages can be sent to the Resource after this operation.

The setResourceOwner method sets the owner of the Resource, resource , to
the ESName of the calling Client’s Protection Domain. There is no method for
getting the owner of a Resource because of the potential security risk.

The setResourceProxy and getResourceProxy methods set and get the
Resource Handler.

There is no method for setting the Resource Contract, because this cannot be
changed once the Resource has been registered.
Version Beta 2.0, September 1999 65

MetaResource Core-Managed Resources
The LockedPermissions construct is used for manipulating Keys and Permis-
sions:

class LockedPermissions

{

ESSet permLabels;

ESName Key;

}

The serialization format of ESSet is defined by the e-speak ABI serialization format
(it is serialized as an array). Each element of ESSet is a string corresponding to the
Permission that will be sent to the Resource Handler if the given Key is included in
a message. For example, installMetadataLock installs a single Key and the set
of Permissions that will be released by that Key if it is used to access the metadata
by the MetaResource.

The methods for installing and uninstalling Locks should refer to installing and
uninstalling Keys. A Lock is an internal data structure in the current implementation
of e-speak. Clients never refer to Locks, they refer only to Keys. Clients give Keys as
the parameters to these methods, not Locks.

ESMap in setResourceSpecificLocks and setMetdataLocks is an array in
which the first and second element are a pair, the second and third element are a
pair, and so on. Within each pair, the first element is the ESName of a Key and the
second element is of type LockedPermissions .

The method getQuota() returns the total charge in bytes to the owner’s quota due
to that Resource.
66 Version Beta 2.0, September 1999

Core-Managed Resources MetaResource
Table 6 shows the interpretation of the Permission strings for a MetaResource.

Table 6 Metadata Permissions for all Resources

String Interpretation

A All—All metadata Permissions

C Create—Create a Core-managed Resource

U Unregister—Remove metadata from Repository

SH Set handler—Change the Inbox that designates the Resource Handler

SO Set owner—Change the Protection Domain that denotes the owner

GC Get contract—Can be given a name bound to the Contract in which the
Resource is registered

GA Get attributes—Allowed to see all the attributes and be given a name
bound to the Vocabulary for the attributes

SA Set attributes—Change the attributes

SE Set export—Change pass-by-value and export-by-name settings

GE Get export—Query the pass-by-value and export-by-name settings

SP Set persistent—Make Resource persistent

GP Get persistent—Query persistence setting

SU Set public RSD—Change public Resource-specific data

GU Get public RSD—Allowed to see the public Resource-specific data

SI Set private RSD—Change private Resource-specific data

GI Get private RSD—Allowed to see the private Resource-specific data
Version Beta 2.0, September 1999 67

System Monitor Core-Managed Resources
System Monitor D

The System Monitor gives information about the running Core: the number of
messages sent and received, the number of bytes sent and received.

The System Monitor cannot be exported.

SystemMonitorInterface is defined below:

public interface SystemMonitorInterface

{

public static final int SM_ENABLECOUNTER = 15001;

public static final int SM_DISABLECOUNTER = 15002;

public static final int SM_READCOUNTER = 15003;

public static final int SM_MESSAGE_RECV_COUNT = 1;

public static final int SM_MESSAGE_SEND_COUNT = 2;

public static final int SM_MESSAGE_SEND_BYTES = 3;

public static final int SM_MESSAGE_RECV_BYTES = 4;

public static final int SM_MAX_COUNTER_OPCODES = 32;

String Interpretation

MM Merge metadata Permissions—Merge metadata Permissions from the
metadata of one Resource with the metadata of another (Need “A”
permission on target)

MR Merge Resource Permissions—Merge Resource Permissions from the
metadata of one Resource with the metadata of another (Need “A”
permission on target)

SV Set visibility—Change the Deny and Allow Locks

Table 6 Metadata Permissions for all Resources (Continued)
68 Version Beta 2.0, September 1999

Core-Managed Resources Vocabulary
//Permissions: "W"

public void enable(int counter)

throws ESInvocationException;

//Permissions: "W"

public void disable(int counter)

throws ESInvocationException;

//Permissions: "R"

public long read(int counter)

throws ESInvocationException;

}

Vocabulary D

A Vocabulary is used to describe Resources and to specify lookup requests. Vocab-
ularies are also used to define the state of Events.

The Vocabulary class is defined below:

public class Vocabulary

{

String description;

AttributePropertySet props;

public static final int GETDESCRIPTION = 8001;

public static final int GETPROPERTIES = 8002;

public static final int MUTATEPROPERTIES = 8003;

//Permissions: NULL

public String getDescription()

throws ESInvocationException;
Version Beta 2.0, September 1999 69

Vocabulary Core-Managed Resources
//Permissions: "A"

public AttributePropertySet getProperties()

throws ESInvocationException;

//Permissions:"A", "C"

public void mutateProperties(AttributePropertySet props)

throws ESInvocationException;

}

The method getDescription returns a human-readable string describing the
Vocabulary.

The methods getProperties and mutateProperties are for getting and
setting the AttributePropertySet of a Vocabulary. The definition of
AttributePropertySet is given below:

public class AttributePropertySet

{

ESMap AttributeProperty

}

public class AttributeProperty

{

String attrName;

ValueType valuetype;

Value defaultValue;

boolean multiValued;

int rangeKind;

double minRange;

double maxRange;

String description;

public static final int NO_RANGE = 0;

public static final int LEFT_RANGE = 1;

public static final int FULL_RANGE = 2;

public static final int RIGHT_RANGE = 3;

}

70 Version Beta 2.0, September 1999

Core-Managed Resources Vocabulary
The first element of each pair in AttributePropertySet ESMap is the attr-
Name of AttributeProperty ; the second element is AttributeProperty .

In AttributeProperty , attrName is the name of the attribute.

If multiValued is true, defaultValue is assumed to be an ESSet of Values
(see the e-speak serialization format for the definition of ESSet).

The fields rangeKind , minRange , and maxRange specify the range of default-
Value . NO_RANGE means that minRange and maxRange do not specify any
restrictions. LEFT_RANGE means a value below minRange ; RIGHT_RANGE means
a value above maxRange; FULL_RANGE means a value between maxRange and
minRange .

The description field is a human-readable description of the attribute property.

ValueType is defined below. The defaultValue field holds the value defined
by valuetype . The list of possible types is given in the definition of ValueType .
The serialization of Value is defined by the e-speak serialization format of the
nonterminal ValueAlt .

The ValueType class is defined below:

public class ValueType

{

public static final String [] baseTypeNames =

{STRING_TYPE,

LONG_TYPE,

DOUBLE_TYPE,

BOOLEAN_TYPE,

BIG_DECIMAL_TYPE,

TIMESTAMP_TYPE,

DATE_TYPE,

TIME_TYPE,

INTEGER_TYPE,

FLOAT_TYPE,

CHAR_TYPE

BYTE_ARRAY_TYPE,
Version Beta 2.0, September 1999 71

Vocabulary Core-Managed Resources
BYTE_TYPE,

SHORT_TYPE,

NAMEDOBJECT_TYPE};

string typeName;

string description;

string matcher;

}

The typeName field is a string name of the value type object; valid values are those
in the baseTypeNames array.

The description field is the human-readable description of the value type, for
example, int .

The matcher field is the string name of a matching function, for example,
isLessThan .
72 Version Beta 2.0, September 1999

Chapter 5 Vocabularies
This section specifies the construction and use of Vocabularies. It describes:

■ Attributes as name-value pairs

■ The use of common matching rules for standard data types

■ Creating a new Vocabulary with supported value types

■ Interoperability between different Vocabularies

Vocabulary Overview E

A Resource Description is expressed using a Resource Description language called
a Vocabulary. A Vocabulary is a Resource; to end the recursion, the Core bootstraps
the description process by implementing a Base Vocabulary. This Base Vocabulary
may be used to describe Resources in the absence of any other Vocabulary.

A Vocabulary is defined by AttributePropertySet, which is an array of
AttributeProperty. Every e-speak system comes with an architected Base
Vocabulary.

These rules are followed regarding Vocabularies:

■ Attributes expressed in different Vocabularies cannot be matched.

■ Attributes in one Vocabulary can be converted into attributes in another Vocab-
ulary if a Translator Resource exists that is capable of the desired conversion.

■ Vocabularies can be extended dynamically by adding new attributes.

■ Any process can create a new Vocabulary dynamically.
Version Beta 2.0, September 1999 73

Vocabulary Builder Vocabularies
■ All attributes in a Resource Description must belong to the same Vocabulary. If
a Resource has capabilities that can be described in multiple Vocabularies, it can
use multiple Resource Description entries to represent it in the e-speak Core, as
long as each entry uses only attributes belonging to one Vocabulary.

The e-speak Core will ship with one Basic Vocabulary preloaded. It is expected that
the Basic Vocabulary will be always be in the Core and is accessible to all Clients.

Clients are free to define their own Vocabularies. The creator of a new Vocabulary
is responsible for the dissemination of information about the new Vocabulary to
potential users.

Vocabulary Builder E

E-speak will initialize a Lookup Service during start-up. This Lookup Service regis-
ters a Vocabulary Builder Resource. This builder is used by all authorized Clients
to create new attributes and new Vocabularies. It is a relatively simple process to
create new Vocabularies with new attributes using existing value types.

The Vocabulary Builder takes AttributePropertySet as the definition of the
Vocabulary. The Attribute Property Set is an array of Attribute Property
components. Each component has a number of fields, as shown in Table 7.
74 Version Beta 2.0, September 1999

Vocabularies Vocabulary Builder
Table 7 Components of an attribute property

Type Field Meaning

String name Attribute name

String description Human-readable description

Value type valueType See Table 8 for encoding

Value default Default value

Boolean multiValued True if multiple values

Boolean mandatory Must be specified if True

Int rangeType 0 no range 1 lower limit

2 both 3 upper limit

Double minValue Smallest allowed value

Double maxValue Largest allowed value
Version Beta 2.0, September 1999 75

Vocabulary Builder Vocabularies
The e-speak Vocabulary Builder supports the value types shown in Table 8.

All arithmetic and/or logical operations defined for each value type are supported.
For example, a constraint can specify “a+b<c”. Remember, equality testing on float-
ing point numbers may give unexpected results.

Table 8 Supported value types

Data type Designator Matching rules

Big decimal “BigDecimal” eq, ne, lt, le, gt, ge

Boolean “Boolean” eq, ne

Byte “Byte” eq, ne

Byte array “ByteArray” eq, ne

Char “Char” eq, ne

Date “Date” eq, ne, lt, le, gt, ge

Double “Double” eq, ne, lt, le, gt, ge

Float “Float” eq, ne, lt, le, gt, ge

Int “Integer” eq, ne, lt, le, gt, ge

Long “Long” eq, ne, lt, le, gt, ge

Object “NamedObject”

Short “Short” eq, ne, lt, le, gt, ge

String “String” eq, ne

Time “Time” eq, ne, lt, le, gt, ge

Time stamp “Timestamp” eq, ne, lt, le, gt, ge
76 Version Beta 2.0, September 1999

Vocabularies Vocabulary Builder
A value type can be specified using a designator, such as:

ValueType intType = new ValueType(“Integer”);

Building a New Vocabulary E

Any Client with “create” Permission in the Vocabulary Builder can create a new
Vocabulary:

ESName createResource(

ResourceDescription d,

byte[] p);

The byte array is interpreted as an AttributePropertySet that includes a defi-
nition of the attribute properties used by the new Vocabulary. The Resource
Description defines the part of the metadata used for discovery of this Vocabulary
Resource.

The following example shows the specification of a Car Vocabulary that has only
two attributes: Model and Price :

AttributeProperty p1 = new AttributeProperty(

“Model”,new ValueType(“String”));

AttributeProperty p2 = new AttributeProperty(

“Price”,new ValueType(“Double”));

and is added to a property set:

AttributePropertySet p = new

AttributePropertySet();

p.add(p1);

p.add(p2);
Version Beta 2.0, September 1999 77

Base Vocabulary Vocabularies
Base Vocabulary E

Each Vocabulary consists of a set of attribute properties; a string representing the
name, something that carries the type of the value, and attribute properties. The
Vocabulary also includes a set of matching rules. The Base Vocabulary is available
at system start-up. It includes the attributes and value types shown in Table 9.

The hash algorithm is specified using well-known names, for example, MD5.

Table 9 Base Vocabulary description

Attribute name Value type Comments

Name String

Type String

Description String

KeyWords String[] Multivalued

Version String

Date Date “YYYY-MM-DD”

Time Time “HH:MM:SS”

TimeStamp TimeStamp “YYYY-MM-DD
HH:MM:SS.FFFFFFFFF”

HashAlgorithm String

HashCode BigDecimal To authenticate contents
78 Version Beta 2.0, September 1999

Vocabularies Translators (Informational)
Translators (Informational) E

The interoperation of different Vocabularies is supported through Vocabulary

Translators. The translator can map attributes from one Vocabulary into another,
but there is no direct linkage between a Translator Resource and any Vocabulary
Resource. A translator service is not part of the e-speak architecture.

The translator implements:

ESName[][2] getVocabularyPairs();

which queries the translator about Vocabularies known to it. The translator returns
an array listing all Vocabularies that it can translate in an ordered set. Each element
in this array is a pair of Vocabulary names.

boolean isCompatible(Vocabulary vocabulary1,

Vocabulary vocabulary2)

checks if the translator can translate from the first given Vocabulary into the second
given Vocabulary. If the translator can perform the translation operation on the
given pair of Vocabularies, it will return true. If the translator cannot perform the
translation, or if it does not understand either of the Vocabularies, it will return
false. The translation is done by:

SearchRecipe translate(SearchRecipe s,

Vocabulary v2;

which returns a Search Recipe in the specified Vocabulary.
Version Beta 2.0, September 1999 79

Translators (Informational) Vocabularies
80 Version Beta 2.0, September 1999

Chapter 6 Application Binary
Interface
This section describes the e-speak Application Binary Interface, or e-speak ABI.
This is the protocol that Clients use to send and receive messages from the e-speak
Core. Most of the details of the messaging interface are hidden in the Client library.
The discussion in this section is intended for those writing directly to the Core
Application Programming Interfaces (APIs) or those writing the messaging compo-
nent of such a library.

The section begins with an overview of how the Core processes a message. Next,
the format of a message to the Core is defined, followed by the format of a message
received from the Core. Finally, the e-speak serialization format is defined, which
defines the on-the-wire format for message components.

Message Flow Through the Core F

The only way for a Client to request access to a Resource from a Resource Handler
is to send a message through the e-speak ABI to the Core. The only way for a
Resource Handler to return a reply to a Client is to send a message through the
e-speak ABI to the Core. Thus, the Core mediates all access between Clients and
Resource Handlers; when a Client sends a message to a Resource, the Core medita-
tion is transparent. Figure 4 illustrates the flow of information through the Core.
Version Beta 2.0, September 1999 81

Message Flow Through the Core Application Binary Interface
The Core does not keep any information about replies to messages. As far as the
Core is concerned, a reply is another message. If the Client needs a reply, it may
wait or send another message; all messaging is asynchronous. Each asynchronous
message has an identifier set by the sender. A reply can refer to this identifier so the
Client knows which message the reply is for.

Figure 4 Information flow through the e-speak Core

Router

Repository module

Naming

Protection Domain

Security

M
on

ito
r

OB IB IBOB

To e-speak Repository

To e-speak
Event distributor

 Client
Resource
Handler Resource

OB = Outbox
IB = Inbox

e-speak
Core
82 Version Beta 2.0, September 1999

Application Binary Interface Message Flow Through the Core
The Core will never keep any state about a message beyond the time needed to
complete processing. Once the Core retrieves a message from a Client’s Outbox, it
guarantees to do one of three things:

1 Normally, the Core forwards the message to a Resource Handler. However, the
Core cannot deliver the message if:

• The Client’s name for the target Resource is not valid

• The Inbox specified in the Resource metadata is not connected to a Resource
Handler

• The Resource Handler’s Inbox is full

2 When the Core cannot deliver the message, it will send an error message to the
Client’s designated Exception Resource.

3 If the Inbox associated with the Exception Resource can’t take the error mes-
sage for any reason, the Core will discard the message.

Note that the Exception Resource need not be connected to the Client sending the
message; another Client can be designated to handle such error messages.

The Core processes messages from a given Client one at a time. It assures in-order
processing and delivering of messages sent from a Client to the specified
Resource’s Resource Handler.
Version Beta 2.0, September 1999 83

E-speak ABI Message Format Application Binary Interface
E-speak ABI Message Format F

A message is an ordered sequence of Message Atoms, where each Message Atom is
either an Inbox Message Atom or an Outbox Message Atom. All Message Atoms in
a message must be the same type. A message having more than one Message Atom
is called a ganged message, and can be used to submit a batch of requests. The
following is a definition of the Message format:

public class Message

{

int Length; //The number of message atoms

short abiversion; //Currently 0x1010

messageAtom[] atoms;

}

The serialization format for a message and its components is defined in “E-speak
Serialization Format” on page 91. Once it has been serialized, each message is sent
as an integer length, followed by an array of bytes (note that in the current imple-
mentation, the length will not be correct and is not used).
84 Version Beta 2.0, September 1999

Application Binary Interface Sending a Message to the Core
Sending a Message to the Core F

To send a message to the Core, a Client serializes an instance of the Message class
containing Outbox Message Atoms and sends it over its channel to the Core (e.g., a
TCP connection). The format of an Outbox Message Atom is described below:

public class OutboxMessageAtom implements messageAtom

{

short abiversion; //Currently 0x1010

short secondaryAbiVersion;

string msgID;

string replyID;

ESName primaryResource;

ESName callbackResource;

ESName exceptionHandlerResource;

ESName[] keyRingResources;

ESName[] secondaryResources;

byte[] payload;

}

The msgID and replyID fields can be used by the Client and the Resource
Handler to identify messages (e.g., matching a reply to a request). The Core does not
use these fields.

The payload field of a Message Atom is a byte array that is interpreted by the
Resource Handler. An empty array is acceptable. The payload contents are deter-
mined by the Application Programming Interface (API) that is part of the Contract
registered with the Resource.

When the Core gets a message, it will add to keyRingResources the mandatory
Key Ring in the Client’s active Protection Domain. Next, its Router component
extracts the names specified by the Client, including:

■ The names of the Key Rings presented with this request.

■ The name of the Exception Resource (typically, but not necessarily, connected
to the Client) that is used to report problems.

■ The name of the primary Resource that is the target of the message.
Version Beta 2.0, September 1999 85

Sending a Message to the Core Application Binary Interface
■ The name of the Callback Resource, which is the Resource target for any reply
messages (typically, but not necessarily connected to the Client). It may be set
to null if, for example, no reply is required.

■ The names for the secondary Resources, which are Resources that may be
needed by the Resource Handler.

The primaryResource field is used to determine the destination of the message.
The secondaryResources field provides the Resource Handler with names of
other Resources it may need to do its job. The Router forwards these names to the
Naming component of the Core.

The Core attempts to resolve these names through the Client’s active Protection
Domain by finding the Mapping Object associated with each name. A Client can
have only one active Protection Domain at any time, but it can switch to a different
Protection Domain any time it chooses. The Mapping Object for the primary
Resource is used to identify the target of the message. The Mapping Object is used
by the Core to refer to a Resource, a Search Recipe, or any combination.

The Repository Handle (or handles) from each Mapping Object is used by the
Repository component of the Core to retrieve the metadata for that Resource. This
metadata is forwarded to the Security component. The Security component applies
two checks to validate the use of those Resources. The first check concerns filtering
the Mapping Object. The Mapping Object is filtered to remove any references to
Resources that fail the visibility test. Next, the Security component extracts the
Permissions associated with each Resource in the filtered Mapping Object that has
the same Resource Handler as the primary Resource. In the current implementa-
tion, these operations are only done for the primary Resource. Throughout this
process, the Monitor component publishes Events related to this activity.

The metadata for the primary Resource will contain the Inbox for the Resource
Handler, so having completed the security checks, the message comes back to the
Router. If the Core cannot unambiguously identify the Resource Handler, it will
send an error message to the Client’s designated Exception Resource. The possible
exceptions are described in Table 10.
86 Version Beta 2.0, September 1999

Application Binary Interface Receiving a Message from the Core
Receiving a Message from the Core F

To forward a message to a Client, the Core serializes an instance of the message
class containing Inbox Message Atoms. The definition of an Inbox Message Atom
and its associated components is given below:

public class ResourceInfo

{

ESName resource;

byte[][] RSD

string[][] permission

}

Table 10 Exceptions for unresolved identification of a Resource Handler

Exception Description

NameNotFoundException The lookup procedure failed to find a
Mapping Object.

UnresolvedBindingException The only accessors in the Mapping Object
are Search Recipes.

MultipleResolvedBindingException The explicit bindings in the accessors refer
to Resources with different Resource
Handlers.

UndeliverableRequestException The Resource Handler does not have the
Resources needed to receive this message,
or the Handler Inbox is not currently
connected.
Version Beta 2.0, September 1999 87

Receiving a Message from the Core Application Binary Interface
InboxMessageAtom

{

short abiversion; //Currently 0x1010

short secondaryAbiVersion;

int slot;

string msgID;

string replyID;

ResourceInfo primaryResource;

ResourceInfo callbackResource;

ResourceInfo exceptionHandlerResource;

ResourceInfo[] secondaryResources;

byte[] payload;

}

The e-speak serialization for ResourceInfo and InboxMessageAtom is defined
in “E-speak Serialization Format” on page 91.

The Slot field is used to enable many Inboxes to share a single channel (TCP
connection in the current implementation). The slot identifies which Inbox the
message is from.

ResourceInfo contains the ESName of the Resource. If the referenced Resource
has the same handler as the primary Resource, ResourceInfo also contains the
private Resource-specific Data (RSD) of the Resource and any Permission strings
that had matching Keys presented by the Client message. In other cases, the Permis-
sions and RSD arrays in ResourceInfo will be empty. Because the Mapping
Object for ESName may refer to several Resources, the RSD and permission fields
are two-dimensional arrays. There is one outer element for each separate Resource
referred to by the Mapping Object. In the present implementation, these fields are
filled only for the primary Resource.

Note that Search Recipes in a Mapping Object will not have their Permissions or
their RSD made available, because these bindings have not been completed, that is,
they have not been explicitly bound to a Resource or Resources.
88 Version Beta 2.0, September 1999

Application Binary Interface Messages from the Resource Handler to the Client
The payload contains the data defined by the API associated with the Contract of
the Resource. If the message is being forwarded to a Resource Handler (a non-Core-
managed Resource), the Core forwards the payload from the sending Client without
examining its contents.

Messages from the Resource Handler to the Client F

E-Speak implements a peer-to-peer communications model for messaging.

The Core does not distinguish between a message sent from a Client to a Resource
Handler and a reply from the Resource Handler back to the Client. The Resource
Handler sending a reply to a Callback Resource is treated as the Client, and the
Client receiving the reply is treated as the Resource Handler for the Callback
Resource.

Clients may have more than one Inbox. The only way for a Client to receive a
message from any other Client is to register a Resource listing one of its Inboxes in
the Resource Handler field of the metadata. Clients can manage different classes of
messages by registering different Resources designating different Inboxes. Clients
can also deal with different message classes by associating certain classes with
Events.

Format of Payload for Core-Managed Resources F

E-speak specifies the payload format for messages sent to and received from Core-
managed Resources (PayloadForCore , PayloadFromCore). It does not specify
the payload format for non-Core-managed Resources. The class PayloadForCore
defines the payload format of messages sent to Core-managed Resources:

public class PayloadForCore

{

int command;

Ob[]arguments;

}

Version Beta 2.0, September 1999 89

Format of Payload for Core-Managed Resources Application Binary Interface
The command field is an integer specifying the method to be invoked. This is
followed by an array of arguments. The type Ob is any type defined in the e-speak
serialization format.

If any part of any of the arguments is ESName, the ESName instance is replaced with
an instance of PayloadReference as defined below. ESName can be part of one
of the arguments if it is a component of a class or an element of a container. For
instance, the first argument might be an array of 10 ESNames; each ESName will be
replaced by its own PayloadReference in the serialized payload. All such
ESNames will be inserted into the secondaryResources array of OutboxMes-
sageAtom . The value of resourceID in PayloadReference is the index of the
ESName’s entry in secondaryResources :

class PayloadReference

{

public static final int SECONDARY_RESOURCE = 4;

int resourceType;

int resourceID;

}

The Resource Type will always be the value SECONDARY_RESOURCE.

The payloadFromCore class specifies the payload format of messages received
from Core-managed Resources:

public class PayloadFromCore

{

public static final int REPLY_PAYLOAD = 1;

public static final int EXCEPTION_PAYLOAD = 2;

public static final int EVENT_PAYLOAD = 3;

int type;

Ob[]arguments;

}

The type field indicates whether the message is a reply, an exception, or an Event.
The elements of the arguments array of type Ob can be of any type defined in the
e-speak serialization format. Any ESName will be replaced by an instance of
PayloadReference and the ESName inserted into secondaryResources , as
described above.
90 Version Beta 2.0, September 1999

Application Binary Interface Initial Connection to the Core
The on-the-wire format of PayloadForCore and PayloadFromCore is specified
in the e-speak serialization format.

Initial Connection to the Core F

The e-speak Core listens on a TCP port for Client connections (the default port is
12345). When it receives a connection request a TCP channel is created between
the Client and the Core. The Core creates a default protection domain for the
Client and sends message back to the Client (see PayloadFromCore) containing
a BootstrapReply object.

E-speak Serialization Format F

The basic types recognized are byte , short , int , long , float , double , and
string . The four integral types byte , short , int , and long are 1, 2, 4, and 8
bytes long respectively, and are always sent most significant byte first. The float
and double types are sent just as in Java. The string type is syntactically synony-
mous with byte[], but is intended to contain text rather than arbitrary binary data,
and the text must be a valid UTF-8 encoded string as per RFC 2279.

We also recognize arrays of types. The type foo[] is sent as a length followed by that
many instances of type foo. If the length is -1, then a NULL is returned. If the length
is 0, an empty array is returned. Otherwise an array with that many elements is
returned.

A map is sent in the same syntactic way as an array, but there is an implicit Key/
value association between pairs of elements; all the evenly indexed elements (0, 2,
etc.) are Keys, and all the odd indexed elements are values. Some maps may allow
multiple occurrences of the same Key.

The length field is encoded in a single byte if the value of the length is -1..62 inclu-
sive; the encoding is 129 more than the length. Thus, -1 is sent as the byte value 128,
and a length of 3 is sent as the byte value 132. Lengths from 63..2^31-1 are sent as a
4 byte integer. Lengths below -1 or greater than 2^31-1 are illegal at the present time.
Version Beta 2.0, September 1999 91

E-speak Serialization Format Application Binary Interface
Most elements in the following Backus–Naur Form (BNF) are sent as Ob. An Ob
consists of a signal byte that indicates the type of the object that follows, followed
by the data for that object.

Signal bytes are (in this release) entirely single bytes. They are encoded by literal
ASCII characters (e.g., A), literal ASCII characters but with the high byte set (e.g.,
*A), and small byte values (e.g., #3).

The following productions are the basic but nonterminal types.

The four container classes ESMap, ESArray , ESSet , and ESList will be removed;
all containers should be sent as Ob[] .

In the following BNF, the meta-symbol => means “is sent as.” The convention is as
follows:

type => [interpreted as field :] (type sent on the wire | type)

String => string

Integer => int

Long => long

Boolean => byte

Null =>

ByteArray => byte[]

ObjectArray => Ob[]

ESMap => map

ESArray => Ob[]

ESSet => Ob[]

ESList => Ob[]
92 Version Beta 2.0, September 1999

Application Binary Interface E-speak Serialization Format
These are the primary e-speak objects in communications with the Core:

ESName => string[]

RSD => byte[]

ResourceSpecification =>

byValue : byte

contract : Ob // ESName

denyLocks : Ob[] // ESName[]

allowLocks : Ob[] // ESName[]

metadataLocks : map // (ESName, String[])

resourceSpecificLocks : map // (ESName, String[])

publicRSD : map // (ESName, byte[])

privateRSD : map // (ESName, byte[])

owner : Ob // ESName

proxy : Ob // ESName

eventControl : int

esuid : Ob // byte[], byte[], boolean

ResourceDescription => desc : Ob[] // AttributeSet[]

AttributePropertySet => Ob[] // ESmap AttributeProperty

ValueType =>

typeName : string

description : string

matcher : string
Version Beta 2.0, September 1999 93

E-speak Serialization Format Application Binary Interface
AttributeProperty =>

name: string

valueType : Ob // ValueType

default : Ob // Value

multiValued : byte

rangeKind : int

minRange : double

maxRange: double

description : string

Attribute =>

name: string

value : Ob // Value

essential : byte

AttributeSet =>

vocab : Ob //ESName

data : Ob[] //ESmap (string, Attribute)

Value =>

val : ValueAlt

nextVal : Ob // Value (in lists of values)

Multivalued attributes are list of values, these are supported by nextVal .

SearchRecipe =>

constraint : Ob //SearchPredicate

preference : Ob //SearchPredicate

arbitrationPolicy : Ob //SearchPredicate

repositoryView : Ob//ESName

SearchPredicate => Ob[] //AttributePredicate[]
94 Version Beta 2.0, September 1999

Application Binary Interface E-speak Serialization Format
LockedPermissions =>

permLabels : Ob[] //String[]

key : Ob //ESname

LiteralName => Ob[] //String[]

AttributePredicate =>

attrVocab : Ob //ESname

predicate : byte[]

NameSearchPolicy =>

contract : Ob //ESname

bindingType : int

matchSense : byte

BootstrapReply =>

inbox : Ob //ESname

callbackResource : Ob//ESname

exceptionHandlerResource : Ob//ESname

switchBackResource : Ob//ESname

ESException =>

errno : int

info : Ob[] //String[]

ESRuntimeException =>

errno : int

info : Ob[] //String[]

ESUID =>

bytes1 : Ob //byte[]

bytes2 : Ob //byte[]

islocal : byte
Version Beta 2.0, September 1999 95

E-speak Serialization Format Application Binary Interface
These are the primary e-speak objects used for messaging.

Message =>

length : int

abiversion : short

messageAtoms : Ob[] // InboxMessageAtom | OutboxMessageAtom

InboxMessageAtom =>

abiVersion : short

secondaryAbiVersion : short

slot : int

msgID: string

replyID : string

primaryResource : Ob //ESname

callbackResource : Ob //ESname

exceptionHandlerResource : Ob//ESname

secondaryResources : Ob[] //ESname[]

payload : showbytes

OutboxMessageAtom =>

abiVersion : short

secondaryAbiVersion : short

msgID: string

replyID : string

primaryResource : Ob //ESname

callbackResource : Ob //ESname

exceptionHandlerResource : Ob //ESname

keyRingResources : Ob[] //ESname

secondaryResources : Ob[] //ESname[]

payload : showbytes

ResourceInfo =>

fsn : Ob //ESname

privateRSD : Ob[][] //byte[][]

permissions : Ob[][] //string[][]
96 Version Beta 2.0, September 1999

Application Binary Interface E-speak Serialization Format
PayloadReference =>

type : int

id : int

These e-speak objects are used to build payloads to or from the Core.

PayloadFromCore =>

type : int

args : Ob[] //Any type defined in the serialization format

PayloadForCore =>

type : int

args : Ob[] //Any type defined in the serialization format

These e-speak objects are used for Events.

SubProfile =>

pred : Ob // EventPredicate

callback : Ob // CallBack

subid : Ob // Id

subcode : string

Id => string

PubProfile => Ob// EventPredicate

EventPredicate =>

eventTypes : Ob[] // String[]

payload : Ob[] // Ob is an e-speak serliazable object

CoreEventPredicate =>

eventTypes : Ob[] // String[]

payload : Ob[] // Ob is an e-speak serializable object

CallBack => Ob// ESname
Version Beta 2.0, September 1999 97

E-speak Serialization Format Application Binary Interface
CoreEvent =>

eventType : string

eventAttrs : Ob // EventAttributeSet

controlAttrs : Ob // EventAttributeSet

payload : Ob // Ob is an e-speak serializable object

EventAttributeSet =>

vocab : Ob // ESname

data : Ob[] // ESmap (string, Attribute)

format : string

This e-speak object is used by the Client library.

ParamUnit =>

object : Ob // Any e-speak or Java serializable object

type : string

These classes are used when exporting Core-managed Resources.

RepositoryHandle =>

handleType : string

idValStr : string

Vocabulary =>

description : string

properties : Ob// AttributePropertySet

ResourceContract =>

vocabs : Ob[] // ESname

type : string

MappingObject =>

resolved : map // ESname[]

unresolved : Ob[] // SearchRecipe[]

NameFrame => map// (String, MappingObject)[]
98 Version Beta 2.0, September 1999

Application Binary Interface E-speak Serialization Format
Key =>

KeyRing => Ob[] // ESname

RepositoryView => Ob[] // ESname

These e-speak objects are used by the intercorecom.

ESIPMessage =>

header : Ob // ESIPHeader

payload : Ob // ESIPExportMessage

ESIPHeader => int

DripExportMessage =>

resources : Ob[][] // ExportFE

bytes : Ob[] // Serialized ExportForm (bytes[])

table : Ob[][] // ExportFE

updateflag : byte

msg: byte[]

ExportFE => string

ImportContext =>

exportFrame : Ob //ESname

importFrame : Ob //ESname

bytesArray : Ob[] // Serialized ExportForm (bytes[])

tableArray : Ob[][] // ExportFE

retry : byte

exportByName : byte

updateFlag : byte

resourceTables : Ob[][] // ExportFE

retryTable : Ob[] // unused

inbox : Ob //ESname
Version Beta 2.0, September 1999 99

E-speak Serialization Format Application Binary Interface
ExportContext =>

typeFlags : byte

exportPolicy : byte

resourceTables : Ob[][] // ExportFE

bytesArray : Ob[] // Serialized ExportForm (bytes[])

tableArray : Ob[][] // ExportFE

mappings : Ob[][] // unused

mappingBytes : Ob[] // unused

mappingTables : Ob[][] // unused
100 Version Beta 2.0, September 1999

Application Binary Interface E-speak Serialization Format
If an object is encountered that is not well known, we’ll fall back on Java serializa-
tion to encode it. This will, of course, only work if both sides are using Java serial-
ization.

JavaSerializedObject => rest

Ob =>

'*S', String | '*I', Integer | '*J', Long | '*B', Boolean |

'*N', Null | '*b', ByteArray | '*v', ObjectArray | '*H', ESMap |

'*z', ESArray | '*s', ESSet | '*l', ESList | 'F', ESName |

'E', RSD | 'S', ResourceSpecification | 'D', ResourceDescription |

'A', AttributePropertySet | 'Y', ValueType |

'T', AttributeProperty | 'a', Attribute | 'B', AttributeSet |

'V', Value | 'C', SearchRecipe | 'c', SearchPredicate |

'g', LockedPermissions | 'n', LiteralName |

'q', AttributePredicate | 'N', NameSearchPolicy |

'b', BootstrapReply | 'Z', ESException | 'z', ESRuntimeException |

'[', ESUID | 'M', Message | 'I', InboxMessageAtom |

'O', OutboxMessageAtom | 'R', ResourceInfo |

'L', PayloadReference | 'f', PayloadFromCore |

'P', PayloadForCore | 'U', SubProfile | 'e', ExtEvent | 'w', Id |

'p', PubProfile | 'J', EventPredicate | 'j', CoreEventPredicate |

'K', CallBack | 'Q', CoreEvent | 't', EventAttributeSet |

'u', ParamUnit | 'h', RepositoryHandle | 'v', Vocabulary |

'r', ResourceContract | 'm', MappingObject | 's', NameFrame |

'k', Key | 'y', KeyRing | 'W', RepositoryView | 'l', Lock |

'd', DripMessage | 'H', DripHeader | 'G', DripExportMessage |

'x', ExportFE | 'i', ImportContext | 'X', ExportContext |

'*O', JavaSerializedObject
Version Beta 2.0, September 1999 101

E-speak Serialization Format Application Binary Interface
These are the alternatives for the Value class.

StringValue => string

LongValue => long

DoubleValue => double

BooleanValue => byte

BigDecimalValue => string

TimestampValue => string

DateValue => string

TimeValue => string

IntegerValue => int

FloatValue => float

CharValue => short

ByteArrayValue => byte[]

ByteValue => byte

ShortValue => short

InvalidValue =>

ValueAlt => '#0', StringValue | '#1', LongValue |

'#2', DoubleValue | '#3', BooleanValue | '#4', BigDecimalValue |

'#5', TimestampValue | '#6', DateValue | '#7', TimeValue |

'#8', IntegerValue | '#9', FloatValue | '#10', CharValue |

'#11', ByteArrayValue | '#12', ByteValue | '#13', ShortValue |

'#-1', InvalidValue
102 Version Beta 2.0, September 1999

Application Binary Interface Security Implications (Informational)
Security Implications (Informational) F

A malicious Client might try to trick a Resource Handler into accessing a Resource
for which it does not have permission or that is not visible to it. The Client can do
this by sending a Search Recipe constructed so that when the Resource Handler
completes the binding, it would be to a Resource not visible to the original Client,
or if it is, the Client might not have permission for the requested operation.

The Core has no way of checking the Permissions or Visibility fields of Search Reci-
pes before they are resolved. This means that when a Resource Handler receives a
Search Recipe as a Secondary Resource, it needs to take special care that this is not
an attack. Many Resource Handlers might refuse to complete incomplete bindings,
treating them as an invalid parameter instead. Others might require the Client to
authenticate itself.
Version Beta 2.0, September 1999 103

Security Implications (Informational) Application Binary Interface
104 Version Beta 2.0, September 1999

Chapter 7 Inter-Core Communication
This chapter describes the Inter-Core Communication Architecture. The two main
components of the Inter-Core Communication Architecture are the Remote
Resource Handler and the Connection Factory. The Connection Factory is respon-
sible for the establishment of communication, the negotiation of the stack parame-
ters, and the instantiation of communication. The Remote Resource Handler uses
the generated stack to communicate with its peer using the E-speak Service Inter-
change Protocol (ESIP). There is one Connection Factory per Logical Machine.

The Inter-Core Communication Architecture uses the concept of a network stack.
Each layer provides specific services to the next layer above and below.

The Inter-Core Communication Architecture uses the e-speak serialization format
defined in the e-speak Application Binary Interface (ABI) described in Chapter 6,
“Application Binary Interface.” The e-speak ABI defines the on-the-wire format for
the objects described in this chapter. Specifically, the e-speak ABI serialization
format is used for sending requests from Clients to the Connection Factory and
Remote Resource Handlers.

Design Objectives G

E-speak is designed to work in heterogeneous environments where there will be all
kinds of platforms such as PCs and personal mobile devices that use various
communication media such as the Internet, infrared, and radio. Therefore, when
two Logical Machines contact each other, both parties have to agree on a common
way of communication. This implies negotiation and dynamic creation of protocol
stacks.
Version Beta 2.0, September 1999 105

Communication Architecture Overview Inter-Core Communication
Thus, inter-Core communication must be able to do the following:

■ Handle different mediums of communication: Ethernet, infrared, radio, and the
like

■ Provide easy integration in different environments: PC, palmtop, pagers, and the
like

■ Provide a negotiation framework for protocols and their parameters

■ Enable dynamic creation of network stacks based on negotiation results

■ Satisfy different security requirements (including a version that does not use
cryptography)

■ Provide a manageable way to deal with versions

■ Support interoperability between secure and insecure stacks

Communication Architecture Overview G

Figure 5 shows the principal components of the Inter-Core Communication Archi-
tecture and how they interact to establish a communication channel between two
Logical Machines. The process is as follows:

1 The Client invokes the Connection Factory, CFa, asking it to connect to the Core
represented by the Connection Object, CO. (To do this, it sends a message to
COREa with CFa as the primary Resource.)

2 CFa receives the message from COREa.

3 The Connection Factories, CFa and CFb, negotiate the parameters and then gen-
erate the Remote Resource Handler stack. The layers of the stack are negotiated
from bottom to top. When a layer is negotiated, the corresponding implementa-
tion is generated and used to negotiate the parameters of the next layer above.
106 Version Beta 2.0, September 1999

Inter-Core Communication Communication Architecture Overview
4 CFa and CFb create their Remote Resource Handlers, RRHa and RRHb, with the
generated stack as a parameter.

5 RRHa and RRHb connect to each other.

Once the Remote Resource Handlers are connected, they go through the initial
process of Resource import and export (Resource exchange). Once this is done, the
two Cores can use each other’s Resources. The Remote Resource Handler interac-
tion is described in “Session Layer Protocols” on page 117.

The Inter-Core Communication Protocol stack used by the Remote Resource
Handlers is shown in Figure 6. From the bottom of the stack upward, the function
of these layers is as follows:

■ The Transport Layer deals with connection establishment, connection release,
flow control, error detection, and error recovery. It can be seen as a pipe that
reliably transmits a stream of bits to and from the peer. If the stack is instanti-
ated over TCP, this layer can be null.

■ The Security Layer is responsible for securing the stream. It provides authenti-
cation, encryption, and traffic padding, if applicable.

Figure 5 Connection and stack instantiation

CO REa CO REb

Client

CO

CFa CFb

RR Ha RR Hb

1
2

3

3 3

44

5

Resource
Handler

Protocol
Stack
Version Beta 2.0, September 1999 107

Communication Architecture Overview Inter-Core Communication
■ The Session Layer enables two Remote Resource Handlers to manage a session.
It handles session recovery in case of a crash and can also resume a session
previously suspended. The heartbeat monitors that a session is still alive.

■ No functionality is currently defined for the Core Interconnection Layer. It can
be used by developers to add functions to the stack.

■ The E-speak Service Interaction Protocol Layer is responsible for Resource
import, Resource export, and forwarding messages. The e-speak Service Inter-
change Protocol (ESIP) is the protocol that Remote Resource Handlers use to
communicate with each other.

Figure 6 The Inter-Core communication stack

Connection
multiplexing

Connection
establishment

Connection
release

Error
detection /
recovery

Flow
control

Heart beat

Authentication Encryption Traffic padding

Session
resynchronisation /
recovery

Compression /
expansion

Session
establishment

Session
release

Session
management

Core Interconnection

Security

Transport

Out-of band
data

Resource
Import/Export

E-speak Service Interaction Protocol (ESIP)

Message
forwarding

Developer
Extensions

Session
108 Version Beta 2.0, September 1999

Inter-Core Communication The Connection Object
The Connection Object G

A Connection Object describes how to connect to a Logical Machine. Connection
Objects can be written down and transmitted out of band (e.g., in e-mail). Connec-
tion Objects can be constructed from strings.

The format of this string depends on the protocol. The general form is:

<PROTOCOL IDENTIFIER>: <PROTOCOL SPECIFIC INFORMATION>

The protocol identifier field is delimited from the protocol specific
information field by one or more space characters. Currently only one protocol
identifier is defined: TCP. The format for TCP is:

TCP: <fully qualified domain name> <port number>

The Connection Factory Interface G

The Connection Factory Interface is available to Clients via the e-speak ABI. The
format of messages sent to the Connection Factory is defined by the e-speak ABI
serialization format. The Connection Factory defines no new exceptions. It uses the
standard e-speak exceptions:

public interface ConnectionFactoryInterface

{

public String openConnection(byte[] ConnectionObject);

public void closeConnection(byte[] ConnectionObject);

public void closeConnection(String localName);

public byte[] getMyCO();

public ESMap getConnections();

public void exportOnConnecting(ESname resource)

throws MultipleResolvedBindingException,

UnresolvedBindingException;

public byte[] readConnectionObjectFile(String fileName);

}

Version Beta 2.0, September 1999 109

The Remote Resource Handler Interface Inter-Core Communication
The openConnection() method returns a string that can be used to identify the
connection later. A null is returned if the connection cannot be established.

Two methods are provided for closing a connection. One takes a connection object;
the other takes a name that should have been returned by a previous call, open-
Connection() .

The method getMyCO() returns the Connection Object for this Connection
Factory.

The method getConnections() returns an ESMap of strings representing the
currently open connections.

The method exportOnConnecting() is used to ensure that the Resource passed
as a parameter will be exported automatically whenever a new connection is estab-
lished. The given Resource referenced by the given name must be a simple binding;
otherwise, an exception will be thrown.

The Remote Resource Handler Interface G

The Remote Resource Handler Interface is described below:

public interface CoreProxyInterface

{

public void exportResource(ESName resource,

 Boolean forceExport)

throws ExportFailedException

public void exportResource(ResourceReference resource,

Boolean forceExport,

Boolean toplevelExport)

throws ExportFailedException;

public void importResources(ESArray exportnames);

}

110 Version Beta 2.0, September 1999

Inter-Core Communication The Remote Resource Handler Interface
The first exportResource() method exports the Resource to the remote Core to
which the Remote Resource Handler is connected.

If the boolean forceExport is set to true, the export will occur even if the
Resource has already been exported. Normally, a Resource is exported only once,
but the forceExport flag can be used to update the exported Resource, for exam-
ple, in case of a change in the metadata.

The default export policy is to export recursively all dependent Resources
(Resources found in the metadata or state of Core-managed Resources). This is not
necessary if the Client knows that no dependent Resources have been modified.
The second exportResource() method will only export the top level Resource
if the toplevelExport flag is true. However, if the importerExporter finds
that a dependent Resource has not yet been exported, an ExportException will
be thrown.

Both versions of exportResource() assume that the given ESname is bound to
a single Resource. If this is not the case, the export will fail.

The importResources() method is used as part of an error recovery mechanism.
The Remote Resource Handler takes the same approach as the Core; thus, there is
no handshaking between the two Remote Resource Handlers. If the importer fails,
the importer and exporter will be out of sync. Resources may have been exported
by the exporter that have not been imported by the importer. This can cause prob-
lems the second time the same Resource is exported because the exporter will send
only the export name without re-creating the Export Form, because its state indi-
cates that the Resource has already been exported. The importer, on the other hand,
will not be able to process the import because it will not find the export name in the
list of names that it has already imported.

When this out-of-synchronization error is detected, the Importer can ask its Remote
Resource Handler to import the Resource using importResources (the export
names are the ones that have been out of synchronization). This request will even-
tually cause the exporter to re-export the same Resources.
Version Beta 2.0, September 1999 111

Payload Format Inter-Core Communication
Payload Format G

The Connection Factory and Remote Resource Handlers are non-Core-managed
Resources. The payload field in Outbox Message Atoms of messages sent to these
services and the payload field in Inbox Message Atoms of messages received
from these services are defined by the class payloadForICCA .

class payloadForICCA

{

Ob[] arguments;

}

Each field in payloadForICCA is serialized according to the e-speak ABI serializa-
tion format.

For an Outbox Message Atom, interfaceName will either be CoreProxyInter-
face or ConnectionFactoryInterface and methodName will be the string
corresponding to one of the methods in these interfaces. Each element of the argu-
ments array can be any type defined in the e-speak ABI serialization format. For
InboxMessageAtom , the interfaceName and methodName fields are not used.

Layer Factory Negotiation Protocol G

A negotiation protocol is required to generate protocol stacks dynamically. A new
stack is built each time a connection is made to a new Logical Machine, so that the
requirements of different devices and communication media can be accommodated
at run-time. The Layer Factory Negotiation Protocol (LFNP) defines the procedures
and packet formats to negotiate parameters for a stack layer.
112 Version Beta 2.0, September 1999

Inter-Core Communication Layer Factory Negotiation Protocol
LFNP Message Definition G

Message Header
An LFNP message has a fixed header format, shown in Figure 7, followed by a
protocol proposal.

Level (1 byte) indicates which layer the message is negotiating. Valid values are
shown in Table 11.

Version (1 byte) indicates the version of the LFNP in use. The current version is
0x01.

Figure 7 LFNP header

Level

1 byte

Version

1 byte

Type

1 byte

Length

2 byte

Table 11 Negotiation levels and corresponding values

Level Value

Transport proposal 0

Authentication proposal 1

Security proposal 2

Session proposal 3

Core interconnection proposal 4

ESIP version proposal 5

Reserved 6-255
Version Beta 2.0, September 1999 113

Layer Factory Negotiation Protocol Inter-Core Communication
Type (1 byte) indicates if the payload is an offer (0x00) or counteroffer (0x01).

Length (2 bytes) indicates the length of the total message (header + payloads) in
bytes.

Protocol Proposal
A protocol proposal is a list of protocol identifiers.

Protocol Identifier
A protocol identifier (PID) is a 1-byte field. It specifies a protocol.

The semantics of the PID are related to a layer. The values defined currently are
shown below:

■ Transport: 0x00 for TCP; 0x01 for HTTP (HTTP is currently not supported in the
implementation.)

■ Security: 0x00 for null; 0x01 for DES (Not supported in the current implementa-
tion)

■ Session: 0x00 for SP (The session protocol defined in this document)

■ Core interconnection: 0x00 for ESIP:CI (The protocol defined in this document)

■ ESIP version: 0x00 (ESIP version 1.0)

■ Authentication: 0x00 (authentication by name)

 Negotiation Example G

In Figure 8, we present the set of messages exchanged during the negotiation of the
Transport Layer. The initiator proposes three protocols, identified by PID-1, PID-2,
and PID-3.
114 Version Beta 2.0, September 1999

Inter-Core Communication Transport Layer Protocols
Initiator to Listener: Message 1

Listener to Initiator: Message 2

After these two messages, all the parameters that have been negotiated for the layer
and PID-1 will be used.

Note that a counteroffer message (of type 0x01) is used only if none of the protocols
in the original message is acceptable.

 Building the Stack G

The stack is built from the bottom up, starting with the Transport Layer. Once a
layer is instantiated, LFNP is run over that layer to negotiate the next layer. For
example, the negotiation of the Session Layer uses the Security Layer, which in turn
uses the Transport Layer. This ensures that the protocol stack is tested as it is built.

Transport Layer Protocols G

Two protocols are defined for the Transport Layer: TCP and HTTP. Currently, only
TCP is supported.

Level

0x00

Version

0x01

Type

0x00

Length

0x10

PID

PID-1

PID

PID-2

PID

PID-3

PID=protocol identifier

Figure 8 Messages exchanged during the negotiation of the Transport Layer

Level

0x00

Version

0x01

Type

0x00

Length

0x06

PID

PID-1
PID=protocol identifier
Version Beta 2.0, September 1999 115

Authentication Layer Protocols Inter-Core Communication
Authentication Layer Protocols G

The Authentication Layer is negotiated immediately after the Transport Layer has
been negotiated and instantiated. It is run over the Transport Layer. Once the
Authentication Layer is negotiated, it is run to authenticate the remote machine and
then removed. The authentication information can be used to determine negotia-
tion policy for the remaining layers, and it can be used by the Remote Resource
Handler to determine what Protection Domain it will use.

The format for the Name Authentication Protocol message is shown in Figure 9.

The following values are valid message types:

■ 0x00—Give me your name

■ 0x01—This is my name

The name field can be any arbitrary string.

Security Layer Protocols G

The only protocol defined for this layer is the null protocol; no messages are
exchanged between Security components in the protocol stack. In the current
implementation, the Security component simply relays messages up and down the
stack.

Figure 9 Format of Name Authentication Protocol

Message type Length Name

1 byte 1 bytes Length - 2 bytes
116 Version Beta 2.0, September 1999

Inter-Core Communication Session Layer Protocols
Session Layer Protocols G

The Session Protocol (SP = 0x00) is the null protocol.

Core Interconnection Layer Protocols G

The Core Interconnection Layer Protocol (CI:ESIP= 0x00) is the null protocol.

ESIP G

ESIP relies on the e-speak Serialization Protocol defined as part of the e-speak ABI
for encoding its protocol messages. Now we specify ESIP protocol messages:

public class ESIPMessage implements ESSerializable

{

ESIPHeader hdr__;

ESIPPayload pyld__;

}

public class ESIPHeader implements ESSerializable

{

public final static int ESIP_UNDEFINED = 0;

public final static int ESIP_CONTROL_MESSAGE = 1;

public final static int ESIP_IMPORTMESSAGE= 2;

public final static int ESIP_EXPORTMESSAGE= 3;

int msgType__;

}

public class ESIPExportMessage extends ESIPPayload implements

ESSerializable
Version Beta 2.0, September 1999 117

ESIP Inter-Core Communication
{

private ESArray resources__;

private ESArray bytesArray__;

private ESArray tableArray__;

private boolean updateFlag__;

private byte[] msg__;

}

ESIPExportMessage is used for explicitly exporting Resources to the remote
Logical Machine (an explicit export message) and also for forwarding messages to
Resource Handlers on the remote Logical Machine (a forwarded message). In the
latter case, any Resources sent as secondary Resources will be implicitly exported
as a side effect of sending the message.

The resources__ field is a two-level array of Resources being exported. Each
outer element corresponds to a Message Atom. (Recall that multiple messages can
be sent simultaneously, each as a separate atom.) Each inner element of the array
is the export name (ExportFE) of the Resource.

If the ESIPExportMessage is a message to be forwarded to a Resource Handler,
then the following ordering is assumed for the elements of resources__ :

1 The Callback Resource

2 The Exception Handler

3 The secondary Resources

4 Key Export Names

Key Export Names are the export names (ExportFE) of all Keys previously
imported from the remote machine and that have been attached to the message.

The msg__ field is the message sent by the Client to the Core with all string fields
of ESName replaced by the corresponding export name (ExportFE). The format of
this message is defined by the e-speak ABI. This array is empty if the message is an
explicit export. Note that the msg__ field is the only place that the primary
Resource is included in a forwarded message: It will be in the Outbox Message
Atoms contained in the message. Primary Resources do not appear in
118 Version Beta 2.0, September 1999

Inter-Core Communication ESIP
resources__ , bytesArray__ , or tableArray__ . It is assumed that the
primary Resource is already known to the machine to which the message is being
forwarded.

The structure of bytesArray__ reflects that of resources__ : It is a two-dimen-
sional array in which each outer element corresponds to a Message Atom. Each of
the inner elements of bytesArray__ is the Export Form (defined below) for a
Resource. The elements of the array will be the Export Form for the elements of the
resources__ array that have not already been exported to the remote machine.
In general, the Export Form for a Resource will contain the names of other
Resources. The Export Form for all Resources whose names it contains follows this
element as a separate entry in bytesArray__ . So there is one entry in
bytesArray__ for each Resource. Within entries in bytesArray__ , names of
contained Resources are replaced with a marker, as described below:

public class Marker

{

byte SignalByte; //Defined in the e-speak ABI

byte label; //always ‘L’

int n; //4 bytes, always the number 4

int index; //index of entry in tableArray__

}

The process is recursive, terminating only when a Resource that is encountered has
already been imported from this machine or exported to this machine, or whose
Export Form is already in this message. Once the Export Form for the first element
of resources__ is completed, the next element of bytesArray__ will be the
Export Form for the second element of resources__ . This continues until the
Export Form for all elements of resources__ (that have not already been
exported) have been included in bytesArray__ .

Note that the ordering of Resources in bytesArray__ is not significant, because
all entries are self-describing.

The array tableArray__ contains the export name (ExportFE) of all Resources
named in the Export Form of the elements of resources__ . So the first time a
Resource is encountered contained in the Export Form of another Resource, its
export name (ExportFE) is appended to tableArray__ . If the Resource is
encountered again, no addition is made to tableArray__ .
Version Beta 2.0, September 1999 119

ESIP Inter-Core Communication
If the updateFlag __ field is set to true, the receiver of this message should not
ignore any Resources contained in this message that it has already imported.
Instead, it should update the Resource metadata (and state in the case of export by
value):

public class ESIPImportMessage extends ESIPPayload implements

ESSerializable

{

ExportFE [] exnames__;

byte[] esmsg__;

}

ESIPImportMessage consists of a list of ExportFE (export names) to be
imported and optionally a byte array containing the message that caused the error
condition to be detected.

public class ESIPControlMessage extends ESIPPayload implements

ESSerializable

{

public static final int TYPE_UNKNOWN= 0;

public static final int TYPE_CLOSE_CONNECTION_1= 1;// phase 1

public static final int TYPE_CLOSE_CONNECTION_2= 2;// phase 2

public static final int TYPE_OPEN_CONNECTION_1= 21;//

public static final int TYPE_OPEN_CONNECTION_2= 22;//

public static final int TYPE_OPEN_CONNECTION_3= 23;//

public static final int TYPE_OPEN_CONNECTION_4= 24;//

int type__;

}

ESIPControlMessages are used to synchronized Remote Resource Handlers
when a connection is established. The side that originally initiated the connection
sends a message of type OPEN_CONNECTION_1, waits until it gets a message of
type OPEN_CONNECTION_2 , sends a message of type OPEN_CONNECTION_3
and then waits to get a message of type OPEN_CONNECTION_4. This is shown in
Figure 10.
120 Version Beta 2.0, September 1999

Inter-Core Communication ESIP
The protocol for closing a connection is similar, but either side may initiate it. This
is shown in Figure 11.

If a problem is encountered with the messaging, an UndeliverableRequestEx-
ception will be returned.

Figure 10 ESIP control messages opening a connection

Initiator

- send CP_OC1

- wait CP_OC2
- send CP_OC3

- wait CP_OC4

Listener

- wait CP_OC1
- send CP_OC2

- wait CP_OC3
- send CP_OC4

Figure 11 ESIP control messages closing a connection

Initiator

- send CP_CL1

- wait CP_CL2

- initiate shutdown
at this side

Listener

- recv CP_CL1
- send CP_CL2

- initiate shutdown at this side
Version Beta 2.0, September 1999 121

Export Form for Resources Inter-Core Communication
Export Form for Resources G

Class ExportForm is defined below:

public class ExportForm

{

ExportFE ExportName;

String ResourceType;

ResourceDescription desc;

ResourceSpecification spec;

byte[] ResourceState;

}

The components of ExportForm are serialized in the format specified by the e-
speak ABI.

The Resource type string is Key , KeyRing , NameFrame , Contract, Reposi-
toryView , Vocabulary , or ExternalResource . ExternalResource
denotes a non-Core-managed Resource.

The desc and spec components are the metadata for the Resource. There are two
main differences from what was provided by the Client that originally registered the
Resource—the handling of the Resource-specific data (RSD) fields and Permis-
sions. The public RSD is always included in the Export Form, but the private RSD
is included only if the Resource is being exported by value. Similarly, the Resource
Permissions and metadata Permissions are exported as Key-label pairs if the export
is by value. If the export is by reference, only the names of the Keys are transmitted.
The differences are summarized in Table 12.
122 Version Beta 2.0, September 1999

Inter-Core Communication Export Form for Resources
Table 12 Metadata export

Element Included

Repository Handle Not included

Resource Handler Not included

Resource Owner Not included

Contract Export name of the contract Resource

Attributes Export name of the Vocabulary
Resource

Attributes unmodified

Pass by value flag Boolean

Export by name flag Boolean

Persistence flag Boolean

Public RSD Unmodified

Private RSD Unmodified if passed by value

Not included if passed by reference

Resource Permissions Export name of Key that opens Lock

Metadata Permissions Export name of Key that opens Lock

Deny Locks Array of export names of Keys that
open Locks

Allow Locks Array of export names of Keys that
open Locks
Version Beta 2.0, September 1999 123

Export by Value Inter-Core Communication
The class SecondaryExportForm is defined below:

public class SecondaryExportForm

{

ExportFE ExportName;

String ResourceType; // always “MappingObject”

byte[] MappingObjectSerialization;

}

The Export Form for a secondary Resource is more complicated, because the
Mapping Object for ESName can be complex. Hence, the entry in bytesArray__
for a secondary Resource is the ESSerialization of the Mapping Object as defined in
the e-speak ABI. This Mapping Object will contain references to Resources. The
export name for each of these Resources will be entered into tableArray__ , and
the Export Form for these Resources will be added to bytesArray__ , as
described previously.

Export by Value G

Export by value is supported only for Core-managed Resources (extensions will be
provided in a later release). Export by value is indicated by the Pass by Value
flag in the exported Resource Description.

Imported Resource Metadata (Informational) G

Most of the data fields in ExportForm can be translated directly into the form
needed for the Resource Specification and Resource Description, with the excep-
tion of Permissions. The metadata Permissions are unchanged when the Resource
is exported by value. The Resource Permissions are registered by associating the
ESName of a Key with the export name (ExportFE) of that Key. This way, when a
Permission is extracted by the importer’s Core, the Remote Resource Handler will
know what Keys were presented and can tell the exporter which Keys to present.
124 Version Beta 2.0, September 1999

Inter-Core Communication Imported Resource Metadata (Informational)
For example, suppose a Resource Permission is protected by a Key called AddKey
and the export name for this Key is ExportAddKey . The importing Core will create
a Permission containing the name ExportAddKey . This Permission will be
protected with some other (local) Key, say ImportAddKey . Now a Client on the
importing Core must present the Key ImportAddkey to unlock the Permission
ExportAddKey that gets delivered to the importing Remote Resource Handler.
This Remote Resource Handler can then tell the exporting Remote Resource
Handler that a Key corresponding to ExportAddKey was presented.

When a Resource is imported, the importer may see export names (ExportFE) in
the ExportForm metadata for locks and Vocabularies (recall that Vocabularies are
part of a Contract Resource) that have not yet been exported to it. These might be
exported later, or they may never be exported. For example, suppose we don't want
to export the AddKey referred to in the above example. We need a way to prevent
the importing Core (which may be compromised) from presenting the ExportAd-
dKey Permission to trick the exporting Remote Resource Handler into wrongly
presenting AddKey to its Core.

The solution is to use the Visibility fields. The metadata for AddKey on the export-
ing Core contains a single Key, called local, in the Allow field. Local is never
exported and it is not on any Key Ring used by the exporting Remote Resource
Handler, nor is it on any Name Frame available to the exporting Remote Resource
Handler. Hence, AddKey is not visible to the exporting Remote Resource Handler,
so it can never be tricked into wrongly presenting it to its Core.

The Visibility fields of a Resource exported by reference are registered with the
export name of the Keys. However, each Key must also appear as a Permission so
the importer will know that it was presented. Thus, if there is a Key K1 in an Allow
field on the exporting Core that has an export name EK1, then on the importing
Core, the Allow field will have a local Key EK1-L. A Permission is also unlocked by
EK1-L that delivers the name EK1 to the importing Remote Resource Handler. If
EK1-L is the only Key in the Allow field, then a Client must present EK1-L. This will
cause a Permission EK1 to be delivered to the importing Remote Resource Handler.
This Remote Resource Handler is then able to tell the exporting Remote Resource
Handler that the (Visibility) Key corresponding to EK1 was presented. Unlike the
situation in the Repository of the Logical Machine that owns the Resource, a Key
need appear in the Permissions field only once because this is sufficient to demon-
strate to the exporting Remote Resource Handler that it was presented.
Version Beta 2.0, September 1999 125

Restriction on Export of Core-Managed Resources Inter-Core Communication
Restriction on Export of Core-Managed Resources G

Resources can be exported by reference or by value. If a non-Core-managed
Resource is passed by value, the Remote Resource Handler treats the value as a
byte stream. If a Core-managed Resource is passed by value, the builder in the Core
needs to interpret the value specification.

Some Core-managed Resources can’t be exported at all. For example, a Protection
Domain holds a task-specific state, such as the handles to the communications
ports. This state is meaningless to another machine. The same applies to an Inbox.
A Key could be exported by reference, but there is no practical way to use the value
to test it against metadata. A Key could be exported by value, but its state could very
well conflict with that of a Key on the importing Logical Machine. Instead, the
importer creates a new Key and puts it in the correct places in the metadata.

Other Core-managed Resources can be exported by reference, but only a subset of
the interface is available. In particular, such a Resource cannot be used as part of
message processing. Restrictions are specified in Table 13.
126 Version Beta 2.0, September 1999

Inter-Core Communication Restriction on Export of Core-Managed Resources
Table 13 Core-managed Resource export restrictions

Resource Pass by value allowed Pass by reference restrictions

Key No, but a new instance is
created to be used in its
place

N/A

Key Ring Yes Cannot be used in the Key
Rings field of a message
header

Resource Contract Yes Cannot register a Resource in
this Contract

Inbox No N/A

Name Frame Yes Cannot be used as a
component of an ESName
sent to the Core for name
resolution

Protection Domain No N/A

Repository View Yes Cannot be used in a Search
Recipe

Resource Factory No N/A

MetaResource No N/A

Importer Exporter No N/A

Vocabulary Yes Cannot be used in a Search
Recipe
Version Beta 2.0, September 1999 127

Restriction on Export of Core-Managed Resources Inter-Core Communication
As Table 13 shows, Keys and Protection Domains are handled differently than other
types of Core-managed Resources. The internal state of a Key is used to open Locks,
but this internal state is only meaningful on the Logical Machine that created the
Key. However, the Resource Handler will still need to know what access rights were
unlocked when a request from a remote Client reaches it. Having the importer
create a Key that appears in the imported metadata and in the Resource’s state
avoids any conflicts without requiring global uniqueness of Key values.

The state of those Core-managed Resources exported by value may need to be kept
synchronized. Interested Clients can subscribe to an Event that the Core generates
each time it changes the metadata or state of a Core-managed Resource. These
updates are passed between the Logical Machines.
128 Version Beta 2.0, September 1999

Chapter 8 Exceptions
Overview H

E-speak defines a set of exceptions to inform Clients when an error occurs in the
system. Two classes of exceptions are defined: run-time exceptions and recover-
able exceptions.

Exceptions are described as subclasses as they are in object-oriented languages.
E-speak supports other languages, such as C, that don’t include the concept of
exceptions or of subclasses. The Application Binary Interface (ABI) describes how
this hierarchy is encoded for such Clients.

Run-Time Exceptions H

Run-time exceptions are thrown when programming errors occur. A program catch-
ing such exceptions may terminate. ESRuntimeException has the following
subclassed exceptions:

■ CorePanicException is thrown when the Core is unable to process the
request. Although the Core will attempt to notify all Clients of its inability to
continue operating, it will also reply with this exception for as long as it can. The
Core may continue to accept new messages as the problem may be limited to the
execution of a single message.

■ ServicePanicException is thrown when a service is unable to process the
request. This may be a terminal error for the service, in which case the service
will exit. Or it may simply mean that the request being processed caused an
internal error that was not recoverable, and the service will accept new requests.
Version Beta 2.0, September 1999 129

Recoverable Exceptions Exceptions
■ RepositoryFullException is thrown when the request attempted to add
additional information to the Core’s Repository, but the Repository was full.
This exception can be recovered from if the Client is able to delete one or more
Resources from the Repository. It is a run-time exception because almost every
message can possibly throw this exception, and the Client has no guaranteed
recourse (because some other application can consume the Repository space
freed up by this Client).

■ OutofOrderRequestException is thrown when the state of the system is
inconsistent with the request.

■ InvalidParameterException is thrown by any other programming errors.
This exception has three subclasses:

• NullParameterException is thrown where a null parameter was
supplied but is not allowed. This error is often caused by passing an uninitial-
ized object.

• InvalidValueException is thrown when a parameter is outside the
allowed range.

• InvalidTypeException tells the programmer that the name specified is
bound to the wrong type of Resource.

Recoverable Exceptions H

Recoverable exceptions occur due to a problem with the state of the system. For
example, when the Client sends a message to request access to a Resource, the
message may be undeliverable, perhaps because the Client’s Inbox is full. Recovery
for this case may be as simple as resending the message.

The base exception is ESException . This exception is subclassed into two major
categories: ESInvocationException and ESServiceException .
130 Version Beta 2.0, September 1999

Exceptions Recoverable Exceptions
ESInvocationException is a base class for all the exceptions that may be
thrown by the Core back to the Client occurring during the processing of the
request. Exceptions thrown by most handlers are included here to reduce the
number of explicit classes of exceptions that must be caught. This exception is
further subclassed into:

NamingException results from a wide variety of problems. Regardless of the
cause, this exception, or any of its subclasses, is thrown only for the primary
Resource of the message header. Five subclasses are defined:

■ NameNotFoundException is thrown when the name resolution process failed
to find a given name. The Client can recover by changing ESName.

■ EmptyMappingException is thrown when a Mapping Object is associated
with the name, but that Mapping Object has no usable accessors. This condition
arises when the accessor has no elements, the elements refer to unregistered
Resources, or the Resources did not pass the visibility tests. The Client can
recover by changing ESName or trying again with a different set of Keys.

■ UnresolvedBindingException is thrown when all the accessors of the
Mapping Object are search requests. The Client can recover by requesting a
lookup using the search request.

■ MultipleResolvedBindingException is thrown when the Mapping
Object has more than one explicit binding.

StaleEntryException is thrown if the Resource no longer exists. The Core will
remove any stale handles from the Mapping Object before returning the exception.
A retry will not result in this exception unless another referenced Resource has
been unregistered.

PermissionDeniedException is thrown by any Resource Handler when the
appropriate Resource Permission can’t be unlocked. The Client can recover by
retrying with a different set of Keys.

QuotaExhaustedException is thrown when the Client attempts to define more
Resources than it is allowed as defined by the quota assigned. The Client may delete
other Resources (thus freeing up quota) and reattempt the request.
Version Beta 2.0, September 1999 131

Recoverable Exceptions Exceptions
RecoverableCoreException is thrown when there is a problem while process-
ing the request. There are two associated subclass exceptions:

■ RequestNotDeliveredException is thrown when the Core never started
processing the message. This exception can be thrown by the Client library if it
implements time-outs or in by the Core if the corresponding queue is full. It may
be possible to recover from this exception by resending the message.

■ PartialStateUpdateException is thrown when the Core cannot finish
processing the message. The Client may need to find out what state was changed
before attempting recovery, for example, by examining the state of the meta-
data.

UndeliverableRequestException is thrown when the message cannot be
delivered to the Resource Handler. There are two subclass exceptions:

■ RecoverableDeliveryException is due to temporary conditions such as a
full Mailbox. Recovery can be as simple as retrying.

■ UnrecoverableDeliveryException is due to a condition that is unlikely to
change quickly. The Client can recover by selecting a binding that points to a
different Resource Handler.

ESServiceException is a base class exception for all service-defined excep-
tions. The only service defined by the Core is the Name Frame Service, which has
the following exceptions defined:

■ NameCollisionException is thrown when the name specified in an add,
copy, or similar operation is already defined in the Name Frame.

■ LookupFailedException is thrown when no Resources are found that
match a Search Recipe.

■ InvalidNameException is thrown when a string designating a name is not
found in the Name Frame.
132 Version Beta 2.0, September 1999

Exceptions Exception State
Exception State H

Each exception returns some data. The first element is an integer that identifies the
exception; the rest is a string containing exception-specific information. Table 14
shows the ranges used for the various classes of exceptions.

The specific integers used for each exception are given in Table 15.

Table 14 Ranges for different exception classes

Class Range

Run-time Between 0 and 10

Recoverable Between 11 and 99

Client defined 100 and above

Table 15 Exception state

Exception Code Other State

Runtime Exceptions

Invalid parameter 1

Null parameter 2

Invalid value 3

Invalid type 4

Out of order request 5
Version Beta 2.0, September 1999 133

Exception State Exceptions
Core panic 6

Recoverable Exceptions

Recoverable Core 11

Repository full 12

Request interrupted 13

Request not delivered 14

Permission denied 15

Undeliverable request 16

Unrecoverable undeliverable
request

17

Recoverable delivery 18

Naming 20

Empty mapping 21

Multiple resolved binding 23

Name not found 24

Table 15 Exception state (Continued)

Exception Code Other State
134 Version Beta 2.0, September 1999

Exceptions Exception State
Name collision 30

Lookup failed 31

Warning Exceptions

Stale entry 29

Visibility failure 32

Table 15 Exception state (Continued)

Exception Code Other State
Version Beta 2.0, September 1999 135

Exception State Exceptions
136 Version Beta 2.0, September 1999

Chapter 9 Events
This section describes the Event Service, a lightweight, extensible service targeted
at loosely coupled, distributed applications. Events provide a publish-subscribe
mechanism for communication built on top of e-speak messaging.

The Event specification defines two interfaces.

■ The ListenerIntf defines the format of Event notifications.

■ The DistributorIntf defines the format of publish and subscribe requests.

Event Model I

E-speak supports an extended form of the familiar publish-subscribe Event Model.
There are four logical entities in the e-speak Event Model, whose interactions are
illustrated in Figure 12.

Figure 12 Interactions in the Event Model

subscribe

notify(event)
notify(event)

P D S

ListenerL
Version Beta 2.0, September 1999 137

Interaction Sequence Events
A Publisher (P in the figure) is an entity that generates an Event notification
message. The recipient of an Event notification is called a Listener (L). A Distrib-

utor (D) is an extension of a Listener. It receives Events and forwards them to other
Listeners. A Subscriber (S) is an entity that registers interest in a particular Event
with a Distributor and designates the Listener to whom Events should be sent. The
Subscriber and the Listener are typically the same physical entity. Similarly, it is
fairly typical for a Publisher to act as a Distributor of its own Events.

The Core itself is an example of an Event Publisher. It sends Events to a trusted
Client called the Core Distributor to signal state changes such as a change in a
Resource’s attributes. The Core Distributor may then distribute these Events to
interested Clients that have appropriate authority.

Interaction Sequence I

To interact with a Distributor, Publishers and Subscribers need to obtain a name
binding for the Distributor’s Resource. Hence, the first step in a typical interaction
sequence is for a Distributor to register a Resource in the Repository. The attributes
of this Resource indicate that it supports the Distributor interface. An Event
Publisher can then obtain a reference to this Resource by an attribute-based lookup
and declare its intent to send Events by sending a publish request to the Distributor.

Independently, a Subscriber also finds the Distributor Resource using attribute-
based lookup and subscribes to a set of Events by sending a subscription request.
The subscription specifies a Resource, called a CallBack Resource, for which a
Listener is the Resource Handler.

Upon receiving an Event from the Publisher, the Distributor looks up its list of
active subscriptions. If the incoming Event matches the filter in the subscription,
the Distributor forwards the Event to the designated Listener.
138 Version Beta 2.0, September 1999

Events Interaction Sequence
Figure 13 illustrates a typical Event notification process where the Subscriber and
the Listener have been folded into a single Client.

The numbers in the figure represent the steps in the process:

1 The Distributor registers with the Core.

2 The Publisher discovers the Distributor.

3 The Publisher sends a publish request to the Distributor describing the Events
it will be generating.

4 The Subscriber discovers the Distributor.

5 The Subscriber sends a subscribe request to a Distributor describing the
Events it is interested in.

6 The Publisher sends the Event to the Distributor using a notify message.

7 The Distributor forwards the Event to the Subscriber (also using a notify re-
quest).

Figure 13 Distributor Event Notification Process

Publisher

Distributor

Subscriber

1

2

3

4

5

6
7

Core

Distributor
Resource
Version Beta 2.0, September 1999 139

Interaction Sequence Events
Note that the Subscriber and the Publisher are not the target for any calls. Thus,
only interfaces for Distributors and Listeners are needed. The Listener interface
includes only the methods required to receive an Event. This interface is listed
below:

interface ListenerIntf

{

public String notify (Event event);

public void notifyAsync (Event event);

}

Distributors are just specialized Listeners; they extend ListenerIntf and add
methods that allow publish/unpublish and subscribe/unsubscribe:

interface DistributorIntf extends ListenerIntf

{

public Id publish (PubProfile publication);

public Id unpublish (Id pubId);

public Id subscribe (SubProfile subscription);

public Id unsubscribe (Id subId);

}

Of course, Event-system builders can extend these interfaces and define other inter-
actions between Distributors and Publishers/Subscribers.
140 Version Beta 2.0, September 1999

Events Distributor Vocabulary
Distributor Vocabulary I

A vocabulary is defined in which Distributors can be registered.

The Service Name, Service Type, and Event Types are strings that are assumed to
have meaning to Publishers and Subscribers who have discovered the Distributor.
For example, the Core Distributor could be described with a Service Name of
"Core", a Service Type of "Core", and Event Types of "Repository" and "Metadata".

Table 16 Distributor vocabulary

Attribute Name Value Type Comment Meaning

ServiceName String Name assigned to
Distributor

ServiceType String Type of distributor

EventTypes String Multivalued Event types handled

Persistent Boolean always
false

True if Distributor state
survives Core restart

Buffered Boolean always
false

True if Distributor is able to
accept events faster than it
can forward them

Secured Boolean always
false

True if event state is
tamper proof

QOSLevel Integer always 0 Quality of service level
assigned by Distributor

Multiplexed String Multivalued Type of aggregation and
summarization
Version Beta 2.0, September 1999 141

Data Model Events
The Persistent, Buffered, Secure, and QOSLevel attributes must be set as shown
because the current Distributor implementation does not support these features.
The Multiplexed attribute can be set by Distributors to describe how they combine
events. For example, a Distributor may aggregate billing events from a particular
customer and publish an aggregate event to the subscribers. The values assigned
are assumed to have meaning to the Publishers and Subscribers of the events.

Data Model I

This section describes the data associated with each interface and the interfaces
used to access Events.

Event I

An e-speak Event is a set of named attributes, where each attribute is a name-value
pair. An Event also contains a reference to an e-speak Vocabulary. The Vocabulary
enumerates the names of allowed attributes and their types. Specifying a Vocabu-
lary in an Event makes the Event content self-describing. A recipient of a self-
describing Event does not need to know anything about the Event’s content a

priori; it can query the Vocabulary to determine the Event’s attributes and their
types and then extract the values of the attributes it is interested in. Event genera-
tors may choose to leave the vocabulary field null , in which case Event
attributes must be agreed upon a priori, the default meaning being the e-speak Base
Vocabulary.

An Event is defined as follows:

interface Event

{

EventAttributeSet getEventAttributeSet();

void setAttributeSet();

String getEventType();

void setEventType();

}

142 Version Beta 2.0, September 1999

Events Data Model
where EventAttributeSet contains a reference to a Vocabulary and a hash
table of attributes, each of which is a name-value pair keyed by attribute name:

class EventAttributeSet

{

ESName vocabulary;

ESMap attributes;

void setVocabulary(ESName vocabulary);

void setAttributes(ESMap attributes);

ESName getVocabulary();

ESMap getAttributes();

}

The eventType string is a special attribute that is so commonly used that it has its
own accessors. Event Publishers typically use this field to identify the category that
the Event belongs to. The Event Attribute Set Vocabulary can also be used to denote
the Event type.

Subscription I

A subscription consists of a subscribe request with the signature:

Id subscribe(SubProfile subscription)

SubProfile contains a CallBack field that specifies the target destination for
Events that match the subscription. It also describes the Events of interest through
EventAttributeSet . As described above, EventAttributeSet contains a
reference to a Vocabulary and a set of name-value pairs. In this case, the values
denote matchers for each attribute. A Distributor has complete control over the
kinds of matchers it is willing to accept. Matchers execute in a Distributor’s address
space; hence, Distributors may restrict the kinds of matchers they accept for both
security and performance. A filter is a tuple of the form (attributeName, matcher).
Depending on the application, the matcher may be as simple as an integer selected
from a list of predefined matchers that the Distributor supports or as complex as
byte code that the Distributor loads and executes. The Distributor will only send an
event to the listener if it satisfies the conditions of the filter.
Version Beta 2.0, September 1999 143

Data Model Events
class SubProfile

{

CallBack listener;

EventAttributeSet filter;

}

CallBack in SubProfile encapsulates a name binding for the Callback Resource
to which all Events that match the filter should be sent.

class CallBack

{

ESName listener;

}

The Listener Resource in CallBack must be a simple binding. If the binding is not
simple, the Distributor will return a Naming Exception. If the filter is not expressed
in a legitimate Vocabulary, or if the specified matchers are not supported by the
Distributor, an Invalid Parameter Exception is returned.

If the subscription is acceptable to the Distributor, it returns an Id that the
Subscriber can use to unsubscribe. An Id contains an integer that identifies the
subscription:

class Id

{

int subId;

}

The Subscriber can end the subscription by sending an unsubscribe request to the
Distributor.

Id unsubscribe(Id id);

The Distributor will return a Permission Denied Exception if the subscription is not
active. Otherwise, the Id is echoed back. The Distributor may terminate the
subscription if the Listener’s Callback Resource is unregistered.
144 Version Beta 2.0, September 1999

Events Core-Generated Events
Publication I

A publication request consists of a publication profile, PubProfile . PubProfile
is similar to SubProfile and describes the attributes of the Events that the
Publisher intends to send. All other interactions mimic the interactions between a
Subscriber and a Distributor.

Core-Generated Events I

The Core is a Publisher of Events. All Events published by the Core go to a single
service called the Core Distributor Service. This service is the Resource Handler
for several Distributor Resources, each dealing with a Core-generated Event of a
different type. These are:

■ Changes to the state of the Repository

■ Changes to the state of Core-managed Resources

These types are used to maintain the coherence of metadata and the Resource state
shared by value. Both are described in the Base Event Vocabulary.
Version Beta 2.0, September 1999 145

Core-Generated Events Events
The Core Distributor is very much like the Remote Resource Handler—it is imple-
mented as a Client, but it needs to be part of the trusted computing base because it
gets information about every (monitored) Resource’s state change and could gather
sensitive information. Figure 14 illustrates the configuration.

The Event state depends on the type of Event, but some data is the same for each
type. The common fields are shown in Table 17.

Figure 14 Core Distributor configuration

Core

mutate
request core-generated event

resource

 core-distributorClient
Subscriber

Table 17 Event state common to all Events

Type—Event Type “core.mutate.<metadata>.<op>”
“core.mutate.<resource>.<op>”

Time—Distributor’s time stamp “YYYY-MM-DD
HH:MM:SS.FFFFFFFFF”

SendId—Sender’s message Id String

Resources ESName[]
146 Version Beta 2.0, September 1999

Events Networks of Distributors
Because e-speak messaging guarantees in-order delivery of messages between a
specific sender and receiver, the Distributor’s time stamp allows higher-level
services to build a “happened before” relationship among Events from different
Publishers. The message Ids are useful for debugging and intrusion detection.

Because some Core Events may be used for billing and intrusion detection, the Core
will reduce the rate at which it processes requests if it can’t publish these Events at
a sufficient rate. Because most requests that pass through the Core result in one or
more Events being processed, care is needed so that publishing them does not inor-
dinately reduce the throughput of the system. The cost of publishing each Event is
amortized by having the Core wait until a significant number of Events has occurred
and publishing them all at once.

The load on the Publisher and Distributor is reduced further by having the Distrib-
utor provide a filter to the Publisher. The Core Distributor’s filter specifies the
Resources for which the Core must publish Events. Metadata and Resource Events
might be used only for maintaining the consistency of exported Resources. The
Core need not generate Events for messages involving Resources not meeting these
criteria. In addition, the Distributor tells the Publisher which fields will be
forwarded to Subscribers. The Publisher need not include fields that won’t be
forwarded, reducing the burden even for Events that have Subscribers. The
Publisher may publish events that do not satisfy the Distributor’s filter.

Networks of Distributors I

A Distributor can summarize data from Events and publish Events to other Distrib-
utors. Cycles are possible in such a situation unless care is taken. The Core Distrib-
utor never takes Events from any place but the Core, so there can be no cycles
involving the Core Distributor.

A Distributor can receive Events from another Distributor simply by issuing a
subscription request. It can then accumulate Events, abstract their data, and
publish new Events or merely forward the Events it receives. The same kind of
control flow that is used between Publishers and Distributors can be used between
Distributors to avoid sending Events that have no subscription.
Version Beta 2.0, September 1999 147

Events in a Distributed Environment Events
Events in a Distributed Environment I

Events are messages that trigger special actions by the recipients. In particular,
when a Client receives an Event, the callback registered for this Event is invoked.
It would be inappropriate for the Remote Resource Handler to invoke the callback.
In fact, the Remote Resource Handler has no idea what to do with the Event. As
currently implemented, no special action is needed. The result will be delivery of
the Event to the Client with no special action on the part of the Remote Resource
Handler.

The state of Resources exported by value and the metadata of all exported
Resources is not synchronized by default. Clients wishing to synchronize exported
or imported Resources register for the Core-generated metadata and Resource
Events. They also subscribe to the Resource Event if the Core-managed Resource
is being exported by value.

Care is needed to avoid cycles. Consider an exported Resource that has its meta-
data changed on the importing side. Assume that a Client on each Logical Machine
has subscribed to metadata Events for this Resource with Core Distributors from
both Logical Machines. When one Client makes a change, they both get the Event.

Even if the Client making the change doesn’t respond to the change Event, the other
Client must make the change on its Logical Machine. This change will generate an
Event that will reach the first Client. Not having any knowledge of the source of the
Event, the Client will make the change again. These two Clients would continue
repeating the same change forever except for the fact that the Core generates a
Resource or metadata Event only if the state is actually changed. Hence, the second
change on each side does not generate an Event, and the cycle is broken.

Other cycles can occur. Two Clients that make changes to the metadata while the
Events are propagating can generate a cycle that is not broken so simply. The prob-
lem is that they are both changing the same item without synchronizing. Such condi-
tions are almost certainly programming errors. No action taken by any e-speak
component can be guaranteed to break such cycles. Only the Clients have sufficient
information to detect the problem.
148 Version Beta 2.0, September 1999

Chapter 10 Management
(Informational)
Architecture J

The management of an e-speak-based system consists of three levels.

E-speak Elements Management Level J

Complete management of an e-speak-based system requires management of the
basic e-speak infrastructure itself. The e-speak element model describes the set of
models and elements. The elements have a set of management interfaces that
provide basic management access to the e-speak element such as Resources, Cores,
Repositories, and so on. This aspect of e-speak system management is referred to
as e-speak element management-level management.

E-speak Infrastructure J

Agents, the basic management components in the management architecture, refer
to software entities that collectively provide the management functionality for
e-speak. The management system itself is implemented as collection of e-speak
services that are e-speak Clients. This design choice enables the management of
agents in the same way any other e-speak Client is managed.

Although the goal of system management can be conceptually classified into five
categories (Fault, Configuration, Account, Performance, and Security), the actual
implementation of the functionality often demands similar mechanisms, such as
data acquisition and distribution, policy maintenance and consultation, data
processing, and decision making. This implies that it is a good design choice to build
a general management infrastructure that provides these mechanisms separately
Version Beta 2.0, September 1999 149

Core Management Management (Informational)
from the specific management goal. The individual management functionality can
then be built on top of this management infrastructure with much less effort. This
level is referred to as the e-speak management infrastructure level.

E-speak provides a design for some simple, automated, rule-based decision mecha-
nisms. Also bear in mind that e-speak management agents will be implemented as
e-speak Clients. Thus, some high-level abstractions for inter-Client communication
above the current messaging level will be extremely helpful in creating a manage-
ment environment for e-speak.

E-speak System Model Level J

The e-speak infrastructure does not mandate a specific system model. However, to
provide FCAPS management, in particular account, security, and configuration
management, a system model beyond the current e-speak architecture is required.
Therefore, the first step is to create an e-speak system model (ESys) and illustrate
how the management infrastructure can be used to achieve FCAPS management
over ESys. Developers are welcome to adopt and extend the ESys system model;
however, ESys is not the only system model that can or should be built on top of
e-speak. ESys merely illustrates how to create a complete and manageable system
on top of e-speak that leverages the e-speak power.

A system model should define such things as the user model, the Client model, the
security model, and a management model.

Core Management J

E-speak Cores can be managed at two levels: at the level of Keys, Name Frames, and
so on, and at the level of polices and models. Both of these levels may be exported
to the management applications directly or through the Protocol Providers. Which-
ever level of management is exported into the management middleware, system
administrators must be able to control the access to the agents who have been given
Keys for that purpose.
150 Version Beta 2.0, September 1999

Management (Informational) Core Management
The alternative to providing a low-level interface is to provide a high-level interface
that gives a more abstract view of the Core and has the models and policies that the
Core uses built in. Core Controllers using different models for managing the Core
provide customized interfaces for those models.

When a Core is created, some base Resources need to be created and their metadata
must be initialized to correct values. For example, the Base Vocabulary must have
its metadata Permissions set to control who can make changes to it. Services must
connect to the Core, and the management station must validate that these services
are in fact authentic.

The management interface to the Core includes functions to create, delete, and
modify local Core Resources and their metadata. The access to the low-level
management interface must be carefully controlled by the use of Keys and Protec-
tion Domains.
Version Beta 2.0, September 1999 151

System Structure Management (Informational)
System Structure J

The management middleware is made up of a set of communicating agents. The
agents run on the e-speak platform and use its messaging when communicating.
Agents come in four basic classes, as shown in Table 18.

The management middleware layer provides the architecture with:

■ Support for many different types of management protocols, whatever is most
suitable to the system manager

■ Support for management systems that perform the majority of the system
management tasks

■ Support for management systems that perform only basic display functionality,
and leave the rest to the middleware agents

■ Support for systems managed by one type of management system at the local
level and another at the domain level

Table 18 Management agents

Class of Agent Agent Function

Core Controllers Receives commands from other agents and
translate them into actions on the Core

General Agents Provides fault, account, configuration,
performance, and security management

Protocol Adapters Mediates between other agents and a
management system using a management
protocol

Event Distributors Passes Events from Publishers to Subscribers
152 Version Beta 2.0, September 1999

Management (Informational) System Structure
■ A guaranteed level of security concerning management information and access
to control functions

■ A means to split up the function of management into well-formed objects with
clean interfaces

Agents communicate to provide the management functionality. Every agent uses a
common Interface Definition Language (IDL) to define the interfaces that it exports
and also implements a common agent management interface to enable management
of the management system itself. Agents are implemented as e-speak services and
as such will be registered in the Repository and communicate with each other using
e-speak messaging.

Core Controllers J

Core Controllers are the lowest level of the management middleware and operate
locally on the Core. Core Controllers can be low level or high level or both. If they
are low-level controllers, they do some basic initialization before contacting the
designated management agent that will configure the Core. If they are high-level
controllers, they are able to do all or most of the configuration unaided. Core
Controllers have no particular status within the Core except that they may have
unusually high privileges.

Event Distributors J

Each Core has a Core Event Distributor that handles Events generated by the local
Core. These local Event Distributors form the lowest level of the Event distribution
graph that exists in the management middleware. The Event Distributors use
polices (supplied by a high-level agent) to determine which (if any) of the Events
are propagated to other distributors.

Protocol Providers J

E-speak management agents, when implemented as e-speak Clients, will communi-
cate with each other using the IDL syntax. To interface with existing management
systems that use different Protocol Provider agents, Protocol Provider agents will
Version Beta 2.0, September 1999 153

Security Models Management (Informational)
translate IDL method calls from and into the corresponding management protocols.
A Management Information Base (MIB) for the management agent or element being
managed must be defined for each protocol that needs to be supported. Protocol
Provider agents also must translate the security semantics between e-speak and the
security supported by the protocol (if any exists).

Security Models J

Rather than the management system creating Keys and Protections Domains and
setting metadata fields directly, the Core Controller provides an interface that has
high-level methods for creating new users or services. Because the Core Controller
now understands the security model, it can enforce the model over all Resources
that are registered with the Core.

Rather than storing the policies that decide how metadata is set in the management
system and setting the metadata remotely, the management system loads the
correct Core Controller onto the system and tweaks the polices through a high-level
interface. The Core Controller can now operate locally according to central
management policy.

A small number of high-level models cover the majority of use modes for the
e-speak Logical Machine. The high-level interfaces to the Core either could be
implemented locally in the Core Controller or could be implemented as manage-
ment agents that use the low-level interface provided by the Core Controller.
154 Version Beta 2.0, September 1999

Chapter 11 Distributed Management
(Informational)
This chapter describes e-speak management for a collection of Logical Machines,
including the system models and distributed agent infrastructure.

Management Middleware K

The management middleware layer illustrated in Figure 15 uses the Core Controller
and Event Distributor on each Logical Machine to feed information to various
distributed agents that collect, summarize, and forward information to other agents.
Eventually, the data reaches a Protocol Provider that does the translation to the
form needed by the management system.
Version Beta 2.0, September 1999 155

Management Middleware Distributed Management (Informational)
The management middleware layer provides the architecture with a number of
benefits. In particular, it can support:

■ Many different types of management protocol, whatever is most suitable to the
system manager

■ Management systems that perform the majority of the system management tasks

■ Management systems that perform only basic display functionality and leave the
rest to various middleware agents

■ Systems that are managed by one type of management system at the local level
and another at the domain level

Figure 15 Connecting local management into a system

L o c a l
A g e n ts

C o re
C o ntro lle r

D is t r ib u te d
A g e n ts

E v e n t
D is tr ib u to r

C o re
C o ntro lle r

E v e n t
D is tr ib u to r

C o re
C o ntro lle r

E v e n t
D is tr ib u to r

A g en t

E v e n t
D is tr ib u to r

E v e n t
D is tr ib u to r

E v e n t
D is tr ib u to r

P ro to c ol P ro v id er P ro to c ol P ro v id er P ro to c ol P ro v id er

M an ag e m e n t S y s te m M an ag e m e n t S y s te m

S N M P S N M P C M IP

A g en t

A g en t
A g en t

A g en t

C o re 1 C ore 1C ore 1
156 Version Beta 2.0, September 1999

Distributed Management (Informational) Architectural Model
This layer provides a guaranteed level of security for management information and
access to control functions. It also splits up the function of management into well-
formed objects with clean interfaces.

Architectural Model K

Managing a collection of Logical Machines is based on the same agent structure
used to manage a single machine. In a distributed environment, the e-speak manage-
ment architecture has three dimensions:

1 Structural model

2 Domain model

3 Service model

Each dimension deals with a different aspect of management.

Structural Model K

Management applications need not directly implement e-speak messaging but can
use existing management protocols, such as CMIP or SNMP, to talk to the e-speak
management middleware, as shown in Figure 16.
Version Beta 2.0, September 1999 157

Architectural Model Distributed Management (Informational)
The management middleware converts from the standard protocols to e-speak
messaging, providing a higher-level model than just basic Core internals.

Domain Model K

E-speak can be used in a variety of circumstances, from the home to a corporate
office. Each Core can be seen to belong to a domain of control (Figure 17), which
has the responsibility of managing that Core.

Figure 16 Structural model of management system

SNMP CMIP RMICORBA CIM

 E-speak Management middleware

Core Core Core Core Core

OpenViewNNM OpenViewWNM Tivoli NetView
Application-based
security

Protocol-based
messaging and security

E-speak-based
messaging and security

Figure 17 E-speak domain model
158 Version Beta 2.0, September 1999

Distributed Management (Informational) Architectural Model
Domains of control can be hierarchically structured; for example, a workstation in
a department may have its own local management application with responsibility
over just that machine, while also being part of the department domain and being
managed by a department management station. E-speak access control is used to
grant management rights to the Clients exercising this control.

Service Model K

Services inherently cross organizational boundaries, and therefore domains of
control. A service may be exported by one company, resold by another, and finally
used inside an enterprise’s firewall.

To manage such a service requires a management system that can pass information
between domains of control and therefore different management systems
(Figure 18). If the user of the service encounters difficulties, then resolving the
problem requires the coordination of several management systems. E-speak
management uses ESIP, the e-speak Service Interchange Protocol, to pass control
information around the system. The management middleware collects information
from a variety of sources and presents it to the management system.

Figure 18 E-speak service model

Service A Service A Firewall
Client
Version Beta 2.0, September 1999 159

Architectural Model Distributed Management (Informational)
160 Version Beta 2.0, September 1999

Chapter 12 Repository
(Informational)
The Repository is not part of the e-speak architecture because Clients have no
direct interaction with it. However, understanding the operation of the Repository
helps in understanding other parts of the architecture. Also, the behavior of the
system depends on how the Repository is configured. This chapter describes the
reference implementation, the Core-Repository interfaces for including Reposito-
ries of different internal structures, and various scalability issues.

Repository Overview L

The Repository holds the data needed by the Core. This data includes the Resource
metadata as well as the internal state of Core-managed Resources. The Repository
is also read by the Lookup Service when a Client requests a lookup. These two oper-
ations have different design points. Access to metadata and Core-managed
Resources is done frequently and needs to be low latency. Lookup requests are akin
to database queries; they are less latency sensitive but must be completed relatively
quickly.

Repository Structure L

To support the conflicting goals of flexible query lookup on a large persistent set
and rapid access to a smaller, transient subset, the reference implementation of the
Repository described here is divided into two components: the Repository Data-

base and the Repository Access Table.
Version Beta 2.0, September 1999 161

Information Flow Repository (Informational)
The Repository Database provides persistent storage and efficient lookup request
processing. This component is left parameterized in the Core-Repository interface.
All that is needed is an appropriate database interface. This design allows different
implementations of the Repository to select the most appropriate database based
on relevant business and technical considerations.

A very broad range of persistent repository implementation is allowed. This Repos-
itory Database interface gives another architectural degree of freedom. For
instance, in the case of a battery-backed RAM device or in situations where persis-
tence is simply not a requirement, a pure RAM-based Repository Database imple-
mentation is feasible. Thus, the Repository Database need not have a large
footprint.

The second component, the Repository Access Table, is fully resident in memory in
the reference implementation. This access table is rebuilt from data in the Reposi-
tory Database as part of a system restart. The access table supports a fast associa-
tive lookup of information based on Repository Handles. It may be a cache of the
Repository data, or it might be large enough to hold all the data needed for Resource
access.

Information Flow L

Every e-speak installation comes with an in-memory Repository that does not
support persistence. To add the feature of scalability, a glue layer must be provided
to convert Core requests to the Repository into meaningful requests to the selected
implementation. This glue layer must implement the information flow methods
described in this section. In addition, the glue layer can also include interfaces
specific to the selected Repository implementation, such as setting controls.

The Repository Database has two interfaces used by the Core. The Core-Repository
interfaces have methods to:

■ Register and unregister Resources

■ Access the metadata corresponding to a given Repository Handle
162 Version Beta 2.0, September 1999

Repository (Informational) Information Flow
■ Modify the metadata corresponding to a given Repository Handle

■ Look up Resources that match a Search Recipe

The Client can access these methods only indirectly by invoking methods in the
Contract, Name Frame, and MetaResource:

public RepositoryHandle registerDescription(

String name,

ResourceDescription d,

ResourceSpecification s)

throws InvalidSpecificationException;

public void unregisterDescription(

RepositoryHandle handle)

throws StaleHandleException;

public ResourceDescription accessDescription (

RepositoryHandle handle)

throws StaleHandleException;

public ResourceSpecification accessSpec (

RepositoryHandle handle)

throws StaleHandleException;

public RepositoryHandle mutateDescription (

RepositoryHandle handle,

ResourceDescription d,

ResourceSpecification s)

throws StaleHandleException;
Version Beta 2.0, September 1999 163

Increasing Scalability Repository (Informational)
The second interface is presented to the Core by the Repository to invoke the
Lookup Service for a Repository lookup request. This interface is invoked when the
Client does a lookup in a Name Frame:

public RepositoryHandle[] find (SearchRecipe recipe)

throws InvalidSearchRequestException;

The Repository may access permanent storage, but the protocol used for such
access is not part of the e-speak architecture.

Increasing Scalability L

Because a Resource can be used only if it has been registered in the local Reposi-
tory, it is important to consider the eventuality of a full Repository. Two kinds of
e-speak Repositories are based on deployment needs: a thin Repository and a fat

Repository.

A thin Repository does not have enough disk space to grow with the number of
Repository entries. Its purpose is to support Repository Handle-based access, with
latency on the order of microseconds. This support is provided on a smaller, tran-
sient, subset of Repository entries, which corresponds to “in-use” Resources. A thin
Repository is very sensitive to stale data; it must enforce strong policies to:

■ Dispose of stale entries, and

■ Prevent marginally accessed entries from accumulating.

A thin Repository may have no persistent storage of its own. Thus, because the
number of Repository entries that can be stored in a thin Repository is small, an
in-memory Repository implementation is appropriate.

A fat Repository has a lot of disk space and may act as a server to a thin Repository.
Clearly, such a Repository may be highly available. The primary purpose of such a
Repository is to support Resource lookup requests with “reasonable” latency (on
the order of milliseconds). A fat Repository is not very sensitive to stale data.
Because the number of Repository entries that can be stored in a fat Repository is
very large, Repository implementation based on a database is appropriate.
164 Version Beta 2.0, September 1999

Repository (Informational) Increasing Scalability
A thin Repository may use a fat Repository to fulfill its scalability needs, and a fat
Repository may simultaneously serve many thin Repositories. However, many
devices may not need such support because their transient state can hold all the
information necessary.

The communication between a fat Repository that provides services to a thin
Repository is not part of the e-speak architecture. However, because the security of
the system depends on the integrity of this communication, the link must be
protected. It is the security of the communication link that makes the Repository
part of the Core, irrespective of the physical machine that holds the Repository.
Version Beta 2.0, September 1999 165

Increasing Scalability Repository (Informational)
166 Version Beta 2.0, September 1999

Chapter 13 Intramachine Security
(Informational)
This chapter describes the security mechanisms for intramachine communication.
The e-speak security mechanisms are currently under review; it is expected that
they will be replaced by a cryptographic security architecture.

Overview of Intramachine Security M

E-speak security is provided by the Core-managed Resources and the metadata
associated with each Resource. In particular, the security mechanisms are built
using:

■ Keys—The capabilities that provide for both coarse and fine-grain access
control

■ Key Rings—The containers for Keys

■ Protection Domains—Encapsulate the Client’s view of the system

Assumptions M

The e-speak Core normally runs as a user application on top of a native operating
system. The Core and several of its Clients use configuration data normally stored
in files. The Repository is usually a database with its state kept on disks controlled
by the operating system. In fact, the executable images of the Core and Clients most
likely reside on these same disks.
Version Beta 2.0, September 1999 167

Keys, Permissions, and Locks Intramachine Security (Informational)
The ultimate security of the system is no stronger than the security provided by the
underlying operating system. If an unauthorized user can modify any of these files,
the security is compromised. The operating system files must be protected by the
most robust means available. This protection may include:

■ Setting operating system Permissions to limit access

■ Securely storing hash codes to prevent tampering

■ Encrypting the files to prevent leaking information

It is assumed that there is separation of address spaces used by the Core and each
of its Clients. These Clients include external Resource Handlers (for non-Core-
managed Resources). No Client may directly access any of the Core’s address
spaces, and two different Clients will generally not be able to access each other,
unless they have mutually agreed to do so (such as by using shared memory).
Hence, the only means of interaction between a Client and a Core is through the
Application Programming Interface (API) exposed by the Core-managed Resources
or the abstraction of these APIs presented by the e-speak programming libraries.

E-speak provides no protection against attacks mounted against the native operat-
ing system. Buffer overflow attacks against the TCP stack (or any other underlying
protocol stack), guessing administrator passwords, social engineering, and the like
are all beyond the control of the e-speak security infrastructure.

Keys, Permissions, and Locks M

E-speak Keys, as distinct from encryption keys, are capabilities: They confer the
privilege to perform some action on a Resource or set of Resources. Keys are Core-
managed Resources whose internal structure is not visible to Clients.

Locks are objects used internally by the Core to protect Resources. Each Key
matches only one Lock, but many Keys may match a given Lock. A Key that matches
a Lock is said to unlock or open that Lock. A Key may be cloned to produce a new
Key opening the same Lock. A cloned Key can be removed from the system, revok-
ing the privileges of every Client who has that Key, without affecting others who
have a different clone.
168 Version Beta 2.0, September 1999

Intramachine Security (Informational) Keys, Permissions, and Locks
Permissions are strings stored in the Repository. Permissions are protected by
Locks. E-speak defines two kinds of Permissions: metadata Permissions and
Resource Permissions. Metadata Permissions control access to metadata associ-
ated with a Resource. Resource Permissions control access to operations on the
Resource. Resource Permissions are interpreted by the Resource Handler, which is
the Core for Core-managed Resources. Metadata Permissions are always inter-
preted by the Core. Permissions provide fine-grain access control.

Whenever a Client sends a message to a Resource, zero or more Keys are attached
to that message. The Core searches the Repository entry for the Resource to deter-
mine which Locks the Keys open. Any Permission strings protected by an opened
Lock are sent to the Resource Handler. The Resource Handler is free to interpret
these strings any way it chooses to provide access control for Resource operations.

The Resource Handler is relied on to interpret the Permission correctly and enforce
the fine-grain access control. By controlling what Keys a Client can present, e-speak
can control what actions that Client can perform on a Resource. By controlling the
Keys associated with the metadata, e-speak can control what actions a Client can
take on the Repository entry.

Resource metadata is managed by the Core, so e-speak provides a MetaResource
that acts as the Resource Handler for metadata. Clients send a message to the
MetaResource naming the Resource whose metadata is to be accessed. For exam-
ple:

ResourceDescription desc = metaResource.getDescription(file);

When a message is sent to the MetaResource, the metadata Permissions of the refer-
enced Resource are unlocked by the requester’s Keys. If the correct Permission is
unlocked, the MetaResource will perform the requested operation.
Version Beta 2.0, September 1999 169

Key Rings and the Mandatory Key Ring Intramachine Security (Informational)
Key Rings and the Mandatory Key Ring M

Key Rings are containers for Keys. Clients can choose which Key Rings will be sent
with a message. However, a special Key Ring, called the Mandatory Key Ring, is
specified in the Client's Protection Domain and is always attached by the Core to
each message sent by the Client. All other Key Rings are named by the Client as any
other Resource would be. Note that, in general, the Client has a name bound to its
Mandatory Key Ring, which means it can add and remove Keys from its Mandatory
Key Ring.

Because Keys and Key Rings are Resources, Clients can pass names for them to
other Clients just as they can for any other Resource. This provides the mechanism
for distributing Keys and Key Rings.

Visibility Tests M

The metadata for each Resource has both an Allow and a Deny field. Each field
contains a list (which may be empty) of Locks. Often, the Allow and Deny fields
together are referred to as the Visibility fields.

Each time the Core receives a message for a Resource, it performs tests on the
Allow and Deny fields of every Repository Handle it encounters in processing the
request. These tests are referred to as visibility tests.

First the Core tests if any Key sent with the message matches a Lock in the Deny
field. If a match is found, the Core acts as if the Repository Handle does not exist.

Second, the Core tests if any Key sent with the message matches a Lock in the Allow
field. If none of the Keys matches, the Core acts as if the Repository Handle does
not exist. This test is bypassed if the Allow field is empty.

The Visibility fields enable implementation of access control enforced by the Core.
Permissions enable implementation of access control enforced by Resource
Handlers.
170 Version Beta 2.0, September 1999

Intramachine Security (Informational) Protection Domains
Protection Domains M

A Protection Domain contains the Client's Mandatory Key Ring, its default Name
Frame, and other information the Core needs in managing the Client. A Client is
only able to access Resources reachable from the default Name Frame. Note that
this is not the same as the set of Resources currently in that Name Frame because
it can contain name bindings associated with other Name Frames, and a Client can
use a lookup to discover and add more Resources to a Name Frame.

From a security viewpoint, the crucial function of the Protection Domain is that it
contains the Client's Mandatory Key Ring, which is attached to all outgoing
messages. This Key Ring contains Keys that match the Visibility fields of the target
Resource or unlock certain Permissions. Thus, even if the Client is able to reach the
Resource from its Name Frame, the Visibility fields will determine whether it can
actually send a message to the Resource. In addition, other Keys sent will cause
Permissions to be sent to the Resource Handler, which determines precisely what
actions the Client can take on the Resource.
Version Beta 2.0, September 1999 171

Example of an Intramachine Message Intramachine Security (Informational)
Example of an Intramachine Message M

An example of the how the security mechanisms are used when a Client sends a
message to a Resource on the same Core is provided in Figure 19.

The processing occurs as follows:

1 A Client sends a message to its Core, naming the target Resource and attaching
(i.e., naming) any optional Key Rings.

2 The Core attaches the Mandatory Key Ring. Then the Core retrieves the metada-
ta for the Resource from the Repository. The visibility checks are made using the
Allow and Deny fields. If these checks do not cause the message to be rejected,
the Core attempts to match all the Keys on each of the Key Rings to any Locks
for the Resource Permissions.

Figure 19 Sending a message to a Resource on the same machine

Repository
 Meta Data (XML)

Protection
Domain

 Client Handler for
Resource

Resource

1

2

3

4

E-speak
Core
172 Version Beta 2.0, September 1999

Intramachine Security (Informational) Key Management
3 The Core sends the message to the Resource Handler, together with any Permis-
sions that have been unlocked. The Resource Handler interprets the Permis-
sions to see if the requested action is allowed.

4 The Resource Handler sends the appropriate message to the Resource (if the Re-
source is an active entity, such as a process) or executes the appropriate action
(in the case of a passive Resource such as a file).

Key Management M

Key management is crucial for e-speak. This requires that the Client not be able to
discover the Key names by using attribute-based lookup. The best way to do this is
to make sure that Keys do not have any attributes that could be used to discover
them. Another is to use an essential attribute that acts as a password.

A Client can add and remove Keys from Key Rings, but only if it has a name bound
to the Key available through its Protection Domain and if it presents a Key that
opens the appropriate metadata Lock for permission to modify the Key Ring.

A Key is a Core-managed Resource, and it can be removed from the system just like
any other Resource. If this happens, any Client in possession of a name for the Key
(or with the Key attached to one of its Key Rings) will lose the privileges conferred
by that Key. This mechanism is a convenient way of managing privileges. Many Keys
that all match the same Lock can be cloned; removing a Key affects only those
Clients that have that Key—it does not affect other Clients with a Key cloned for the
same Lock.

Abstract Security Models M

This chapter describes the basic mechanisms for security in e-speak. The Key
management tools under development will manage and use these mechanisms to
deliver a more abstract, though familiar, model to system administrators and users.
Version Beta 2.0, September 1999 173

Abstract Security Models Intramachine Security (Informational)
174 Version Beta 2.0, September 1999

Chapter 14 Intermachine Security
(Informational)
This chapter describes how security is provided for intermachine communication
when the Client and the Resource are on different Logical Machines. The e-speak
security mechanisms are currently under review.

Overview of Intermachine Security N

Once two machines have been connected, the only entities aware of distribution are
the Remote Resource Handlers. As far as the Client, Resource Handler, and Core
are concerned, all communication appears to be taking place with an entity on the
same Logical Machine, as shown in Figure 20.
Version Beta 2.0, September 1999 175

Overview of Intermachine Security Intermachine Security (Informational)
In Figure 20, both the Client on Logical Machine A and the Remote Resource
Handler on Logical Machine B are Clients of their respective Cores. Each will have
a Mandatory Key Ring (contained in its Protection Domain) that will be attached by
the Core to any message sent. Each will hold other Key Rings, which optionally they
may choose to attach to messages they send.

The Protection Domain of the Remote Resource Handler on Logical Machine B
fixes the set of Resources visible to any Client on Logical Machine A. Its Mandatory
Key Ring will have visibility Keys (Keys that match Locks in Allow and Deny fields
of target Resource metadata). Logical Machine B’s Core will allow its Remote
Resource Handler to send messages to a Resource only if it has a Key that matches
an Allow Lock and no Keys that match a Deny Lock. In addition, the Remote
Resource Handler is unable to send a message to any Resource that is not reachable
through the default Name Frame contained in its Protection Domain; it can send
messages only to Resources for which it has a name.

Figure 20 Communication between two Logical Machines

Repository
Meta Data (XML)

Protection
Domain

Remote
Resource
Handler

Logical Machine A

 Client

Repository
Meta Data (XML)

Resource Handler

Protection
Domain

Remote
Resource
Handler

Logical Machine B
Resource

1

2

3
4

5

6

7

8

E-speak
Core

E-speak
Core
176 Version Beta 2.0, September 1999

Intermachine Security (Informational) Controlling What Can Be Exported
Controlling What Can Be Exported N

The Protection Domain for the Remote Resource Handler controls what Resources
can be accessed on behalf of remote Clients. The problem is controlling what can
be added to the Protection Domain. For example, a remote Client might do a lookup
request that results in a binding for a Resource that should be available only to local
Clients. Also, the Remote Resource Handler may receive a message from a local
Client that transfers names for such Resources.

The solution in e-speak is to use the Visibility fields. Each Resource that is to be
made available to local Clients has a Lock in its Allow field that is denoted local. The
Mandatory Key Ring in the Protection Domain set up for all other Logical Machines
will not have the corresponding Key, but all other Clients will. Hence, the Remote
Resource Handlers cannot see such nonexportable Resources. A Resource that
should be exportable to any Logical Machine will have an exportable Lock in its
Allow field. Every Remote Resource Handler will be given its Key.

Selective export of Resources can be controlled by adding other Keys to the Allow
field and putting them on the proper Mandatory Key Rings. For example, a Resource
that is to be exported only to Logical Machine A would have a Lock called export A
in its Allow field in addition to the local Lock. The Protection Domain that embodies
the policy for Logical Machine A will have a Mandatory Key Ring containing the
corresponding Key. Note that a Resource can be made available to remote Clients
and hidden from local Clients by omitting the local Lock from the Allow field.

Example of an Intermachine Message N

When the Client on Logical Machine A sends a message to its Core for the Resource
on Logical Machine B, the following steps take place (see Figure 20):

1 The Client attaches any optional Key Rings it chooses and sends a message to
the Resource, which is routed by Core A.

2 Core A attaches the Mandatory Key Ring and retrieves the metadata for the Re-
source from the Repository. The visibility checks are made (Allow and Deny
fields). If these checks do not cause the message to be rejected, the Core at-
Version Beta 2.0, September 1999 177

Example of an Intermachine Message Intermachine Security (Informational)
tempts to match all the Keys on each of the Key Rings to any Locks for the Re-
source Permissions. The metadata indicates that Remote Resource Handler A is
the handler for this Resource.

3 Core A sends the message to Remote Resource Handler A, together with any
Permission strings that have been unlocked. Remote Resource Handler A for-
wards these unlocked Permissions as the names of Keys.

4 Remote Resource Handler A sends the message and unlocked Permissions to
Remote Resource Handler B.

5 Remote Resource Handler B attaches the designated Keys to one of its Key Rings
and sends a message for the named Resource to Core B.

6 Core B attaches the Mandatory Key Ring contained in the Protection Domain of
Remote Resource Handler B and retrieves the metadata for the Resource from
the Repository. The visibility checks are made (Allow and Deny fields). If this
does not cause the message to be rejected, the Core attempts to match all the
Keys on each of the Key Rings to any Locks for the Resource Permissions.

7 Core B sends the message to the Resource Handler, together with any Permis-
sion strings that have been unlocked. The Resource Handler interprets the Per-
missions to see if the requested action is allowed.

8 The Resource Handler sends the appropriate message to the Resource (if the Re-
source is an active entity such as a process) or executes the appropriate action
(in the case of a passive Resource such as a file).

The security mechanisms check that the message is allowed to be sent to Remote
Resource Handler A and the message is allowed to be sent to the Resource Handler
on Logical Machine B. The first of these checks enables the administrator for Core
A to control which Clients are allowed to access which Resources on Logical
Machine B. Typically, these checks will involve Keys that have been created and
managed on Core A. For example, the administrator might place a Lock in the Allow
field of the metadata for Remote Resource Handler A and give a Key for that Lock
only to certain trusted Clients. Hence, only these trusted Clients will be able to send
messages to, and access Resources on, Logical Machine B.
178 Version Beta 2.0, September 1999

Intermachine Security (Informational) Exporting a Key
The second of these checks enables the administrator of Core B to control what is
accessible to Core A (and hence all Clients on Core A). Typically, certain Allow and
Deny Keys would be attached to the Mandatory Key Ring of Remote Resource
Handler B to fix the set of accessible Resources. For example, suppose all the
Resources on Core B have a single Lock in their Allow field and are divided into two
mutually exclusive sets: either Key K1 or Key K2 unlocks the Allow Lock (but not
both). If K1, but not K2, is placed on the Mandatory Key Ring of Remote Resource
Handler B, Clients on Core A will be able to access only Resources on Core B that
have their Allow Lock matching K1.

In addition, some Locks associated with Permissions might be exported from Core
B, while others might be withheld. For example, a file resource might have read and
write Permissions, but only the read Permission is exported. If the Key to unlock the
read Permission is placed on the Mandatory Key Ring of Remote Resource Handler
B by the administrator for Logical Machine B, then every message sent from Logical
Machine A will have that Key attached to it. Alternatively, it might not be placed on
the Mandatory Key Ring of Remote Resource Handler B or on any of its optional Key
Rings. In this case, the Key must be on one of the Key Rings attached by the Client
on Core A, if that Client wants to execute a read request. (The administrator of Logi-
cal Machine A will have to give the Key to the Client.)

Exporting a Key N

Keys and Key Rings can be accessed like any other Resource because they are Core-
managed Resources. If they have been exported, they can be accessed from Clients
on different Logical Machines. Note, however, that the export process for Keys is
slightly different than for other Resources. When a Key is imported, the Remote
Resource Handler creates a new Key and binds the export name for the Key to it.
This name is bound as a Permission in the Resource metadata that has a reference
to this Key.
Version Beta 2.0, September 1999 179

Secure Local and Remote Access (Informational) Intermachine Security (Informational)
Secure Local and Remote Access (Informational) N

This section presents a scenario to illustrate how the security mechanisms are used
locally and remotely and what happens when a Resource is exported.

Secure Local Resource Access (Informational) N

An example of secure local Resource access is provided in Figure 21. Logical
Machine A has a Resource, a list. A Client CA on A has the name for this list as
MY-LIST . MY-LIST is bound to a Repository Handle, RH, in a Mapping Object,
A-LIST-RH .

CA has a Key that unlocks the ADD-MEMBER Permission for list A-LIST-RH . This
Key, which CA calls CA-CAN-ADD, is also a Resource, which CA’s Core identifies as
A-KEY-RH. The internal state of the Key A-KEY-RH is some piece of data in CA’s
Core, for example, the number 634-5789.

CA can add a member to the list by sending a message to its Core, with the payload
<ADD,NEW-MEMBER>, naming MY-LIST as the primary Resource and making sure
that CA-CAN-ADD is on its Key Ring. CA’s Core translates these names to A-LIST-
RH and A-KEY-RH, respectively. CA’s Core uses the Key state (634-5789) to verify
that the Key A-KEY-RH unlocks the Permission ADD-MEMBER for the list Resource
A-LIST-RH. A’s Core then forwards the request to the list Resource Handler, which
verifies that the ADD-MEMBER Permission was extracted and that ADD was
requested. The new member is placed in the list.
180 Version Beta 2.0, September 1999

Intermachine Security (Informational) Secure Local and Remote Access (Informational)
Exporting the Resource N

Logical Machine A and Logical Machine B establish a connection using the e-speak
intermachine protocol. The connection establishes RRH-AB running on A and
RRH-BA running on B. A exports the list to B and gives B permission to add new
members to it. To do this, A first exports the Key A-KEY-RH to B as follows.

A’s Core creates an Export Form for A-KEY-RH. On A, the Core and RRH-AB agree
on the shared name ADD-KEY for this Resource. RRH-AB now sends this Export
Form over the wire to RRH-BA on B. The two Remote Resource Handlers use the
shared name ADD-KEY for this Resource.

Now, on B, RRH-BA registers the Resource ADD-KEY. This creates a Key Resource
on B that the Core identifies by a Repository Handle: B-KEY-RH. B-KEY-RH, being
a Key, has some internal state: 857-1501. (This internal state has nothing to do with
the internal state of A-KEY-RH in A’s Core.)

Figure 21 Accessing the list Resource
Version Beta 2.0, September 1999 181

Secure Local and Remote Access (Informational) Intermachine Security (Informational)
NOTE: This example uses the same name ADD-KEY in three ways:

■ As the shared name between A’s Core and RRH-AB

■ As the shared name between RRH-AB and RRH-BA

■ As the shared name between RRH-BA and B’s Core

One or both Remote Resource Handlers could keep name mapping tables; in this
case, the names would all be different.

Once A-KEY-RH has been exported, A’s Core exports the list A-LIST-RH with
ADD-MEMBER Permission granted by Key A-KEY-RH to B as follows:

■ A’s Core creates an Export Form for A-LIST-RH. On A, A’s Core and RRH-AB
agree on the shared name CUSTOMER-LIST for this Resource. In the Resource
metadata for A-LIST-RH is a field containing Permission (A-KEY-RH, “ADD-
MEMBER”). The corresponding field in the Export Form for CUSTOMER-LIST
appears as ADD-KEY.

■ RRH-AB now sends the Export Form for CUSTOMER-LIST over the wire to
RRH-BA on B’s machine. The two proxies use the shared name CUSTOMER-
LIST for this Resource. If we assume the Resource is being passed by reference,
the Export Form consists of all the relevant fields in the Repository entry iden-
tified by A-LIST-RH.

■ Now, on B’s machine, RRH-BA registers the Resource CUSTOMER-LIST. This
creates a Resource on B’s machine that B’s Core identifies by a Repository
Handle: B-LIST-RH. When RRH-BA converts the Export Form to a register form,
the ADD-KEY Permission field becomes ADD-KEY, ADD-KEY.

■ When the Resource gets registered, Core B replaces the name ADD-KEY with the
corresponding Repository Handle, so the Repository holds B-KEY-RH,
“ADD-KEY”.

■ RRH-BA adds a field to its Resource-specific data for this Resource indicating
that its name for this Resource is CUSTOMER-LIST.
182 Version Beta 2.0, September 1999

Intermachine Security (Informational) Secure Local and Remote Access (Informational)
Secure Remote Resource Access N

This part of the example provides the description for remote Resource access in a
secure environment. A Client CB on B, by some means, has obtained name bindings
for the list and its Key; PASSENGER-LIST and CB-CAN-ADD, respectively, in CB’s
Name Frame. CB adds a new member to the list by sending a message to its Core
with payload <ADD,NEW-MEMBER>, naming PASSENGER-LST as the primary
RESOURCE and making sure that the Key CB-CAN-ADD is on his Key Ring.

B’s Core translates these names to B-LIST-RH and B-KEY-RH. B’s Core uses the Key
state (857-1501) to verify that the Key B-KEY-RH unlocks the Permission “ADD-
KEY” for list Resource B-LIST-RH. B’s Core now sees that B-LIST-RH is managed by
RRH-BA, so it sends a message to RRH-BA, naming CUSTOMER-LIST (translation
for B-LIST-RH) as the primary Resource, with payload <ADD, NEW-MEMBER>,
making sure that the ADD-KEY Permission (unlocked by B-KEY-RH) is in the
message.

RRH-BA now sends this across the wire to RRH-AB on A. On Logical Machine A,
RRH-AB translates this into a message sent to A’s Core, naming CUSTOMER-LIST
(translation for CUSTOMER-LIST) as the primary Resource, with payload <ADD,
NEW-MEMBER>, making sure that ADD-KEY is on the Key Ring. A’s Core trans-
lates these names into A-LIST-RH and A-KEY-RH.

Just as before, A’s Core uses the Key state (634-5789) to verify that the Key A-KEY-
RH unlocks the Permission “ADD-MEMBER” for the list Resource A-LIST-RH, and
forwards this request to the list handler so the new member is placed in the list.

Note that the Permissions were checked twice: once on Logical Machine B to get
permission for “ADD-KEY” and once on Logical Machine A to get permission for
“ADD-MEMBER”.
Version Beta 2.0, September 1999 183

Secure Local and Remote Access (Informational) Intermachine Security (Informational)
Exporting an Imported Resource N

A Logical Machine that imports a Resource may need to export the same Resource
to another Logical Machine. Suppose Logical Machine B needs to export the
Resource to Logical Machine C. To do this, B’s Core creates Export Forms for
B-KEY-RH and B-LIST-RH. These are shared with RRH-CB running on B’s machine
under some agreed-upon names (e.g., C-KEY and C-LIST). These are transmitted
to RRH-CB running on Logical Machine C and registered on C as C-KEY-RH and
C-LIST-RH.

A Client CC on C adds a new member to the list just as before. A request to invoke
ADD-MEMBER on C-LIST-RH with Key C-KEY-RH gets forwarded via the Remote
Resource Handlers and reduces it to a request to add a member to B-LIST-RH with
Key B-KEY-RH. The Permissions here get checked three times: once on C’s machine
to see that C-KEY-RH unlocks Permission “C-KEY” before transmitting the request
to B’s machine, once on B’s machine, and once on A’s machine.

Observe that the Client on C doesn’t know anything about Logical Machine A. When
this Client accesses the list, Logical Machine B is providing the service as far as it is
concerned. Nor does Logical Machine A know anything about Logical Machine C.
When the Client CC adds a new member to this list, Logical Machine B is making the
request as far as A is concerned.
184 Version Beta 2.0, September 1999

Chapter 15 Future Developments
This chapter describes changes that will be made to the e-speak architecture in
future releases:

■ A major revision to the security model

■ Simplification of Resource import and export using ESUIDs

Security O

Keys and locks as described in this version of the e-speak architecture specification
will be removed and replaced by an attribute certificate based security model based
on the Simple Public Key Infrastructure (SPKI) being developed within the Internet
Engineering Task Force (see http://www.ietf.org/). The essential difference
between this model and a more conventional use of certificates (e.g., X.509 as used
in Secure Sockets Layer), is that the attribute certificates are used to make arbitrary
statements about entities in an e-speak system. In an X.509 system certificates are
conventionally used to authenticate identity.

For example an identity certificate may state that the public Key in the given certif-
icate is to be associated with the identity “Joe Doe.” Anybody who can demonstrate
knowledge of the private Key corresponding to the public Key is deemed to be Joe
Doe. Attribute certificates are used to make statements about attributes associated
with Joe Doe: “Joe Doe is an HP employee,” “Joe Doe’s office location is in Cuper-
tino, California,” “Joe Doe is a network administrator.”

An attribute certificate is issued by an Attribute Certificate Issuer (ACI) and is
issued to a particular entity associated with public Key (in the simplest case this
would be an individual (e.g., John Doe), but it could be a group). Not all ACIs need
to be trusted equally, for example one ACI might be trusted to issue attribute certif-
Version Beta 2.0, September 1999 185

Security Future Developments
icates asserting the named individual is an Hewlett-Packard employee, a different
ACI might be trusted to issue attribute certificates asserting the named individual is
a citizen of the United States.

Suppose John Doe needs to perform some action on a Resource that requires him
to prove that he is a network administrator. To do this he would have to present his
identity certificate and his network administrator certificate. The e-speak certifi-
cate processor processes the certificates to verify that he has the correct attributes.
This involves verifying that John Doe knows the appropriate private Key (associ-
ated with his identity), checking the certificates for validity and checking that the
ACIs are trusted to issue certificates asserting the individual is a network adminis-
trator.

Many aspects of e-speak security will not change: there will still be Resource
permissions defined in the metadata (as now); there will still be an “allow” visibility
test (no deny); the Core will still mediate access (check visibility and permissions).

An example that also illustrates some additional features are shown in Figure 22.

Figure 22 Revised e-speak security model

Name
Hash(JD’s Pub Key)

osoEmployee
com.hp.es.oso employee

LocationBristol
com.hp.bristol location

visible: com.hp.* employee
start: com.hp.es.oso administrator
stop: com.hp.es.oso administrator
.
print: com.hp.* employee

Name:
OSOservice
LocationBristol

Service metadata

Certificate exchange

Secure, mediated
channel

Establishes

Client
Resource
186 Version Beta 2.0, September 1999

Future Developments Security
The Client in Figure 22 has three certificates: an identity certificate, an employee
certificate and a location certificate. The employee and location certificate illus-
trate the structured name space defined for attributes: an employee of the HP,
e-speak, Open Services Operation (com.hp.es.oso employee); located at HP’s Bris-
tol (UK) site (com.hp.bristol location). An HP employee is denoted in the printer
Resource’s metadata as “com.hp.* employee”. (The “*” is a wildcard character.)

The Resource metadata has three attribute certificates (for brevity the attributes
are not shown): a name certificate; an owning entity certificate (Open Service Oper-
ation) and a location certificate. This allows Clients to authenticate Resource
attributes as well as allowing Resource to authenticate Client attributes. The model
also allows Cores to have attribute certificates so that Clients, Resources, and
Cores can authenticate each other’s attributes.

The Resource metadata shows that visibility of the Resource and the ability to
invoke the print operation will be granted to anybody who can authenticate the HP
employee attribute. However, the ability to invoke the start or stop operations will
only be granted to somebody who can authenticate the HP, e-speak, Open Services
Operation, administrator attribute.

Note that there is a strong analogy between attributes and roles and that is how we
anticipate this security model to be used: Clients and Resources will be issued
certificates denoting their roles. Clients and Resources can change roles without
changing their public Key (identity) by being issued new attribute certificates. This
reflects the way in which we expect e-services to be built: roles changing frequently,
with identities being relatively invariant.

Before communication between the Client and Resource takes place, they must
agree a session Key to establish a secure session. To do this, they engage in a Key
exchange protocol in which certificates are exchanged and authenticated. The
session Key is disclosed to the Client’s Core and the Resource’s Core. The Client
and Resource never disclose their private Keys to anybody.

Delegation is supported explicitly. ACIs can issue attribute certificates allowing the
subject of the certificate to issue a delegate certificate. For example, if John Doe
also has a certificate stating he is a manager which can be delegated, John Doe
himself can issue a certificate delegating that attribute to another employee (e.g.,
Mary Smith). This might be useful when John Doe is on vacation.
Version Beta 2.0, September 1999 187

Security Future Developments
Time is used for revocation, typically an attribute certificate would have a lifetime
of days (rather than months or years that might be the lifetime of an X.509 identity
certificate). Certificates also have a begin time and an end time, allowing John Doe
to state the time for which Mary Smith has the role of manager.

Part of the configuration process at e-speak start up is configuring which ACIs are
trusted for which attributes. We call this configuring the Trust Assumptions. The
following is an example of the Trust Assumptions that might be appropriate for the
Printer Resource shown in Figure 22.

■ HPpubKey: com.hp.* employee

■ OSOpubKey: com.hp.es.oso *

■ ownerPubKey: ALL

These Trust Assumptions state:

■ Anything given authority by the Hewlett-Packard public Key is trusted to issue
attribute certificates designating the Hewlett-Packard employee attribute.

■ Anything given authority by the Open Service Operation public Key is trusted to
issue attribute certificates for Hewlett-Packard, e-speak, Open Services Opera-
tion attribute.

■ Anything given authority by the Resource owner’s public Key is trusted for all
attributes.

By “given authority by the X public Key” we mean that X has issued the certificate
for the attribute or has delegated the certification of that attribute. In the latter case
the certificate processor will require the delegation certificate as well as the
attribute certificate before it can determine if the attribute has been successfully
authenticated.

We anticipate the e-speak will be deployed in environment where existing public
Key infrastructures exist already (e.g., for X.509 and SSL). The e-speak attribute
certificate base security machinery will interoperate with these environments by
using X.509 attributes and using X.509 certificates for identity.

The new e-speak security model was developed to meet the requirements stated in
“Capabilities” on page 189.
188 Version Beta 2.0, September 1999

Future Developments Capabilities
Capabilities O

This is an outline of the requirements we have for supporting capabilities in e-speak.
We are using the term capability abstractly, and no particular implementation
should be assumed, whether it be public Key certificates, Kerberos tickets, or
e-speak Keys.

A capability expresses permission to perform operations or obtain service. It may
be used indirectly to express a role, such as a user's membership of a group. Capa-
bilities will often be issued in response to authentication, but may be issued for any
reason deemed sufficient by the issuer. Once issued, capabilities are presented to
services to obtain facilities. In e-speak terms, capabilities are used to extract
permissions on Resources and control Resource visibility. Capabilities generalize
the functionality of e-speak Keys, while preserving other aspects of the e-speak
architecture such as name virtualization and brokering.

1 Capabilities must be usable in a fully distributed context, with the capability
issuer, the receiver of the capability, and the service it is presented to all being
potentially on different machines. For example an authentication or logon
service should be able to issue a Client capabilities that it can use elsewhere.

2 Capabilities should remain secure even when remote machines cannot be relied
on to enforce security, and when communications security cannot be relied on.

3 It should be possible to create a service that requires a Client to possess a given
capability without giving the service itself that capability, and without requiring
that the service installer have the capability.

4 It should be possible for a Client to convince a service that it possesses a capa-
bility without giving the service the ability to convince anyone else that it has the
capability.

5 It should be possible to present a capability to a remote service without giving
the capability away to observers along the communication path.

6 It must not be possible to fake a capability.

7 It should be possible to tie a capability to a particular Client, so that only that
Client can successfully use it.
Version Beta 2.0, September 1999 189

Unique Core Names Future Developments
8 It should be possible for a Client to delegate some of its capabilities to another
service, so that the service can perform operations on the Client’s behalf using
the delegated capability. The service must not be able to abuse the delegated
capability to obtain the Client’s capability itself. Also it should be possible for
the Client to define which other services the delegated capability may be used
on, and for how long.

9 It should be possible to control propagation and use of capabilities in a distrib-
uted system, so that otherwise valid capabilities cannot be used where controls
apply. This includes controlling the visibility of capabilities.

10 It should be possible to create restricted capabilities that can only be used for a
given period of time, or can only be used a given number of times.

11 It should be possible to revoke a capability, so that although it was legitimately
acquired it may no longer be used.

12 It should be possible to create anonymous capabilities that do not reveal the
identity of the owner or user.

13 It should be possible for the issuer of a capability to communicate it to a Client
by any means (e-mail, floppy disk, in writing).

Unique Core Names O

 ESUIDs will be used to simplify the process of import and export.

Resource Export O

The copy of an exported Resource on another Core will have the same Core-name
as the original Resource, although it may have different Metadata. The name for an
exported Resource is the stringified form of its unique Core name. Cores need to
remember which Resources have been exported, and a Name Frame can be used for
that purpose. If the Core name generation algorithm is random enough, the proba-
bility of creating two Resources with the same Core name is very low (we can obvi-
ously prevent Core name collision in each individual Core). However, since the
190 Version Beta 2.0, September 1999

Future Developments Unique Core Names
probability is not zero even for well-implemented Cores, and hostile Cores might
deliberately create duplicate Core names, we need to deal with the eventuality. We
propose using a short-circuiting protocol to discover if duplicate Core names actu-
ally refer to the same Resource, and resolve them if they do. Resource authentica-
tion will be used to decide if a Resource is genuine, and reject fakes.

Short-circuiting is the process of determining if two local Resources are different
imports of the same Resource on another Core. It involves querying the home Core
of both Resources and using the replies to determine if they were answered by the
same Resource Handler.

If a duplicate authentic Resource is detected and error is reported, and the dupli-
cate is not imported.
Version Beta 2.0, September 1999 191

Unique Core Names Future Developments
192 Version Beta 2.0, September 1999

Chapter 16 Glossary
Term Meaning

Advertising Service A service for looking up resources not registered in the local
Repository. It returns zero or more Connection Objects.

Allow field A field in the metadata of a Resource consisting of a set of
Locks. If any Lock in this field is opened by a Key presented
by the requestor, the Resource will be accessible.

Arbitration policy A specification within the search request accessor for
naming that provides the logic to resolve multiple matches
found for a name search.

Attribute
Vocabulary

See Vocabulary.

Base Vocabulary A Vocabulary provided at system start-up.

Builder An entity identified by a Remote Resource Handler that is
used to construct the internal state of a Resource imported
by value.

Callback Resource A Resource that the Client lists in its message header that
can be used as a primary Resource when a reply is to be sent
to the Client.
Version Beta 2.0, September 1999 193

Glossary
Client Any active entity (e.g., a process, thread, service provider)
that uses the e-speak infrastructure to process a request for
a Resource.

Client library The interface specification that defines the interface for
e-speak programmers and system developers that will build
e-speak-enabled applications.

Connection Factory A Logical Machine's component that does the initial
connection with another Logical Machine.

Connection Object An object created by a Logical Machine to allow connections
to it. The object is distributed widely to other services such
as an Advertising Service.

Contract See Resource Contract.

Core The active entity of a Logical Machine that mediates access
to Resources registered in the local Repository.

Core Event
Distributor

A Core-managed Resource whose purpose is to collect
information on e-speak Events and make such information
available to management tools within the infrastructures.

Core-managed
Resource

A Resource with an internal state managed by the Core.

Deny field A field in the metadata of a resource consisting of a set of
Locks. If any Lock in this field is opened by Keys presented
by the requester, the Resource will not be accessed.

Term Meaning
194 Version Beta 2.0, September 1999

Glossary
Distributor Service A service that forwards published Events to subscribers.

Event A message that results in the recipient invoking a registered
callback.

Event filter A subscription specification expressed as a set of attributes
in a particular Vocabulary that must match those in the Event
state in order for a Client to receive notification on publication
of an Event.

Event state A reference within an Event to its expressed set of attributes
in a particular Vocabulary. These attributes must match the
Event filter in order for the subscriber to receive notification
of the Event.

Exception
Resource

A Resource listed in a message header that can be named as
the primary Resource in an error message.

Explicit Binding An accessor that contains a Repository Handle.

Export context An object created by the Remote Resource Handler for the
exported Resource’s metadata and state information (when
its pass-by value is set). This object also defines the export
and import.

Export Form The form of a Resource metadata and, optionally, state that
is sent to another Logical Machine.

Exporter A reference to a Remote Resource Handler when it is in the
process of exporting data to another Logical Machine
through another Remote Resource Handler.

Term Meaning
Version Beta 2.0, September 1999 195

Glossary
Export Name
Frame

A Name Frame that holds a name for each exported
Resource.

Importer A reference to a Remote Resource Handler when it is in the
process of importing data from another Logical Machine
through another Remote Resource Handler.

Import Name
Frame

A container that holds a name for each imported Resource.

Inbox A Core-managed Resource used to hold request messages
from the Core to a Client.

Key An entity that opens Locks in Resource metadata as a means
of expressing a Client’s access rights to Resources. Also
used to test the Client’s right to use a name bound to the
Resource.

Key Ring An entity that holds a number of Keys.

Listener A Logical Machine that has created a Connection Object in
order to listen for connection requests to it from another
Logical Machine acting as an initiator. Also the term used for
the Client that receives an Event.

Lock Stored in the metadata of a Resource. Can be opened by
Keys presented by a Client.

Logical Machine A Core and its Repository.

Term Meaning
196 Version Beta 2.0, September 1999

Glossary
Lookup request Resources with attributes matching the lookup request will
be bound to a name in the Client’s name space.

Lookup Service The component that performs lookup requests used to find
Resources that match attribute-value pairs in the Resource
Description of Resources registered in the Repository.

Mailbox Either an Outbox or an Inbox.

Mapping Object An object binding an ESName to Resources or a Search
Recipe.

Message Means of Client-Core communication.

Metadata Data that is not part of the Resource's implementation, but
is used to describe and protect the Resource.

Name Frame A Core-managed Resource that associates a string with a
Mapping Object.

Name Search Policy A name conflict resolution tool used by the Core to find the
appropriate strings when looking up names in a Name
Frame.

Outbox The location where the Client places a message to request
access to a Resource.

Pass-by value A metadata field, which, when set to true, includes the state
of the Resource in the Export Form.

Term Meaning
Version Beta 2.0, September 1999 197

Glossary
Permissions Access rights to a Resource or its metadata forwarded if a
Key presented with the message opens the corresponding
Lock.

Primary Resource The target of a message sent by the Client when requesting
access to a Resource.

Protection Domain The environment associated with a particular Outbox from
which Resources can be accessed.

Publish A request sent to the Distributor Service to publish Events.

Remote Resource
Handler

A Client that is established on both a local and a remote
Logical Machines to handle intermachine communication.

Reply Resource See Callback Resource.

Repository A passive entity in the Core that stores Resource metadata
and the internal state of Core-managed Resources.

Repository entry The metadata of a Resource as stored in the Repository and
made available to the Core when a Client’s requests to
access Resources are processed.

Repository Handle An index into the Repository associated with the metadata of
a Resource.

Repository View A Resource that can be used to limit the search for particular
Resources in a large Resource Repository, much as a
database view restricts a search within a database.

Term Meaning
198 Version Beta 2.0, September 1999

Glossary
Resource Contract A Resource denoting an agreement between the Client and
the Resource Handler for use of a particular Resource. The
agreement includes a provision for the Client to use an API
known to the Resource Handler when making the request
for the Resource.

Resource The fundamental abstraction in e-speak. Consists of state
and metadata.

Resource
Description

The data specified for the Attribute field of the metadata as
represented by the Client to the Core. See also Resource
Specification.

Resource Factory An entity that can build the internal state of a Resource
requested by a Client.

Resource Handler A Client responsible for responding to requests for access to
one or more Resources.

Resource Specific
Data

A metadata field of a Resource. Carries information about the
Resource. Can be public or private to the Resource Handler.

Resource
Specification

Consists of all metadata fields, except the Attributes field, as
represented by the Client to the Core.

Secondary
Resource

Additional Resources included in a message header that may
be needed by the Resource Handler.

State Data a Resource needs to implement its abstraction.

Term Meaning
Version Beta 2.0, September 1999 199

Glossary
Visibility fields A reference to both the Allow and the Deny fields of the
metadata for a Resource.

Visibility test A reference to tests performed on the metadata Allow and
Deny fields invoked by the Core when a Client requests
access to a Resource.

Vocabulary A Resource that contains the set of attributes and value
types for describing Resources.

Vocabulary Builder A Core-managed Resource registered by the Lookup Service
that is used to create new value types, attributes, and
Vocabularies.

Vocabulary
Translator

A reference to a mechanism that is used to provide
interoperation between different Vocabularies by mapping
attributes from one Vocabulary into another through a
Translator Resource.

Term Meaning
200 Version Beta 2.0, September 1999

	Table of Contents
	Chapter 1 Introduction
	Vision
	Goals
	Architectural Philosophy
	Environment
	Intended Audience
	Structure
	Conventions

	Chapter 2 Architecture Overview
	Mediation Architecture
	Resource Model
	Metadata System
	Naming Model
	Security Model
	Communication
	Service Access
	ESIP Architecture
	An End-to-End Example
	The E-speak Service Interface (Informational)
	E-speak Services
	Standards
	Summary
	Future Developments

	Chapter 3 Resource Descriptions and Specifications
	ResourceSpecification
	boolean byValue;
	ESName contract;
	ESName[] DenyKeys;
	ESName[] AllowKeys;
	ESMap metadataLocks;
	ESMap resourceSpecificLocks;
	ESMap publicRSD;
	ESMap privateRSD;
	ESName owner;
	ESName ResourceHandler;
	int eventControl;
	ESUID

	ResourceDescription

	Chapter 4 Core-Managed Resources
	Conventions
	Key
	Key Ring
	Mailbox
	Inbox and Client Restart
	Inbox and Delegation of Resource Handling

	Name Frame
	ESNames
	Bindings
	Search Predicates, Search Recipes, and Name Search Policies
	Name Frame Methods

	Importer Exporter
	exportContext Class
	importContext Class

	Protection Domain
	Repository View
	Resource Contract
	Resource Factory
	MetaResource
	System Monitor
	Vocabulary

	Chapter 5 Vocabularies
	Vocabulary Overview
	Vocabulary Builder
	Building a New Vocabulary

	Base Vocabulary
	Translators (Informational)

	Chapter 6 Application Binary Interface
	Message Flow Through the Core
	E-speak ABI Message Format
	Sending a Message to the Core
	Receiving a Message from the Core
	Messages from the Resource Handler to the Client
	Format of Payload for Core-Managed Resources
	Initial Connection to the Core
	E-speak Serialization Format
	Security Implications (Informational)

	Chapter 7 Inter-Core Communication
	Design Objectives
	Communication Architecture Overview
	The Connection Object
	The Connection Factory Interface
	The Remote Resource Handler Interface
	Payload Format
	Layer Factory Negotiation Protocol
	LFNP Message Definition
	Negotiation Example
	Building the Stack

	Transport Layer Protocols
	Authentication Layer Protocols
	Security Layer Protocols
	Session Layer Protocols
	Core Interconnection Layer Protocols
	ESIP
	Export Form for Resources
	Export by Value
	Imported Resource Metadata (Informational)
	Restriction on Export of Core-Managed Resources

	Chapter 8 Exceptions
	Overview
	Run-Time Exceptions
	Recoverable Exceptions
	Exception State

	Chapter 9 Events
	Event Model
	Interaction Sequence
	Distributor Vocabulary
	Data Model
	Event
	Subscription
	Publication

	Core-Generated Events
	Networks of Distributors
	Events in a Distributed Environment

	Chapter 10 Management (Informational)
	Architecture
	E�speak Elements Management Level
	E�speak Infrastructure
	E�speak System Model Level

	Core Management
	System Structure
	Core Controllers
	Event Distributors
	Protocol Providers

	Security Models

	Chapter 11 Distributed Management (Informational)
	Management Middleware
	Architectural Model
	Structural Model
	Domain Model
	Service Model

	Chapter 12 Repository (Informational)
	Repository Overview
	Repository Structure
	Information Flow
	Increasing Scalability

	Chapter 13 Intramachine Security (Informational)
	Overview of Intramachine Security
	Assumptions
	Keys, Permissions, and Locks
	Key Rings and the Mandatory Key Ring
	Visibility Tests
	Protection Domains
	Example of an Intramachine Message
	Key Management
	Abstract Security Models

	Chapter 14 Intermachine Security (Informational)
	Overview of Intermachine Security
	Controlling What Can Be Exported
	Example of an Intermachine Message
	Exporting a Key
	Secure Local and Remote Access (Informational)
	Secure Local Resource Access (Informational)
	Exporting the Resource
	Secure Remote Resource Access
	Exporting an Imported Resource

	Chapter 15 Future Developments
	Security
	Capabilities
	Unique Core Names
	Resource Export

	Chapter 16 Glossary

