
A Customizable Implementation of RMI for

High Performance Computing?

Fabian Breg and Dennis Gannon

Department of Computer Science, Indiana University

Abstract. This paper describes an implementation of Java's Remote
Method Invocation (RMI) that is designed to run on top of the Globus
high performance computing protocol. The primary contribution of this
work is to illustrate how the object serialization mechanism used by RMI
can be extended so that it becomes more con�gurable. This allows the
implementation of object serialization protocols that are more e�cient
than the default or that are compatible with other distributed object
models like HPC++, which is based on C++. Both issues are important
when RMI is to be used in scienti�c computing.

1 Introduction

One of the main reasons of the popularity of the Java programming language is
its support for distributed computing. Java's API for sockets, URLs and other
networking facilities is much simpler than what is o�ered by other programming
languages, like C and C++, which is why Java is likely to be adopted in scien-
ti�c computing. These constructs, however, are still too tedious to use for generic
distributed applications. Java's Remote Method Invocation (RMI) [18] was de-
signed to make distributed application programming as simple as possible, by
hiding the remoteness of distributed objects as much as possible.

RMI is a framework that allows objects to invoke methods on remote objects
(i.e. objects residing in a di�erent Java Virtual Machine, JVM for short) in the
same way as methods of local objects (in the same JVM) are invoked. The syntax
of a remote method invocation is similar to a method invocation on a local object,
but the semantics for parameter passing are di�erent. While remote objects are
still passed by reference, non-remote objects are passed by copy instead (local
method invocations pass all objects by reference). Also, references to remote
objects must be obtained from a special entity called the registry. RMI does,
however, provide a convenient framework for distributed computing.

As noted by others (see Sect. 2), Java RMI has a number of shortcomings
when it comes to performance and 
exibility. The �rst contribution of this work is
to overcome these shortcomings improving both 
exibility and performance of an
important bottleneck of RMI: object serialization. To this end, we reimplemented
RMI from scratch, retaining the original speci�cation as much as possible. We

? This research has been supported by a contract with the Dept. of Energy DOE2000
project.



have only slightly altered the API to implement a 
exible framework for object
serialization. Since we only add methods to the API, our implementation can
still handle most applications written for Java RMI.

The second contribution of this work is to investigate into the interoperability
of RMI with another remote method invocation framework: HPC++ [2]. We will
only brie
y outline our approach to obtaining interoperability. A more in-depth
study into the issues involved has been conducted in a previous article [3].

We are planning on using our implementation of RMI in future versions of our
Distributed Problem Solving Environment Component Architecture Toolkit [5].
In this project, we will have a component architecture toolkit implemented in
Java that communicates with distributed components written in HPC++.

The rest of this paper is organized as follows. In Sect. 2 we will point out some
related research into RMI conducted by others. Section 3 gives a brief overview of
the Java RMI framework. Section 4 gives an overview of some important design
and implementation issues of our RMI implementation. Section 5 focuses on
the object serialization and compares a number of object serialization protocols.
Section 6 concludes this paper.

2 Related Work

One of the goals of the Java Grande Forum [8] is to investigate into methods
to optimize Java RMI performance. In a short note presented to this forum,
Philippsen and Haumacher [11] critiqued the performance of Java RMI and
o�ered a number of suggestions to improve both its performance and 
exibility.
They conclude that a more open approach would encourage the widespread use
of RMI in the scienti�c computing area.

The same is suggested by Thiruvathukal and others in [15]. They imple-
mented a more open version of the Java RMI framework, which also provided
some additional functionality, such as dynamically obtaining the interface of re-
mote objects. Their API, however, is quite di�erent from the original. Our goal
was to make minimal changes to the o�cial speci�cation, while still providing
some openness.

As part of the Ninja project [9] at the University of California, Berkeley,
NinjaRMI [17] has been developed. This project adds some interesting features
that are not (yet) available in Sun's RMI version. They do not address object
serialization or interoperability with other languages.

Another implementation of RMI is provided by Raje and others. ARMI
o�ers the possibility of performing asynchronous method invocations on remote
objects. Their implementation is built on top of the original Java RMI and thus
su�ers from the same performance drawbacks.

In [16] Veldema and others implemented their own version of RMI for use in
their Albatross [1] project. Their goal was to optimize RMI for homogeneous
cluster computers and they o�er a programming model based on JavaParty [12].
In addition, they translate Java applications to native code, thereby giving up



the cross-platform portability. Nevertheless, their approach is interesting for sci-
enti�c computing, because very low latency and high bandwidth is obtained with
their implementation.

There are a number of distributed object frameworks like RMI available.
CORBA [6] provides a distributed object model for interoperability between
di�erent platforms. Besides remote method invocation, Voyager [10] also pro-
vides the notion of active migratable entities, called agents. Hirano and others
compared the performance of some of these di�erent distributed object tech-
nologies in [7], including HORB [13], their own distributed object technology.
They showed that indeed RMI exhibits worse performance than other distributed
object technologies and adds signi�cant overhead to the use of sockets.

3 Remote Method Invocation

Java Remote Method Invocation (RMI) [14] is a framework designed to
simplify distributed object oriented computing in Java. An overview of the Java
RMI model is shown in Fig. 1.

Client Host Server Host

Stub

Server

Registry

Remote Object

Skeleton

Interconnect

Client
Object

Fig. 1. RMI overview

RMI is essentially a client-server model in which the client talks to the remote
object through a proxy called a stub. The stub itself talks to an active entity on
the server side called a skeleton, which in turn calls the appropriate method on
the remote object (which is local to the skeleton). The result is communicated



back through the skeleton and the stub to the client. The stubs and skeleton
are generated by a special compiler, rmic, and are completely hidden from the
programmer.1

To obtain a reference to a remote object, the client contacts the registry on
the remote host, providing it the name of the desired remote object. The remote
object must previously have been bound in the registry by a server process.
The remote reference that is passed from server via the registry to the client is
actually the stub object itself.

To pass non-remote objects as a parameter of a remote method invocation,
the notion of object serialization has been introduced in Java 1.1. Object
serialization transforms an object or even a graph of objects into a sequence of
bytes that can be sent over the network, allowing the other side to reconstruct
the original object (graph). Note that the RMI parameter passing mechanism for
non-remote objects is pass-by-copy, which is di�erent from the parameter passing
semantics for method invocations on local objects. From a programmer's point
of view, remote objects are passed by reference. What is actually transfered is
the stub object (which itself is passed by copy).

4 NexusRMI Implementation

We reimplemented Java RMI with two requirements in mind. The �rst require-
ment was to obtain interoperability with HPC++. For this, our stubs and skele-
tons have to use the Java port of Nexus to communicate with each other. Al-
though the RMI implementation in the JDK 1.2 o�ers the possibility for the
programmer to provide a custom socket implementation to use for communica-
tion, this is not 
exible enough for our needs. The problem is that NexusJava
is not a stream based protocol and therefore it does not �t a socket model.
Our solution consists of redesigning the stubs and skeletons from scratch and
reimplementing the rmic compiler.

The second requirement was to be able to experiment with object serializa-
tion to try to obtain better performance. Although Java RMI provides ways to
customize object serialization, we needed to have more control over the entire
process. In particular, we need to specify the actual byte representation of the
data to be sent. Although HPC++ requires the programmer to supply the mar-
shal and unmarshal methods for each object separately, the format in which
primitive data is written is determined by Nexus. Since this format is dependent
on the architecture on which the HPC++ object is running, we must deal with
all possible formats, which is why we use the NexusJava framework for reading
and writing primitives. Also, o�ering the possibility to specify the object serial-
ization protocol allows us to implement various optimizations. Examples of this
are described in Sect. 5.

1 In an RMI application, the remote reference is declared to be of the remote interface
type. The generated stub is de�ned to implement this interface, allowing the remote
reference to be a reference to the stub.



This section describes the design and implementation of NexusRMI and how
both requirements are met by it. In Sect. 5 we evaluate the performance of object
serialization in our framework.

4.1 NexusRMI Transport Protocol

To understand the underlying communication protocol of NexusRMI, we will �rst
introduce the NexusJava [4] model of communication. An overview of NexusJava
is given in Fig. 2. In Nexus, a node or a host can contain multiple contexts,
which in turn can contain multiple threads. A thread can communicate with
an object in another context by issuing a remote service request on a start-
point. The startpoint will forward this request to the endpoint connected to
it. The endpoint will then invoke the appropriate method on its associated user
object.

RSR

Node

Context

Startpoint

Endpoint

User Object

Thread

d
n
e
g
e
L

Fig. 2. NexusJava model

Figure 3 shows the di�erent abstractions of NexusJava in our RMI imple-
mentation (refer to the NexusJava overview �gure for a legend of the symbols
used). Basically, a skeleton object contains an endpoint, with the actual remote
object associated to it as a user object. The registry can be considered just an-
other remote object and thus has a similar implementation. If the client invokes
a remote method, the stub issues a remote service request on the startpoint
connected to the appropriate skeleton endpoint. No reply message is implicit in
a remote service request. The result value of the remote method is sent to client
through a separate remote service request. To this end, the client itself contains
an endpoint and it sends a startpoint to itself as part of the remote method
invocation request message. A separate handler thread at the client extracts the
result and passes it to the thread that initiated the remote method invocation.

When a remote object is exported, i.e. when the stub/skeleton pair is created,
containing the necessary startpoints and endpoints. The stubs are registered in
the registry when the server binds the remote object and are passed to the client



Remote
Object

Skeleton

Server hostClient host

Stub

Stub

Registry

Skeleton

Client

Fig. 3. NexusRMI communication system

when the client performs a lookup for the remote object. A startpoint to the
registry is obtained through NexusJava's attach() method.

4.2 NexusRMI Object Serialization

Besides obtaining interoperability with HPC++, another purpose of our imple-
mentation was to experiment with object serialization in RMI to improve its
performance. The intent was to provide the possibility to write a serialization
protocol on a per remote object basis. The idea is that a remote object may
know what kind of data to expect, and can thus make the best decision on the
exact object serialization protocol.

To be able to specify the object serialization protocol on a per remote ob-
ject basis, we had to alter the RMI speci�cation slightly. When a remote object
is exported, i.e. when the stubs and skeleton are created, we pass the serial-
ization protocol with it, so that both the stubs and the skeleton know how to
communicate with each other. A remote object can be exported by invoking
UnicastRemoteObject.exportObject() method. If, however, the remote ob-
ject extends UnicastRemoteObject, it is exported implicitly in the constructor.
The NexusRMI interface of UnicastRemoteObject is shown in Fig. 4.2

The Serialize class is the superclass of objects implementing a serialization
protocol. Its de�nition is shown in Fig. 5. Data is written into a PutBuffer3

and read from a GetBuffer. The codebase is used to dynamically download
classes from the speci�ed site [14, sect 3.8]. Whenever a class has to be loaded
that is not locally available the URL is passed to the RMIClassLoader, which
than downloads the class. The initWrite() method initializes the object for

2 Our implementation of RMI is mainly based on the JDK 1.1 version.
3 The implementation of the PutBuffer class has been adapted for this project to
allow it to dynamically expand as needed. This behavior is needed since we cannot
simply determine the total bu�er size requirements for an arbitrary graph of objects.



public class UnicastRemoteObject extends RemoteServer

{

protected UnicastRemoteObject() throws RemoteException;

protected UnicastRemoteObject(Serialize ser) throws RemoteException;

public Object clone() throws CloneNotSupportedException;

public static RemoteStub exportObject(Remote obj)

throws RemoteException;

public static RemoteStub exportObject(Remote obj, Serialize ser)

throws RemoteException;

}

Fig. 4. UnicastRemoteObject

writing. The initRead() method initializes the object for reading. It is given
the bu�er to read from and the URL to dynamically load classes from. When
all data has been written, the bu�er with the serialized data can be obtained
by invoking getBuffer(). The next six methods implement the reading and
writing of HPC++ speci�c data, which are not to be altered by the custom
serialization protocol. The rest of the methods implement the reading and writing
of primitives and references. The actual implementations in this class are no-ops.

To implement a custom serialization protocol, the Serialize class has to be
extended and the desired read and write methods need to be implemented. Only
those methods actually needed have to be overridden. The next section will show
some implementations of object serialization protocols that can be used in our
framework.

Serialization of primitive types is fairly simple to implement since NexusJava
provides methods to write primitives and arrays of primitives. To serialize non-
array references, we need to be able to access the complete internal state of
such references. Using the JDK 1.1, it is not possible to access the values of
private and protected �elds of an object. Furthermore, to reconstruct an object
at the receiving side, we need a uniform way to create any object. Since the only
way to construct an object is by invoking a constructor and the signature of a
constructor is not guaranteed to be �xed, we need some other way of performing
object serialization.4

Our approach is to add methods to a serializable class, which traverses all
�elds of an instance of the class and reads or writes these �elds from or to a
bu�er. We implemented a compiler which automatically adds such methods to
classes. If a parameterless constructor is not available in the class, the compiler
will also add one for us so we can create instances of serializable objects in a
uniform way.5 Since we add our methods to the original Java source code, this

4 In JDK 1.2, because of its more 
exible security implementation, it is possible to
access all �elds of an object through re
ection. However, we still have the problem
of creating an uninitialized instance.

5 This method is not completely safe, since an existing parameterless constructor may
produce undesired side-e�ects.



public class Serialize

{

protected Nexus nexus;

protected PutBuffer outbuf;

protected GetBuffer inbuf;

protected URL codebase;

public Serialize();

public void initWrite();

public void initRead(Object buffer, String codebase);

public Object getBuffer();

public final void writeHPCxxHeaderStartpoint(Startpoint sp);

public final void writeHPCxxHeaderOffset(int off);

public final void writeHPCxxHeaderHandlerid(int id);

public final Startpoint readHPCxxHeaderStartpoint();

public final int readHPCxxHeaderOffset();

public final int readHPCxxHeaderHandlerid();

public void writeboolean(boolean b);

public void writebyte(byte b);

public void writechar(char c);

public void writeshort(short s);

public void writeint(int i);

public void writelong(long l);

public void writefloat(float f);

public void writedouble(double d);

public void writeObject(Object o);

public void writeFinalObject(Class type, Object o);

public boolean readboolean();

public byte readbyte();

public char readchar();

public short readshort();

public int readint();

public long readlong();

public float readfloat();

public double readdouble();

public Object readObject();

public Object readFinalObject(Class type);

}

Fig. 5. Serialize



method only works for serializable classes for which we have access to the source
code.

5 Experiments with NexusRMI

In this section, we give some examples of object serialization protocol imple-
mentations that we have experimented with in our NexusRMI framework. We
will show that, with the facilities o�ered in NexusRMI, a wide range of protocol
semantics can be implemented, from semantics close to Java's own to semantics
that can improve the performance of speci�c applications.

Section 5.1 describes the DefaultSerialization protocol. This protocol al-
lows the serialization and deserialization of all primitive and reference types.6

It o�ers the possibility of dynamically downloading classes from the server host
and it will handle graphs of objects correctly, constructing a logically equivalent
graph of objects on the receiving size. This protocol is close to the protocol used
in Java RMI 7 and serves as the default serialization protocol in NexusRMI.

The RelaxedSerialization protocol described in Sect. 5.2 relaxes the de-
fault serialization semantics a little by removing the dynamic class loading fa-
cility and the check for previously serialized objects. This means that a graph
of objects can still be passed as a parameter or return value, but only if it satis-
�es certain restrictions explained later. In that sense, this protocol is potentially
unsafe, but may give better performance.

Finally, we present the SpecificSerialization protocol that can only han-
dle objects very speci�c to the serialization protocol. This is of course a very
restricted protocol, but this approach may further improve the performance for
a speci�c application. This protocol is described in Sect. 5.3.

The benchmark that we will use to compare the performance of the various
approaches is one that sends back and forth an array of Complex number objects,
each containing two doubles. We experimented with di�erent types of object
serialization protocols as will be described in Sect. 5.4.

5.1 The DefaultSerialization Protocol

In this section we will describe a general serialization protocol that can handle
any object given to it. Reading and writing primitive types is done by delegating
this task directly to Nexus' bu�er implementations. Reading and writing refer-
ences to objects is done by invoking the methods added to these object by our
compiler. For array references, a distinction is made between arrays of primitives
and arrays of references. The serialization of the former is done by the Nexus
library, the latter is serialized by serializing each reference separately. Some Ob-
jects that do not have the serialization methods added (because source code was
not available) are serialized in an ad hoc manner.

6 provided that source code is available.
7 class versioning is not yet implemented.



By default, complete type information has to be included to be able to create
an instance of the right class. We provide additional methods for (de)serializing
parameters of a �nal class, since these do not need complete type information
(the stub compiler can obtain the type information statically). Furthermore,
care has to be taken to make sure that multiple references to the same object
does not cause the creation of multiple objects at the receiver. Related to this
is detecting cycles in the object graph so that the object serialization does not
end up in an in�nite loop.

5.2 The RelaxedSerialization Protocol

A majority of the data that we want to serialize has a '
at' structure for which
the check for multiple references to an object is not needed. By removing this
check, we should obtain better performance in case many objects are serialized.

Another source of overhead may be the dynamic loading of classes from the
server host. Even if classes are available locally, just invoking the RMIClass-
Loader instead of loading classes directly by an invocation of Class.forName()
may yield some overhead.

Both optimizations were incorporated in RelaxedSerialization, the second
serialization protocol that we experiment with in this paper. Its implementation
is similar to the DefaultSerialization protocol, except for the optimizations
described above.

5.3 The SpecificSerialization Protocol

If parameters and return values for a particular remote method can only take
values of a restricted set of types, it is possible to optimize object serialization
signi�cantly. Tests for types of objects that are never encountered could be re-
moved completely. Also, the internal state of some objects could be accessed
more e�ciently than they are accessed in the DefaultSerialization and the
RelaxedSerialization protocol.

To see how much the performance of RMI could be improved by using a more
e�cient serialization protocol, we performed some experiments with an array of
Complex number objects, each containing two (primitive) double values that
are publicly accessible. We wrote a little program that just sends these objects
back and forth plus an accompanying object serialization protocol that can only
handle these types of objects. The only methods that had to be provided were
the writeObject() and readObject(). Since all �elds of the object are public,
these two methods directly access these �elds to obtain higher performance.

The next section describes our experiments and the results obtained.

5.4 Object Serialization Performance

In this section we will compare the performance of the three serialization proto-
cols described in the previous sections. These serialization protocol implementa-
tions all use the serialization primitives o�ered by NexusJava. In essence, object



serialization in NexusRMI can be divided into three layers as shown in Fig. 6.
The DataConversion layer takes care of writing primitive values in appropri-
ate form in a byte array. The PutBuffer/GetBuffer layer o�ers facilities for
managing outgoing and incoming bu�ers respectively. The NexusRMI layer is in
fact any custom implemented serialization protocol. Only serialization protocols
implemented in the NexusRMI layer can be 'plugged' into NexusRMI.

PutBuffer

DataConversion

Serialize NexusRMI

Nexus
GetBuffer

Fig. 6. Overview of serialization layers

The performance of our serialization protocols is measured by invoking the
writeObject() and readObject() methods o�ered by the NexusRMI layer. To
assess which parts of object serialization cause the most overhead, we will also
measure object serialization performance by directly invoking the the methods
from GetBuffer and PutBuffer and by directly invoking the methods from
DataConversion. These methods cannot be 'plugged' into NexusRMI, however,
since the interface required by NexusRMI is bypassed.

The �rst alternative method uses the PutBuffer implementation to write
the simple internal state directly, and the GetBuffer implementation to read
the internal state directly. Comparing the performance of this method with the
performance of the specialized object serialization protocol of Sect. 5.3 gives us
a good indication of the overhead incurred by the object serialization framework
of NexusRMI.

In the other methods, we bypass the PutBuffer and GetBuffer implemen-
tations and use the DataConversion object implementation provided by Nexus-
Java to directly write into a byte array. We �rst measure the serialization and
deserialization performance, including the overhead caused by allocating the
bu�er when writing, and allocating the data structure (the Complex number
object array and each complex number individually) when reading. Lastly, we
measure the (de)serialization performance when using the DataConversion ob-
ject, without including the memory allocation overhead.

We assessed the performance of object serialization by calculating the write
rate and read rate separately. We measured the time T (in seconds) needed
to serialize a particular object of size K (in Mbits). The write rate is than
de�ned to be K=T (in Mbits per second or mbps). We also calculated the read



rate by dividing the size of the object by the time it takes to deserialize it.
The performance of the di�erent object serialization protocols on a uniprocessor
300MHz UltraSPARC II is summarized in Fig. 7.

As can be seen, the upper limit for object serialization for complex number
objects is approximately 40mbps (megabits per second). For lower number of
objects, the resolution of the used timer is too low, which causes the measured
time to be 0msec, causing the object serialization performance to become in-
�nity. The allocation of the bu�er does not add signi�cant overhead, while our
implementation of the PutBuffer class does add signi�cant overhead. The ob-
ject serialization framework of our NexusRMI package does not add much over-
head when using the special serialization protocol for complex numbers. Finally,
adding generality to the object serialization performance causes the performance
to drop some more.

Object deserialization does su�er from overhead due to the allocation of
the data. In this case, each complex number must be allocated on the heap
separately. The implementation of the GetBuffer class does not add signi�cant
overhead, which was to be expected, since it is just a wrapper around byte-
array. Contrast this with the PutBuffer implementation, which had to provide
the dynamic expansion of the bu�er. Also on the deserialization side, our object
serialization framework does not add much overhead in itself, except when the
protocol gets more general.

To compare our serialization protocols in the context of RMI we ran a simple
RMI program that sends back and forth an array of complex number objects.
We tested the three serialization protocols that are implemented according to
the NexusRMI serialization framework as well as the default JavaRMI for com-
parison. We used a dual processor UltraSparc to perform the test in order to
keep actual transfer time at a minimum, and still allow client and server to run
in parallel. The results are shown in Fig. 8.

As can be seen, the default serialization protocol achieves the same order
of performance as Java RMI for larger message sizes. Note, however, that Java
RMI's object serialization semantics is still stronger than ours. Also, the imple-
mentation of the RMI system is di�erent. Where we rely on compiler generated
class traversal routines to access the internal state of an object, Java RMI uses
re
ection. On the other hand, Java RMI uses TCP to communicate, while we use
the Java port of the Nexus library, which uses TCP as its underlying communi-
cation mechanism. As noted in [3], using NexusJava also inhibits the overlapping
of computation and serialization, something that is done in Java RMI.

Relaxing protocol semantics improves RMI performance, although not dra-
matically, which could be expected after investigating the object serialization
protocol performance in isolation as we did earlier.

The specialized serialization protocol improves performance even further. The
performance thus obtained is, however, still disappointing. The reason for this
poor performance is probably a combination of reasons also mentioned in [11],
where the most important would be the fact that each array element has to be
separately serialized. The serialization of the actual primitive data is done by



0

10

20

30

40

50

60

70

100 1000 10000 100000 1e+06

se
ri

al
iz

at
io

n 
ra

te
 (

m
bp

s)

number of complex numbers

write rates

using DataConversion without allocation overhead
using DataConversion with allocation overhead

using GetBuffer/PutBuffer
using specialized serialization object

using serialization object without multiple reference check
using serialziation object with multiple reference check

0

10

20

30

40

50

60

70

100 1000 10000 100000 1e+06

de
se

ri
al

iz
at

io
n 

ra
te

 (
m

bp
s)

number of complex numbers

read rates

using DataConversion without allocation overhead
using DataConversion with allocation overhead

using GetBuffer/PutBuffer
using specialized serialization object

using serialization object without multiple reference check
using serialziation object with multiple reference check

Fig. 7. Write and read rates on a uniprocessor UltraSPARC II



0

1

2

3

4

5

6

7

8

100 1000 10000 100000

th
ro

ug
hp

ut
 (

M
bp

s)

array size

JavaRMI
NexusRMI with DefaultSerialization

NexusRMI with RelaxedSerialization
NexusRMI with SpecificSerialization

Fig. 8. Performance of RMI implementations

explicitly converting each data item to a byte representation and copying these
bytes to the destination bu�er.

6 Conclusions and Future Research

We have presented an implementation of the Java Remote Method Invocation
framework that allows us to almost transparently communicate with remote
object written in the HPC++ language. We have also shown how we let the
implementor of remote objects exercise more control over the object serialization
aspect of RMI, while making minimal changes to the RMI speci�cation. Next
we measured the performance of a number of object serialization protocols to
identify those aspects of object serialization that prevent us from obtaining a
high performance. These tests, however, also show that the performance can be
improved by restricting the object serialization protocol.

In addition to specifying the object serialization protocol on a per remote
object basis, one may also wish to specify the underlying network protocol on a
per remote object basis. This would allow remote objects to easily communicate
with objects that use a di�erent transport layer. The issue here is to design a
common transport interface that can be e�ciently implemented by any other
existing communication library.



Java RMI was designed as a very general framework for remote objects to
communicate. Although this is very convenient for most application program-
mers, when dealing with performance demanding applications, it is generally
useful to sacri�ce some generality in favor of e�ciency. We have shown that this
is possible with RMI too, while retaining the convenience for applications that
do not really need the performance.

References

1. Albatross project, 1998. http://www.cs.vu.nl/albatross.
2. P. Beckman, D. Gannon, and E. Johnson. Portable Parallel Programming in

HPC++. 1996.
3. F. Breg, S. Diwan, J. Villacis, J. Balasubramanian, E. Akman, and D. Gan-

non. Java RMI Performance and Object Model Interoperability: Experiments with
Java/HPC++. Concurrency: Practice and Experience, 10:(to appear), 1998.

4. I. Foster, G.K. Thiruvathukal, and S. Tuecke. Technologies for ubiquitous super-
computing: a Java interface to the Nexus communication system. Concurrency:
Practice and Experience, 9(6):465{475, jun 1997.

5. D. Gannon, R. Bramley, T. Stuckey, J. Villacis, J. Balasubramanian, E. Akman,
F. Breg, S. Diwan, and M. Govindaraju. Developing Component Architectures for
Distributed Scienti�c Problem Solving. IEEE Computational Science & Engineer-
ing, 5(2):50{63, 1998.

6. Object Management Group. The Common Object Request Broker: Architecture
and Speci�cation, jul 1995.

7. S. Hirano and H. Yasu, Y. Igarashi. Performance Evaluation of Popular Distributed
Object Technologies for Java. Concurrency: Practice and Experience, 10:(to ap-
pear), 1998.

8. Java Grande Forum. http://www.javagrande.org/.
9. Ninja project, 1998. http://ninja.cs.berkeley.edu/.
10. Objectspace. Objectspace Voyager Core Package Technical Overview, 1997.
11. M. Philippsen and B. Haumacher. Bandwidth, Latency, and other Problems of

RMI and Serialization. 1998.
12. M. Philippsen and M. Zenger. JavaParty - Transparent Remote Objects in Java.

Concurrency: Practice and Experience, 9(11):1225{1242, nov 1997.
13. H Satoshi. HORB: Distributed Execution of Java Programs. 1997.
14. Sun Microsystems. Java(TM) Remote Method Invocation Speci�cation, oct 1997.

revision 1.42 jdk1.2Beta1.
15. G.K. Thiruvathukal, L.S. Thomas, and A.T. Korczynski. Re
ective Remote

Method Invocation. Concurrency: Practice and Experience, 10:(to appear), 1998.
16. R. Veldema, R. van Nieuwpoort, J. Maassen, H.E. Bal, and A. Plaat. E�cient Re-

mote Method Invocation. Technical Report IR-450, Vrije Universiteit, Amsterdam,
sep 1998.

17. M. Welsh. Ninjarmi, 1998. http://www.cs.berkeley.edu/�mdw/proj/ninja/.
18. A. Wollrath, J. Waldo, and R. Riggs. Java-Centric Distributed Computing. IEEE

Micro, 17(3):44{53, may/jun 1997.


	Welcome
	IPPS/SPDP 1999
	Introduction
	Author Index
	Session Index
	Workshops
	BioSP3
	EHPC
	FMPPTA
	HCW
	HIPS
	IRREGULAR
	JAVA
	PC-NOW
	RAW
	RTSPP
	WOCS
	WPDRTS


	IPPS/SPDP 1998
	Introduction
	Author Index
	Session Index
	Workshops
	BioSP3
	EHPC
	FMPPTA
	FTPDS
	HCW
	HIPS
	PC-NOW
	RAW
	RTSPP
	SCOOP
	WPDRTS
	WRPC


	IPPS 1997
	Introduction
	Author Index
	Session Index
	Workshops
	FTPDS
	RTSPP
	WOCS


	IPPS 1996
	Introduction
	Author Index
	Session Index


