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Abstract

The Virtual Interface (VI) architecture has become the industry standard for user-level network
interfaces. This paper presents the implementation and evaluation of Javia, a Java interface to the
VI architecture. Javia explores two points in the design space. The first approach manages buffers
in C and requires data copies between the Java heap and native buffers. The second approach relies
on a Java-level buffer abstraction that eliminates the copies in the first approach. Javia achieves an
effective bandwidth of 80Mbytes/sec for 8Kbyte messages, which is within 1% of those achieved
by C programs. Performance evaluations of parallel matrix multiplication and of the active
messages communication protocol show that Javia can serve as an efficient building block for Java
cluster applications.
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1 Introduction

User-level network interfaces (UNIs) introduced over the last few years have reduced the overheads of
communication within clusters by removing the operating system from the critical path [PLC95, vEBB+95,
DBC+98]. Intel, Compaq, and Microsoft have taken input from the numerous academic projects to produce
an “industry standard” UNI called the Virtual Interface (VI) architecture [VIA97]. At this point,
commercial hardware that implements the VI architecture is available for Windows NT/2000. Several
studies demonstrate the architecture’s potential for high performance [BGC98] as well as for supporting
higher level communication abstractions and clustered applications [SPS98, SSP99].

Recent advances in Java compilation technology and the growing interest in using Java for cluster
applications are making the performance of Java communication an interesting topic. Research in JITs,
static Java compilers, locking strategies, and garbage collectors [ACL+98, ADM+98, BKM+98, FKR+99,
MGG98] have delivered promising results, gradually reducing the performance gap between Java and C
programs. Thus, providing access to the VI architecture from Java may soon become an important building
block for Java cluster applications.

The important advances made by UNIs are (i) to enable the DMA engine to move data directly between the
network and buffers placed in the application address space, and to (ii) allow the application to manage
these buffers explicitly. The DMA access to application buffers eliminates the traditional path through the
kernel, which typically involves one or more copies. By managing buffers explicitly, the application can
often avoid copies and can use higher-level information to optimize their allocation. Unfortunately,
requiring applications to manage the buffers in this manner is ill matched to the foundations of Java. Java
prevents the programmer from exerting any control over the layout, location and lifetime of Java objects,
which is exactly what is required to take advantage of UNIs.

In this paper, we present a two-level Java interface to the VI architecture called Javia. The first level of
Javia (Javia-I) manages the buffers used by the VI architecture in native code (i.e. hides them from Java)
and adds a copy on the transmission and reception paths to move the data into and out of Java arrays. The
copy in the transmission path can be optimized away by pinning the array on the fly. Javia-I can be
implemented for any Java VM or system that supports a JNI-like native interface. Benchmarks show that
Javia-I achieves a peak bandwidth of 70Mbytes/s, which is 10 to 15% lower than those achieved by C
programs.
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The second level of Javia (Javia-II) introduces a special buffer class that, coupled with special features in
the garbage collector, eliminates the need for the extra copies. In Javia-II, the application can allocate
pinned regions of memory and use these regions as Java arrays. These arrays are genuine Java objects (i.e.
can be accessed directly) but are not affected by garbage collection as long as they need to remain
accessible by the network interface DMA engine. This allows Java applications to explicitly manage the
buffers used by the VI architecture and to transmit/receive Java arrays directly. Micro-benchmarks show
that programs using Javia-II can achieve bandwidths of over 80 Mbytes/s for large messages (> 8Kbytes),
which are within 1% (error range) of those achieved by C programs.

Javia is intended as a building block for the construction of parallel Java applications as well as higher level
communication libraries entirely in Java. Javia has been used for an implementation of parallel matrix
multiplication (pMM) as well as an active messages library (Jam). Performance results of pMM on an 8-
node PC cluster show that the overall application performance can improve with faster communication
times. A point-to-point performance evaluation of Jam shows that high-level communication libraries can
be implemented efficiently in Java.

Section 2 provides background on the VI architecture and on the experimental setup used in the paper.
Sections 3 and 4 describe the Javia-I and Javia-II architectures, respectively. Section 5 presents the design
and evaluation of pMM and Jam over Javia. Section 6 relates Javia to other efforts in improving Java’s
communication performance and section 7 concludes.

2 Background

2.1 Virtual Interface Architecture

The VI architecture is connection-oriented. To access the network, an application opens a virtual interface
(VI), which forms the endpoint of the connection to a remote VI. In each VI, the main data structures are
user-level buffers, their corresponding descriptors, and a pair of message queues. User-level buffers are
located in the application’s virtual memory space and used to compose messages. Descriptors store
information about the message, such as its base virtual address and length, and can be linked to other
descriptors to form composite messages. The in-memory layout of the descriptors is completely exposed to
the application. Each VI has two associated queues—a send queue and a receive queue—that are thread-
safe. The implementation of enqueue and dequeue operations is not exposed to the application, and thus
must take place through API calls.

To send a message, an application composes the message in a buffer, builds a buffer descriptor, and adds it
to the end of the send queue. The network interface fetches the descriptor, transmits the message using
DMA, and sets a bit in the descriptor to signal completion. An application eventually checks the descriptors
for completion (e.g. by polling) and dequeues them. Similarly, for reception, an application adds
descriptors for free buffers to the end of the receive queue, and checks (polls) the descriptors for
completion. The network interface fills these buffers as messages arrive and sets completion bits. Incoming
packets that arrive at an empty receive queue are discarded. An application is permitted to poll at multiple
receive queues at a time using VI completion queues. Apart from polling, the architecture also supports for
interrupt-driven reception by posting notification handlers on completion queues.

Protection is enforced by the operating system and by the virtual memory system. All buffers and
descriptors used by an application are located in memory mapped into that application’s address space.
Other applications cannot interfere with communication because they do not have the buffers and
descriptors mapped into their address space.

A major difficulty in the design of user-level network interfaces is handling virtual to physical address
translations in the network interface. This is required because pointers (e.g. to descriptors or buffers) are
specified as virtual addresses by the applications yet the network interface must use physical addresses to
access main memory with DMA. In the VI architecture, this is handled by placing all buffers and
descriptors into memory regions that are registered with the network interface before they are used. A
memory region is a virtually contiguous memory segment that an application allocates and registers with
the VI architecture. The registration is performed by the operating system, which pins the pages underlying
the region and communicates the physical addresses to the network interface. The latter stores the
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translation in a table indexed by a region number. While all addresses in descriptors are virtual, the
application is required to indicate the number of the region with each address (in effect all addresses are 64
bits consisting of a 32-bit region number and a 32-bit virtual address) so that the network interface can
translate the addresses using its mapping table.

2.2 Experimental Setup

2.2.1 Giganet Cluster

The network interface used throughout this dissertation is the commercially available GNN-1000 from
Giganet [G98] for Windows 2000 beta 3. The network adapter is accompanied by the following software:
(i) a custom firmware that implements the packet multiplexing and address translation in hardware, (ii) a
device driver that implements VI setup and tear-down, page pinning and unpinning routines that coordinate
with the TLB in the adapter, among other things, (iii) and a user-level library (Win32 dll) that implements
the VI Architecture API.

The GNN-1000 can have up to 1024 virtual interfaces opened at a given time and a maximum of 1023
descriptors per send/receive queue. The virtual/physical translation table can hold over 229,000 entries. The
maximum amount of pinned memory at any given time is over 930Mbytes. The maximum transfer unit is
64Kbytes. The GNN-1000 does not support interrupt-driven message reception.

The cluster used consists of eight 450Mhz Pentium Pro PCs with 128MB of RAM, 512Kbytes second level
cache (data and instruction) and running Windows2000 beta 3. A Giganet GNX-5000 (version A) switch
connects all the nodes in a star-like formation. The network has a bi-directional bandwidth of 1.25 GBps
and interfaces with the nodes through the GNN-1000 adapter. Basic end-to-end round-trip latency is around
14us (16us without the switch) and the effective bandwidth is 82MB/s (100MB/s without the switch) for
4KByte messages.

2.2.2 Marmot

Marmot [FKR+99] is a Java system developed at Microsoft Research. It consists of a static, optimizing,
byte-code to x86 compiler and a runtime system. The compiler applies standard optimizations (e.g. array
bounds check elimination, common sub-expression elimination, and constant folding), object-oriented
optimizations (e.g. method inlining and type cast elimination), and Java-specific optimizations such as
array-store-check elimination. Marmot does not rely on any external compiler or back-end and currently
runs on P-II based PCs with Windows NT/2000. Java programs compiled by Marmot run roughly 1.5x to
5x faster than using Microsoft’s JVM (build 3168). Because it relies solely on a static compiler, Marmot
does not support dynamic loading of classes.

Most of Marmot’s runtime support is implemented in Java, including casts, instanceof, array store
checks, thread synchronization, and interface call lookup. Synchronization monitors are implemented as
Java objects, which are updated in critical sections written in C. Threads are also Java objects that are
mapped onto Win32 threads. Marmot supports most of JDK1.1: java.lang, java.util, java.io, and
java.awt. Support for object serialization (in the java.io package) and reflection
(java.lang.reflect) have also been added. Marmot is configured to use a semi-space copying collector
based on the Cheney scanning algorithm. All objects are allocated in the garbage-collected heap.

Marmot’s interaction with native code is very efficient. It translates Java classes and methods into their
C++ counterparts and uses the same alignment and the “fast-call” calling convention as native x86 C++
compilers. C++ class declarations corresponding to Java classes that have native methods must be manually
generated. All native methods are implemented in C++, and Java objects are passed by reference to native
code, where they can be accessed as C++ structures. A call of a null Java-to-native method costs about
0.3µs on a 450Mhz Pentium-II.

Garbage collection is automatically disabled when any thread is running in native, but can be explicitly
enabled by the native code. In case the native code must block, it can stash up to two (32-bit) Java
references into the thread object so they can be tracked by the garbage collector. During Java-native
crossings, Marmot marks the stack so the copying garbage collector knows where the native stack starts
and ends.
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3 Javia-I

3.1.1 Basic Architecture

The general Javia-I architecture consists of a set of Java classes and a native library. The Java classes are
used by applications and interface with a commercial VIA implementation through the native library. The
core Javia-I classes are shown below:

1 public class Vi { /* connection to a remote VI */
2   public Vi(ViAddress mach, ViAttributes attr) { … }
3 
4   /* async send */
5   public void sendPost(ViBATicket t);
6   public ViBATicket sendWait(int millisecs);
9
10    /* async recv */
11    public void recvPost(ViBATicket t);
12    public ViBATicket recvWait(int millisecs);
13
14    /* sync send */
15    public void send(byte[] b,int len,int off,int tag);
16  
17    /* sync recv */
18    public ViBATicket recv(int millisecs);
19  }
20  
21  public class ViBATicket {
22    private byte[] data; private int len, off, tag;
23    private boolean status;
24    /* public methods to access fields ommited */
25  }

The class Vi  represents a connection to a remote VI and borrows the connection set-up model from the
JDK sockets API. When an instance of Vi  is created a connection request is sent to the remote machine
(specified by ViAddress ) with a tag. A call to ViServer.accept  (not shown) accepts the connection and
returns a new Vi  on the remote end. If there is no matching accept, the Vi  constructor throws an exception.

Javia-I contains methods to send and receive Java byte arrays1. The asynchronous calls (lines 7-12) use a
Java-level descriptor (ViBATicket ) to hold a reference to the byte array being sent or received and other
information such as the completion status, the transmission length, offset, and a 32-bit tag. Figure 1 shows
the Java and native data structures involved during asynchronous send and receive. Buffers and descriptors
are managed (pre-allocated and pre-pinned) in native code and a pair of send and receive ticket rings is
maintained in Java and used to mirror the VI queues.

To post a Java byte array transmission, Javia-I gets a free ticket from the ring, copies the data from the byte
array into a buffer and enqueues that on the VI send queue. sendWait  polls the queue and updates the ring
upon completion. To receive into a byte array, Javia-I obtains the ticket that corresponds to the head of the
VI receive queue, and copies the data from the buffer into the byte array. This requires two additional
Java/native crossings: upon message arrival, an upcall is made in order to dequeue the ticket from the ring,
followed by a downcall to perform the actual copying. Synchronized accesses to the ticket rings and data
copying are the main overheads in the send/receive critical path.

Javia-I provides a blocking send call (line 15) because in virtually all cases the message is transmitted
instantaneously—the extra completion check in an asynchronous send is more expensive than blocking in
the native library. It also avoids accessing the ticket ring and enables two send variations. The first one

                                                          
1 The complete Javia-I interface provides send/recv calls for all primitive-typed arrays.
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(send-copy) copies the data from the Java array to the buffer whereas the second (send-pin) pins the array
on the fly, avoiding the copy2.

The blocking receive call (line 18) polls the reception queue for a message, allocates a ticket and byte array
of the right size on-the-fly, copies data into it, and returns a ticket. Blocking receive not only eliminates the
need for a ticket ring, it also fits more naturally into the Java coding style. However, it requires an
allocation for every message received, which may cause garbage collection to be triggered more frequently.

Pinning the byte array for reception is unacceptable because it would require the garbage collector to be
disabled indefinitely.

3.1.2 Implementation Status

Javia-I consists of 1960 lines of Java and 2800 lines of C++, and runs on Marmot and other publicly
available JVMs such as JDK1.2 and Jview (build 3167). The C++ code performs native buffer and
descriptor management and provides wrapper calls to Giganet’s implementation of the VI library. A
significant fraction of that code is attributed to JNI support. Interrupt-driven message reception is not
supported in Javia-I: the commercial network adapter used in the implementation does not currently
support the notification API in the VI architecture.

3.1.3 Performance

The round-trip latency achieved between two cluster nodes (450Mhz Pentium-II boxes) is measured by a
simple ping-pong benchmark sending an N byte message back and forth. The effective bandwidth is
measured by transferring a total 15Mbytes of data using various packet sizes as fast as possible from one
node to another. A simple window-based, pipelined flow control scheme [CCH+96] is used. Both
benchmarks compare four different Vi configurations,

1. Send-copy with non-blocking receive (copy),

2. Send-copy with blocking receive (copy+alloc),

3. Send-pin with non-blocking receive (pin), and

4. Send-pin with blocking receive (pin+alloc),

with a corresponding C version that uses Giganet’s VI library directly (raw). Figures 2 and 3 show the
round-trip and the bandwidth plots respectively, and Table 1 shows the 4-byte latencies and the per-byte
costs. Numbers have been taken on both Marmot and JDK1.2/JNI (only copy and copy+alloc are reported
here). JDK numbers are annotated with the jdk label.

Pin’s 4-byte latency includes the pinning and unpinning costs (around 20µs) and has a per-byte cost that is
closest to that of raw (the difference is due to the fact that data is still being copied at the receive end).
Copy+alloc’s 4-byte latency is only 1.5µs above that of raw because it bypasses the ticket ring on both
send and receive ends. Its per-byte cost, however, is significantly higher than that of copy due to allocation
and garbage collection overheads. The additional Java/native crossings take a toll in JDK copy: each
downcall not only includes the overhead of a native method invocation in JNI, but also a series of calls to
perform read/write operations to Java object fields. Although JDK copy+alloc is able to bypass the ring,
the per-byte cost appears to be significantly higher, most likely due to garbage collections caused by
excessive allocations during benchmark executions.

Pin’s effective bandwidth is about 85% of that of raw for messages larger than 6Kbytes. Due to the high
pinning costs, copy achieves an effective bandwidth (within 70-75% of raw) that is higher than that of pin
for messages smaller than 6Kbytes. JDK copy peaks at around 65% of raw.

                                                          
2 The garbage collector must be disabled during the operation.
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4 Javia-II

Javia-II addresses the shortcomings of Javia-I by exposing the communication buffers used by the VI
architecture to Java applications. The idea is to give Java programmers the same flexibility that C
programmers have for managing buffers while preserving Java’s type and storage safety. An application
can manage buffers explicitly, access them efficiently, and re-use them with the cooperation of the garbage
collector.

1 public class ViBuffer {
2   /* explicit allocation and free */
3   public static ViBuffer alloc(int bytes);
4   public void free() throws ReferencedException;
5 
6   /* pinning and unpinning */
7   public ViBufferTicket register(Vi vi);
8   public void deregister(ViBufferTicket t);
9 
10   /* handing out references */
11   public synchronized byte[] toByteArray() throws TypedException;
12   public synchronized int[] toIntArray() throws TypedException;
13 
14   /* getting rid of references */
15   public void unRef(CallBack cb);
16 }
17 
18 public class ViBufferTicket {
19   /* no public constructor */
20   ViBuffer buf; private int len, off, tag;
21   /* public methods to access fields ommited */
22 }
23 
24 public class Vi {
25   /* async send */
26   public void sendBufPost(ViBufferTicket t);
27   public void sendBufWait(int millisecs);
28 
29   /* async recv */
30   public void recvBufPost(ViBufferTicket t);
31   public void recvBufWait(int millisecs);
32 }

A buffer is abstracted by the ViBuffer class, as shown above. Allocating a ViBuffer with the static
alloc method (line 3) causes Javia-II to allocate a buffer of the specified size outside the Java heap. The
register method (line 7) pins the buffer to physical memory (so it can be used by the VI architecture),
associates it with a VI, and obtains a descriptor to the buffer, which is represented by a ViBufferTicket.
At that point, the buffer can be directly accessed by the DMA engine for communication. The buffer can be
unregistered (line 8), which unpins it, and later re-registered with the same or a different VI. An application
can access the buffer (e.g. perform read and write operations) as a Java primitive-typed array. For example,
an invocation of toByteArray (line 11) returns a reference to a genuine Java byte array that is located in
the buffer.

For transmission and reception of buffers, Javia-II provides only asynchronous primitives, as shown in
lines 15-19. Javia-II differs from Javia-I in that the descriptors point directly to the Java-level buffers
instead of native buffers (Figure 4). The application composes a message in the buffer (through array write
operations) and enqueues the buffer for transmission using the sendBufPost method. sendBufPost is
asynchronous and takes a ViBufferTicket, which is later used to signal completion. After the send
completes, the application can compose a new message in the same buffer and enqueue it again for
transmission. Reception is handled similarly—the application posts buffers for reception with
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recvBufPost and uses recvBufWait to retrieve received messages. For each message, it extracts the
data through array read operations and can choose to post the buffer again.

An application can manifest its intention to re-use or de-allocate a buffer by invoking its unRef method
(line 15). This call makes the buffer visible by the garbage collector, enabling it to track the array
references into the buffer and to notify the application when such references no longer exist. At this point,
an application can obtain new array references into the buffer, possibly of some other primitive type, or de-
allocate the buffer.

Java’s storage safety is preserved by ensuring that a ViBuffer will remain allocated as long as it is
referenced as an array. For example, invocations of free result in a ReferencedException if an
application holds one or more references into the buffer. Type safety is preserved by ensuring that an
application will not obtain two differently typed array references into a single jbuf at any given time. For
example, invocations of toIntArray will fail with a TypedException if toByteArray has been
previously called on the same buffer. These properties are enforced through runtime checks. Accessing
these buffers, however, require no runtime checks other than those already imposed by Java (e.g. array-
bounds and null-pointer checks). A complete elaboration on the safety properties of ViBuffers and their
integration into Marmot’s copying collector can be found in [CvE99].

Javia-II adds about 100 lines of Java and 100 lines of C to Javia-I’s implementation.

4.1.1 Performance

Table 1 and Figure 5 compare the round-trip latency obtained by Javia-II (buffer) with raw and two variants
of Javia-I (pin and copy). The 4-byte round-trip latency of Javia-II is 20.5µs and the per-byte cost is 25ns,
which is the same as that of raw because no data copying is performed in the critical path. The effective
bandwidth achieved by Javia-II (Figure 6) is within 1 to 3% of that of raw, which is in the margin of error.

5 Applications

5.1 pMM: Parallel Matrix Multiplication

pMM represents a matrix as array of array of doubles and uses a parallel algorithm based on message
passing and block-gaxpy operations [GvL89]. The core of the algorithm used in pMM is illustrated as
follows, using Javia-I blocking receives:

1 int tau = myproc;
2 int stride = tau * r;
3 pvm.barrier(); /* global synchronization */
4 for (int k = 0; k < p; k++) {
5   /* comm phase: send to right, recv from left using alloc receives */
6   if (tau != myproc) {
7   for (int j = 0; j < n/p; j++)
8     rightVi.send(Aloc[j], 0, n, 0);
9   for (int j = 0; j < n/p; j++) {
10     do { Aloc[j] = leftVi.recvDoubleArray(0); } while (Aloc[j] == null);
11   }
12   /* computation phase */
13   for (int j = 0; j < n/p; j++) {
14     double[] c = Cloc[j];
15     double[] b = Bloc[j];
16     for (int i = 0; i < n; i++) {
17       double sum = 0.0;
18       for (int k = 0; k < n/p; k++) {
19         double[] a = Aloc[k];
20         sum += a[i] * b[stride+k];
21       c[i] += sum;
22     }
23   }
24   tau++;
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25   if (tau == p) tau = 0;
26   stride = tau * r;
27   pvm.barrier();
28 }

The computation kernel is a straightforward, triple-nested loop with three elementary optimizations: (i)
one-dimensional indexing (columns are assigned to separate variables e.g. c[i] rather than Cloc[j][k]),
(ii) scalar replacement (e.g the sum variable hoists the accesses to c[i] out of the innermost loop), and (iii)
a 4-level loop unrolling (not shown above).

The single processor performance of the multiplication kernel compiled using Marmot is about 70Mflops
for 64x64 matrices, and 45Mflops for 256x256 matrices (compared to JDK1.2’s 55Mflops and Jview’s
37Mflops for same size matrices) on a 450Mhz Pentium-II. In contrast, the performance of DGEMM found
in Intel’s Math Kernel library [Int99] is over 400Mflops for 64x64 matrices on the same machine. In
Marmot, the cost of array-bounds checks account for 40 to 60% of the total execution time, whereas null-
pointer checks account for less than 5%.

5.1.1 Cluster Performance

Figures 7 and 8 compare the absolute time spent in communication (in milliseconds) with input matrices of
size 64x64 and 256x256, respectively, on 8 processors. Total communication time is obtained by
commenting out the computation phase of pMM. The cost of barrier synchronization is factored out of the
total communication time by skipping both communication and computation phases. Javia-II’s
communication time is consistently smaller than the rest: with 256x256 matrices, where message payload is
2048 bytes, Javia-II spent 25% less time than copy-async in communication, as predicted by micro-
benchmarks. For an input size of 64x64, the fraction of communication time in the total execution time is
around 73% (median) for jdk-copy-async, with a high of near 85% for pin-async and a low of 56% for
Javia-II. For 256x256, the median percentage is around 20%, with a low of 13% for Javia-II.

Figure 10 shows that the overall performance of pMM using 256x256 matrices correlates well with the
communication performance seen in Figure 8. A peak performance of 320Mflops is attained by Javia-II,
followed by 275Mflops attained by copy-alloc on 8 processors. Javia-II consistently outperforms the other
versions on 2 and 4 processors as well (not shown). However, this “nice” correlation is not the case for
64x64 matrices, as shown in Figure 9: a peak performance of 175Mflops goes to copy-async on 4
processors. In fact, the overall performance of Javia-II is inferior to those of Javia-I on 2 processors (not
shown). The erratic results seen are most likely due to obscure cache effects. This is a clear indication that,
at this point, faster communication in Java does not necessarily lead to better overall performance: data
locality is essential for numerically intensive applications.

Another interesting data point is that allocating an array on every message reception can actually improve
locality. For example, although copy/pin-alloc spends about 15% more time than copy/pin-async in
communication on 8 processors (Figure 8), cop/piny-alloc’s Mflops is as much as 10% higher than that of
copypin-async (Figure 10).

5.2 Jam: Active Messages for Java

Jam is an implementation of AM-II, the second-generation active messages layer targeted for cluster
computing [AC95].In Jam, endpoints are connected across the network by a pair of virtual interface
connections: one for small messages and another for large messages. Each entry in the endpoint’s
translation table corresponds to one such pair. Endpoints need to be registered with the local name server in
order for them to be visible to remote endpoints. The name server uses a simple naming convention:
<remote machine, endpoint name>. A map call initiates the setup of a connection: the name of the remote
endpoint is sent to the remote machine; the connection request is accepted only if the remote endpoint is
registered. Jam provides reliable, ordered delivery of messages. While the interconnections between virtual
interfaces and the back-end switch are highly reliable, a flow control mechanism (similar to the one in
[CCH+96]) is still needed to avoid message losses due to receive queue overflows or send/receive
mismatches.

A key design issue in Jam is how to provide an adequate bulk transfer interface to Java programmers. AM-
II instead lets the sender specify an integer offset into a “virtual segment” supplied by the receiver: senders
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no longer have to deal with remote virtual addresses. This means that receivers in Java would have to
operate on arrays using offsets (assuming no extra copying of data), which would be inconvenient at best.

Jam exploits two bulk transfer designs. The first design, which is based on Javia-I, does not require the
receiver to supply a virtual segment—byte arrays are allocated upon message arrival and are passed directly
to the handlers. Despite the allocation and copying overheads, this design works with any GC scheme and
fits more naturally into the Java coding style.

The second design, which is based on Javia-II and calls for a copying collector, requires the receiver to
supply a list of ViBuffers to an endpoint. The endpoint manages this list as a pool of receive buffers for
bulk transfers and associates it to a separate virtual interface connection. Upon bulk data arrival, the
dispatcher obtains a Java array reference from the receiving ViBuffer and passes that reference directly to
the handler. The receiving ViBuffer is unRefed after the handler’s execution. When the pool is (about to
be) empty, the dispatcher reclaims the buffers in the pool by triggering a garbage collection. Jam knows
whether the underlying GC is a copying one after the first attempt to reclaim the buffers: if they are still in
the referenced state, Jam dynamically switches back to the first design.

This design avoids copying data in the communication critical path and defers copying to GC time only if it
is indeed necessary. For example, consider two types of active message handlers:

1 class First extends AM_Handler {
2   private byte first;
3   void handler(Token t, byte[] data, . . .) {
4     first = data[0];
5   }
6 }
7 class Enqueue extends AM_Handler {
8   private Queue q;
9   void handler(Token t, byte[] data, . . . ) {
10     q.enq(data);
11   }
12 }

The handler named First looks at the first element of data but does not keep a reference to it whereas the
handler named Enqueue save the reference to data for later processing. A copying garbage collector will
only have to copy data in the latter case.

5.2.1 Implementation Status

Jam consists of 1000 lines of Java code. A Jam endpoint is an abstract Java class that can be sub-classed for
a particular transport layer. Jam currently has endpoint implementations for Javia-I and Javia-II. Jam
implements all of AM-II short request (AM_RequestM) and reply (AM_ReplyM) calls, one bulk transfer call
(AM_RequestIM), message polling (AM_Poll) and most of bundle and endpoint management functions.
Unimplemented functionality includes asynchronous bulk transfers (AM_RequestXferAsynchM), moving
endpoints across different bundles (AM_MoveEndpoint) and the message error model.

5.2.2 Performance

A simple ping-pong benchmark using AM_Request0 and AM_Reply0 shows a 0-byte round-trip latency of
31us, about 11 us higher than that of Javia-II (Figure 11). This value increases by about 0.5us for every
four additional words. For large messages, Jam round-trip latency is within 25us of Javia-II and has the
same per-byte cost. The main overheads in Jam’s critical path are: (i) an extra pair of send/recv overheads
(due to two separate VI connections: one for small messages, another for bulk transfers); (ii) synchronized
access to bundle and endpoint structures; (iii) handler and translation table lookup, and (iv) protocol
processing (header parsing and flow control).

Jam achieves an effective bandwidth of 75Mbytes/s, within 5% of Javia-II, as seen in Figure 12.
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6 Related Work

One design alternative for Javia would have been to use the JDirect technology developed by Microsoft
[JD97] and deployed in its latest JVM. JDirect enables a Java programmer to define pinned (non-
collectable) objects using source-level, “comment-like” annotations that propagate via byte-code to the JIT
compiler. Although a pinned object can be passed between Java and C without copying, in the current
implementation a pinned object mirrors an actual Java object. The JIT compiler looks at the byte-code
“annotations” and re-directs read/write operations to the pinned object. This re-direction incurs on level of
indirection (i.e. looking up the actual location of the pinned object), which is prohibitively expensive.
Javia-II allows the VI architecture to access pinned ViBuffer directly and lets applications read/write
from/into these buffers through regular Java array references. These accesses are only subjected to safety
checks (e.g. array-bounds checks) already imposed by the Java language.

The Jaguar project [WC99] essentially overcomes the level of indirection that plagued JDirect: extensions
to the JIT compiler generate code that directly accesses a pinned object’s fields. The code generation is
triggered by object typing information (i.e. external objects) rather than source-level annotations as in
JDirect. An implementation of the Berkeley/Linux VI architecture using Jaguar achieves the same level of
performance as Javia: within 1% of the raw hardware. In spite of the high performance, extending the JIT
compiler raises a security concern: whether or not the generated code actually preserves the type-safety
properties of the byte-code. For example, Jaguar would have to generate explicit array-bounds check when
accessing an external array. This is not a concern in Javia since it accesses buffers through genuine Java
references. Another difference between Jaguar and Javia is that Jaguar trades trusted protection for the
ability to access hardware control resources, such as network and file descriptors, in a fine-grain manner.
Javia-II uses special buffers to handle inefficiencies in the data transfer path only while maintaining the
safety properties of Java.

A number of projects have adopted a “front-end” approach to developing communication software for Java
applications: given a particular abstraction (e.g. sockets, RMI, MPI), they provide “glue-code” for
interfacing with legacy libraries in native code. For example, [GFH+98] makes the MPI communication
library available to Java applications by providing automatic tools for generating Java-native interface
stubs. [BDV+98] deals with interoperability issues between Java RMI and HPC++, and [F98] presents a
simple Java front-end to PVM. These projects do not address the performance penalty incurred when
interfacing Java with native code using conventional techniques.

Recently, several projects have focused on making the performance of Java RMI suitable for parallel
computing on clusters of workstations. Manta [MNV+99] is a “Java-like” language and implements Java
RMI efficiently over a Panda, a custom communication system. Manta relies on compiler-support for
generating marshaling and unmarshaling code in C, thereby avoiding type checking at runtime. It
communicates using both JDK’s serialization protocol (for compatibility) as well as a custom protocol (for
performance). Manta is able to avoid array copying in the critical path by relying on a non-copying
collector and scatter/gather primitives in Panda. The authors report a RMI latency of 35µs and a throughput
of 51.3 Mbytes/s on a PII-200/Myrinet cluster, which is within 15% of the throughput achieved by Panda.

KaRMI [NPH99] presents a ground-up implementation of object serialization and RMI entirely in Java.
Much unlike Manta, the authors seek to provide a portable RMI package that runs on any JVM. On an
Alpha500/ParaStation cluster, they report a point-to-point latency of 117µs and a throughput of 2.3
Mbytes/s (compared to a raw throughput of 50 Mbytes/s). The low bandwidth is attributed to the several
data copies in the critical path: on each end, data is copied between objects and byte arrays in Java and then
again between arrays and message buffers. The copying overhead is so critical that their serialization
improvements over JDK1.4 vanish quickly as transfer size increases. Not surprising, both Manta and
KaRMI identify data transfer, in particular object serialization, as the major bottleneck in Java
communication.

7 Concluding Remarks

The research presented here pursues the simple goal of exposing user-level network interfaces to Java
applications. By first exploiting native buffers, Javia-I motivates the need for explicit management of
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buffers and Javia-II. The performance achieved with Javia-II is encouraging: the overhead of the interface
is small compared to the round-trip latency and the peak bandwidth is essentially the same as that achieved
using a C program. This is a clear indication that it is worth removing the copies from the critical path.

Javia is intended as a building block for the construction of parallel Java applications as well as
communication libraries entirely in Java. Javia has been used for implementing a parallel matrix
multiplication application (pMM) as well as an active messages library (Jam). Performance results of pMM
on an 8-node PC cluster show that the overall application performance can improve with lower
communication times if there is sufficient data locality. A point-to-point evaluation of Jam shows that high-
level communication protocols can be implemented efficiently in Java.
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Figure 1. Javia-I per-endpoint architecture. Solid arrow
indicates data copying.

4-byte(us) per-byte(ns)
16.5 25
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Table 1. Javia-I’s 4-byte round-trip latencies and
per-byte additional overhead.
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Figure 2. Javia-I’s round-trip latencies.
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Figure 3. Javia-I’s effective bandwidth.
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Table 2. Javia-II’s 4-byte round-trip latencies
and per-byte additional overhead.
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Figure 7. Comparison of pMM’s communication time using Javia-I and Javia-II
for 64x64 matrices on 8 cluster nodes. The percentage of communication in the
total execution time is indicated on top of each bar.
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Figure 8. Comparison of pMM’s communication time using Javia-I and Javia-II
for 256x256 matrices on 8 cluster nodes. The percentage of communication in
the total execution time is indicated on top of each bar.
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Figure 9. Comparison of pMM’s overall performance using Javia-I and Javia-II
for 64x64 matrices on 2, 4, and 8 cluster nodes.
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Figure 10. Comparison of pMM’s overall performance using Javia-I and Javia-
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Figure 11. Jam round-trip latencies using Javia-I (AM copy, AM copy-alloc) and
Javia-II, and compared with raw and Javia-II.
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Figure 12. Jam’s effective bandwidth using Javia-I (AM copy, pin, copy-alloc)
and Javia-II, and compared with raw and Javia-II.


