
Collaborative 
SVG as a 
Web Service
We present an approach to 
make SVG into a Web 
Service, and to build 
synchronous collaborative 
SVG applications as Web 
services with a message-based 
event model. By integrating 
with the messaging 
environment Narada 
Brokering and the 
collaborative session control 
service XGSP, we show a 
general way of building W3C 
DOM based applications as 
collaborative Web Services. 
This work has two major 
goals; firstly it allows us to 
make a very flexible 
collaborative SVG browser 
exploiting our general 
approach for collaborative 
Web Services. Secondly it 
shows how applications and 
in particular W3C DOM 
based applications can be 
built as Web Services in our 
case utilizing Batik SVG 
Browser, which has a well 
written open source code. 
We have prototyped a shared 
SVG browser and a 
collaborative chess game with 
SVG to demonstrate our 
design concepts.

(To view full paper, see: 
www.svgopen.org/2003/papers/
CollaborativeSVGasA
WebService)

Decomposition of SVG Browser
Key features of the architecture of SVG and related 
applications can be derived from the Model-View-Controller 
picture. The Model component essentially becomes the Web 
Service while the View becomes the user interface. They are 
linked by the NaradaBrokering publish/subscribe messaging 
system; the combination of this with the preparation and 
interpretation of messages corresponds to the Controller 
MVC component. We analyze all possible events of the SVG 
browser and divide them into three types corresponding to 
the three stages of the pipeline in b). The event types are 

Raw Events (low level events including mouse and keyboard events), High Level UI Events (DOM/SVG 
events) and Semantic Events (application events such as shared SVG browser "Open file" events). Raw 
events are generated in the View and are converted into messages for the Model. One can design different 
View modules (with trade-offs in complexity and performance) through choice of which High Level UI 
events and semantic events to process in the Model and which in the View component.

Collaborative SVG as
a Web Service Model
We take the approach that every resource (a 
data file, a video/audio stream, or even a piece 
of software like a SVG browser) is an object. A 
Web Service defines a message based interface 
for sharing of those distributed objects. In our 
case here, we share SVG synchronously and 
make it a Web Service interacting with clients 
and other applications or Web Services. We 

define RFIO (Facing Input and Output ) ports and UFIO (User Facing Input and Output ) ports to 
distinguish distributed and local service interfaces that surround the Web Service.

We use three collaborative SVG applications to illustrate how we build systems based on different ways of 
decomposing SVG in the model These are not the only possibilities and in particular one could package 
SVG as three separate modules as in the previous picture; we only discuss cases here with one or two 
independent modules. For a shared SVG browser application, we assume a master and participating client 
scenario. At any time in a collaborative session, there's only one client assigned the "master role" (such as a 
teacher or player to move in a game of chess) and the others are participating clients (such as students or 
observers and the player who has just moved in chess).

COMMUNITY GRIDS LAB
www.pervas ive . iu .edu

www.svgarena.org

Architecture of shared SVG browser
This example shows the way to make a client side SVG 
browser collaborative in a synchronous fashion and how to 
integrate it into the collaborative environment. We assume 
that all clients have the same version of the SVG application 
so the interpretation and process of semantic events generate 
consistent results. We can use the messaging framework to 
either check this for running clients or instantiate the correct 
version from an SVG "factory" service as for example defined 

in the OGSI (Open Grid Service Infrastructure) standard. However we did not implement this yet. At any 
time, only one client is assigned a master role. The XGSP session control server establishes a collaborative 
session allowing clients to join and responds to requests (such as changing role from participating client to 
master or vice versa) from the clients. The NaradaBrokering system provides the publish/subscribe 
mechanism for the clients to be integrated together under the same topic session. It provides the 
infrastructure for all messages – master events are captured and sent to NaradaBrokering and multicast to 
other participating clients; control messages (request and response) are delivered between clients and 
XGSP. In our architecture all messages (low bandwidth control, high bandwidth TCP/IP data exchange 
and high bandwidth UDP audio-video conferencing) are handled by NaradaBrokering. This allows a 
uniform approach to transport optimization (such as firewalls), session management (through topics) and 
fault-tolerance (through agents monitoring publish-subscribe session).


