
Grid Web Services and Application Factories 
Dennis Gannon, Rachana Ananthakrishnan, Sriram Krishnan, Madhusudhan Govindaraju 

Lavanya Ramakrishnan, Aleksander Slominski 
Department of Computer Science 

Indiana University 
 

Abstract.  This paper describes an implementation of a Grid Application 
Factory Service that is based on a component architecture that utilizes the 
emerging Web Services standards.  The factory service is used by Grid clients 
to authenticate and authorize a user to configure and launch an instance of a 
distributed application. This helps us solve the problem of building reliable, 
scalable Grid applications, by separating the process of deployment and hosting 
from application execution. The paper also describes how these component-
based applications can be made compatible with the Open Grid Service 
Architecture(OGSA) and how OGSA concepts enhance the usability of the 
component framework. 

 

1. Introduction. 
 
A Grid can be defined as a layer of networked services that allow users single sign-on 
access to a distributed collection of compute, data and application resources.  The Grid 
services allow the entire collection to be seen as a seamless information processing 
system that the user can access from any location.  Unfortunately, for application 
developers, this Grid vision has been a rather elusive goal.  The problem is that while 
there are several good frameworks for Grid architectures (Globus [3] and Legion/Avaki 
[3,7]), the task of application development and deployment has not become easier.  The 
heterogeneous nature of the underlying resources remains a significant barrier.  Scientific 
applications often require extensive collections of libraries that are installed in different 
ways on different platforms. Moreover unix-based default user environments vary 
radically between different users and even between the user’s interactive environment 
and the default environment provided in a batch queue.   Consequently, it is almost 
impossible for one application developer to hand an execution script and an executable to 
another user and expect the second user to be able to successfully run the program on the 
same machine, let alone a different machine on the Grid.  The problem becomes even 
more complex when the application is a distributed computation that requires a user to 
successfully launch a heterogeneous collection of applications on remote resources.  
Failure is the norm and it can take days, if not weeks to track down all the incorrectly set 
environment variables and path names. 
 
A different approach, and the one advocated in this paper, is based on the web services 
model [7,8,9,10], which is quickly gaining attention in industry.   The key idea is to 
isolate the responsibility of deployment and instantiation of a component in a distributed 
computation from the user of that component.   In a web service model, the users are only 
responsible for accessing running services.   The Globus Toolkit provides a service for 



the remote execution of a job, but it does not attempt to provide a standard hosting 
environment that will guarantee that the job executes correctly.  That task is left to the 
user.   In a web service model, the job execution and lifetime becomes the responsibility 
of the service provider.    
 
The recently proposed Open Grid Service Architecture (OGSA) [1,2] provides a new 
framework for thinking about and building Grid applications that are consistent with this 
service model view of applications.  OGSA specifies three things that a web service must 
have before it qualifies as a Grid Services. First it must be an instance of a service 
implementation of some service type as described above. Second, it must have a Grid 
Services Handle (GSH), which is a type of Grid URI for the service instance. The third 
property that elevates a Grid Service above a garden-variety web service is the fact that 
each Grid Service instance must implement a port called "GridService", which provides 
any client access to service metadata and service state information.  In the following 
section of this paper we will describe the role the GridService port can play in a 
distributed component system.   
 
OGSA also provides several other important services and port types.  Messaging is 
handled by the NotificationSource and NotificationSink ports.  The intent of this service 
is to provide a simple publish-subscribe system similar to JMS[17], but based on XML 
messages.   A Registry service allows other services to publish service metadata and to 
register services.  From the perspective of this paper, a very important addition is the 
OGSA concept of a Factory service, which is used to create instances of other services.   
 
In this paper, we describe an implementation of an Application Factory Service that is 
designed to create instances of distributed applications that are composed of well-tested 
and deployed components each executing in a well-understood and predictable hosting 
environment.   In this model both the executing component instances and the composite 
application are web services. We also describe how some important features of OGSA 
can be used to simplify client access to the running application from a conventional web 
portal.   We also describe a simple security model for the system that is designed to 
provide both authentication and simple authorization. We conclude with a discussion of 
how the factory service can be used to isolate the user from the details of resource 
selection and management in Grid environments. 
 

1.1 An overview of the Application Factory Service 
 
The concept of a Factory Service is not new.  It is an extension of the Factory Design 
Pattern [13] to the domain of distributed system.  A factory service is a secure and 
stateless persistent service that knows how to create an instance of transient, possibly 
stateful service. Clients contacts the factory service and supply the needed parameters to 
instantiate the application instance.  It is the job of the service to invoke exactly one 
instance of the application and return a WSDL document that clients can use to access the 
application.  OGSA has a standard port type for factory services, which has the same goal 
as the one described here but the details differ in some respects.   



 
To illustrate the basic concept we begin with an example.  Suppose a scientist at a 
location X has a simulation code that is capable of doing some interesting computation 
provided it is supplied with useful initial and bound conditions.  A supplier at another 
location Y may have a special data archive that describes material properties that define 
possible boundary or initial conditions for this simulation. For example, these may be 
aero-dynamic boundary conditions such as fluid temperature and viscosity used in a 
simulation of turbulence around a solid body, or process parameters used in a simulation 
of a semi-conductor manufacturing facility.  Suppose the supplier at Y would like to 
provide users at other locations with access to the application that uses the data archive at 
Y to drive the simulation at X.  Furthermore suppose that the scientist at location X is 
willing to allow others to execute his application on his resources, provided he authorizes 
them to do so.   
 

 
Figure 1.   High-level view of user/application factory service.  User contacts the 
persistent factory service from a web interface.  Factory service handles 
authentication and authorization and then creates an instance of the distributed 
application.  A handle the distributed application is returned to the user. 
 

To understand the requirements for building such a grid simulation service we can follow 
a simple use-case scenario. 
 

The user would contact the factory service through a secure web portal or a direct 
secure connection from a factory service client.  In any case, the factory service 
must be able to authenticate the identity of the user.   

Once the identity of the user has been established the factory service must verify 
that the user is authorized to run the simulation service.   This authorization may 
be as simple as checking an internal access control list, or it may involve 
consulting an external authorization service.  

If the authorization check is successful the factory service can allow the user to 
communicate any basic configuration requirements back to the factory service.  
These configuration requirements may include some basic information such as 



estimates of the size of the computation or simulation performance requirements 
that may affect the way the factory service selects resources on which the 
simulation will run. 

The factory service then starts a process, which creates running instances of a data 
provider component at Y and a simulation component at X that can communicate 
with each other.  This task of activating the distributed application may require 
the factory service to consult resource selectors and workload managers to 
optimize the use of compute and data resources.  For Grid systems, there is an 
important question here: under whose ownership are these two remote services 
run?  In a classic grid model, we would require the end user to have an account on 
both the X and Y resources.  In this model the factory service would now need to 
obtain a proxy certificate from the user to start the computations on the user’s 
behalf.  However, this delegation is unnecessary if the resource providers trust the 
factory service and allow the computations to be executed under the service 
owner’s identity.  The end users need not have an account on the remote resources 
and this is a much more practical service oriented model. 

Access to this distributed application is then passed from the factory service back 
to the client.  The easiest way to do this is to view the entire distributed 
application instance as a transient, stateful web service that belongs to the client. 

The factory service is now ready to interact with another client. 
 
 
In the sections that follow we describe the basic technology used to build such a factory 
service.   The core infrastructure used in this work is based on XCAT [14,15], which is a 
Grid-level implementation of the Common Component Architecture [16] developed for 
the U.S. Department of Energy.   XCAT can be thought of as a tool to build distributed 
application oriented web-services.  We also describe how OGSA related concepts can be 
used to build active control interfaces to these distributed applications. 
  

2. XCAT and Web Services 
 
In this section we describe the component model used by XCAT and discuss its relation 
to the standard web service model and OGSA. XCAT components are software modules 
that provide part of a distributed application’s functionality in a manner similar to that of 
a class library in a conventional application.  A running instance of an XCAT component 
is a web service that has two types of ports.  One type of port, called a provides-port, is 
essentially identical to a normal web service port.    A provides-port is a service provided 
by the component.   The second type of port is called a uses-port. These are ports that are 
“outgoing only” and they are used by one component to invoke the services of another, or 
as will be described later, to send a message to any waiting listeners.   Within the CCA 
model, as illustrated in Figure 2, a uses-port on one component may be connected to a 
provides-port of another component if they have the same port interface type.   
 



 
Figure 2.  CCA Composition model.  A uses-port, which represents a proxy for an 
invocation of a remote service may by bound at runtime to any provides-port of 
the same type on another component.   

 
Furthermore this connection is dynamic and it can be modified at run-time.  The 
provides-ports of an XCAT component can be described by the Web Service Description 
Language (WSDL) and hence can be accessed by any web service client that understands 
that port type. (A library to generate WSDL describing any remote reference is included 
as a part of XSOAP[18], which is an implementation of Java Remote Method Protocol 
(JRMP) in both C++ and Java with SOAP as the communication protocol. Since, in 
XCAT a provides-port is a remote reference, the XSOAP library can be used to obtain 
WSDL for any provides-port. Further, a WSDL describing the entire component, which 
includes the WSDL for each provides port, can be generated using this library.)   The 
CCA/XCAT framework allows 
 

any component to create instances of other components on remote resources 
where it is authorized to do so, (In XCAT this is accomplished using Grid 
services such as Globus)  

any component to connect together the uses/provides ports of other component 
instances (when it is authorized to do so), and 

a component to create new uses and provides ports as needed dynamically. 
 
These dynamic connection capabilities make it possible to build applications in ways not 
possible with the standard web services model.   To illustrate this, we compare the 
construction of a distributed application using the CCA/XCAT framework and web 
services using the Web Services Flow Language (WSFL) [10] which is one of the leading 
approaches to combining web services into composite applications. 
 
Typically a dynamically created and connected set of component instances represents a 
distributed application that has been invoked on behalf of some user or group of users.  It 
is stateful and, typically, not persistent.  For example, suppose an engineering design 
team wishes to build a distributed application that starts with a database query which 
provides initialization information to a data analysis application which frequently needs 
information found in a third party information service.  An application coordinator 
component (which will be described later in greater detail) can be written that instantiates 
an instance of a database query component, a specialized legacy program driver 
component and a component that consults a third party data service, all connected as 
shown in Figure 3.  Suppose the operation of this data analysis application is as follows. 
The database query component provides a web-service interface to users and when 
invoked by a user, it consults the database and contacts the analysis component.  The 



analysis component, when receiving this information, interacts periodically with the data 
service and eventually returns a result to the database component, which returns it to the 
user. 
 

 
Figure 3.  A data analysis application. An Application Coordinator instantiates 
three components:  a database query component, a data analysis component which 
manages a legacy application and a third party data service (which may be a 
conventional web service). 
 

This entire ensemble of connected component instances represents a distributed, transient 
service that may be accessed by one user or group of users and may exists for only the 
duration of a few transactions.   
 
In the case above, the use of the application controller component to instantiate and 
connect together a chain of other components is analogous to a workflow engine 
executing a WSFL script on a set of conventional web services.  As shown in Figure 4, 
the primary advantage of the CCA component model is that the WSFL engine must 
intermediate at each step of application sequence and relay the messages from one 
service to the next.   

 
Figure 4.  Standard Web Service linking model using a Web Service Flow 
Language document to drive a WSFL Engine.   
 

If the data traffic between the services is heavy it is probably not best to require it to go 
through a central flow engine.  Furthermore, if logic that describes the interaction 
between the data analysis component and the third party data service is complex and 
depends upon the application behavior, then putting it in the high level workflow may not 
work.  This is an important distinction between application dependent flow between 
components and service mediation at the level of workflow. 



 
In our current implementation each application is described by three documents. 

The Static Application Information is an XML document that describes the list 
of components used in the computation, how they are to be connected and the 
ports of the ensemble that are to be exported as application ports. 

The Dynamic Application Information is another XML document that describes 
the bindings of component instances to specific hosts and other initialization data. 

The Component Static Information is an XML document that contains basic 
type information about the component and all the details of its execution 
environment for each host on which it has been deployed.   This is the information 
that is necessary for the application coordinator component to create a running 
instance of the component.   The usual way to obtain this document is through a 
call to a simple directory service, called the Component Browser, which allows a 
user to browse components by type name or to search for components by other 
attributes such as the port types they support. 

 
To illustrate the way the Static and Dynamic Application Information is used, consider 
the small example of the data analysis application above. The static application 
information, shown below, just lists the components and the connections between their 
ports.  Each component is identified both by type and by the component browser from 
which its static component information is found. 
 
<application appName=“Data Analysis Application”> 
   <applicationCoordinator> 
       <component name=”application coordinator”> 
          <compID>AppCoordinator</compID> 
          <directoryService>uri-for-comp-browser</directoryService> 
       </component> 
   </applicationCoordinator> 
   <applicationComponents> 
       <component name=”Database Query”> 
           <compID>DBQuery</compID> 
          <directoryService>uri-for-comp-browser</directoryService>          
       </component> 
       <component name=”Data Analysis”> 
          <compID>DataAnalysis</compID> 
          <directoryService>uri-for-comp-browser</directoryService> 
       </component> 
       <component name=”Joe’s third party data source”> 
          <compID>GenericDataService</compID> 
          <directoryService>uri-for-comp-browser</directoryService> 
      </component> 
  </applicationComponents> 
   <applicationConnections> 
       <connection> 
           <portDescription> 
               <portName>DataOut</portName> 
               <compName>Database Query</compName> 
           </portDescription> 
            <portDescription> 
               <portName>DataIn</portName> 
               <compName>Data Analysis</compName> 



           </portDescription> 
      </connection> 
       <connection> 
           <portDescription> 
               <portName>Fetch Data</portName> 
               <compName>Data Analysis</compName> 
           </portDescription> 
            <portDescription> 
               <portName>Data Request</portName> 
               <compName>Joe’s third party data source</compName> 
           </portDescription> 
      </connection> 
   </applicationConnections>  
</application> 
 
The dynamic information document simply binds components to hosts based on 
availability of resources and authorization of user.  For the example described above, it 
may look like this: 
 
<applicationInstance name=“Data Analysis Application”>  
   <appCoordinatorHost>application coordinator</appCoordinatorHost> 
   <compInfo> 
      <componentName>Data Query</componentName> 
      <hostName>rainier.extreme.indiana.edu</hostName> 
   </compInfo> 
   <compInfo> 
      <componentName>Data Analysis</componentName> 
      <hostName>modi4.csrd.uiuc.edu</hostName> 
   </compInfo> 
   <compInfo> 
      <componentName>Joe’s third party data source</componentName> 
      <hostName>joes_data.com</hostName> 
   </compInfo> 
</applicationInstance> 
 
An extension to this dynamic information application instance document provides a way 
to supply any initial configuration parameters that are essential for the operation of the 
component. 
 
These documents are used by the application coordinator to instantiate the individual 
components.  The way in which these documents are created and passed to the 
coordinator is described in detail in the next two sections.   

2.1 The OGSA Grid Services Port and standard CCA ports 
 
To understand how the CCA/XCAT component framework relates to the Open Grid 
Service Architecture, one must look at the required features of an OGSA service.  In this 
paper we focus on one aspect of this question. The Open Grid Services Architecture 
requires that each service that is a fully qualified OGSA service must have a port that 
implements the GridService port.  This port implements four operations.  Three of these 
operations deal with service lifetime and one, findServiceData, is used to access service 



metadata and state information.  The message associated with the findServiceData 
operation is a simple query to search for serviceData objects, which take the form shown 
below.  
 
 
<gsdl:serviceData name=“nmtoken”? globalName=”qname”? type=”qname” 
      goodFrom="xsd:dateTime"? goodUntil="xsd:dateTime"? 
      availableUntil=”xsd:dateTime”?>  
   <-- content element --> * 
</gsdl:serviceData> 
 
The type of a serviceData element is the XML schema name for the content of the 
element.  Hence almost any type of data may be described here. OGSA defines about ten 
different required serviceData types and we agree with most of them. There are two 
standard default serviceData search queries:  finding a serviceData element by name and 
finding all serviceData elements that are of a particular type.   This mechanism provides a 
very powerful and uniform way to allow for service reflection/introspection.  Though not 
implemented as a standard port in the current XCAT implementation, it will be added in 
the next release.  The XCAT serviceData elements will contain the static component 
information record associated with its deployment. An important standard XCAT 
component serviceData element is a description of each port that the component supports.  
This includes the port name, the WSDL port type, whether it is a provides-port or a uses-
port and if it is a uses port whether it is currently connected to a provides-port or not.  
Often component instances publish event streams that are typed XML messages.  An 
important serviceData element contains a list of all the event types and the handle for the 
persistent event channel that stores the published events. 
 
Many application components also provide a custom control port that allows the user to 
directly interact with the running instance of the component.  In this case a special 
ControlDocument serviceData element can be used to supply a user with a graphical user 
interface to the control port.  This user interface can be either a downloadable applet-like 
program or a set of web pages and execution scripts that can be dynamically loaded into a 
portal server such as the XCAT science portal [14].  As illustrated in Figure 5, this allows 
the user control of the remote component from a desktop web browser. 
 

 
Figure 5.  Portal interaction with GridService port. 

 
Within the web services community there is an effort called Web Services for Remote 
Portals (WSRP), which is attempting to address this problem [12].  The goal of this effort 



is to provide a generic portlet, which runs in a portal server and acts as a proxy for a 
service-specific remote portlet.  As this effort matures we will incorporate this standard 
into our model for component interaction. 
 
Each XCAT component has another standard provides-port called the Go port.  The life 
cycle of a CCA component is controlled by its Go.  There are three standard operations in 
this port 

sendParameter, which is used to set initialization parameters of the component. 
The argument is an array of type Object, which is then cast to the appropriate 
specific types by the component instance.    A standard serviceData element for 
each component is “parameters”, which provides a list of tuples of the form 
(name, type, default, current) for each component parameter.  

start, which causes the component to start running.  In the CCA model, a 
component is first instantiated. At this point only the GridService, start and the 
sendParameter port are considered operational. Once parameters are set by the 
sendParameter method (or defaults are used) and the start method has been 
invoked then the other ports will start accepting calls.  These rules are only used 
for stateful components or stateless components that require some initial, constant 
state. 

kill, which shuts down a component.  If the start method registered the component 
with an information service, this method will also un-register the instance.  In 
some cases, kill will also disconnect child components and kill them. 

 
(It should be noted that in the CCA/XCAT framework we have service/component 
lifetime management in the Go port, while in OGSA it is part of the GridService port.  
Also, the OGSA lifetime management model is different. ) 
 
2.1.2 Application Coordinator. 
 
Each XCAT component has one or more additional ports that are specific to its function. 
The Application Coordinator, discussed in the multi-component example above, has the 
following port: 
 
ACCreationProvidesPort 
 
This port is a provides-port that provides the functionality to create applications by 
instantiating the individual components that make up the application, connecting the uses 
and provides port of the different components and generating WSDL describing the 
application. This functionality is captured in the following two methods:  
 

createApplication, which accepts the static and dynamic XML describing the 
application and parameters. The XML strings are parsed to obtain installation 
information and host name for each component. The components are launched 
using the XCAT creation service and the appropriate execution environment 
values. Further, information about the connections between the different 
components is extracted from the static XML and using the XCAT connection 



service the connections are established. The static XML also has information 
about the various ports of the components that need to be exposed to the clients. 
These ports, that belong to different components, are exported as ports of the 
Application Coordinator. In the next version the static XML will also contain a 
list of bootstrap methods that need to be invoked on the individual components to 
start up the application. Once the application has been successfully instantiated, 
bootstrap methods, if any are invoked. 

 
generateWSDL, which returns the WSDL describing the application as a whole. 

The ports of the Application Coordinator component and the exported ports are 
included as a part of this WSDL. 

 
Another port, the ACMonitorProvidesPort, has methods like "killApplication" and 
"pingApplication" for monitoring the application. The "killApplication" method parses 
the static XML to retrieve information about the methods that need to be invoked on each 
of the components that the application is comprised of, so as to kill the complete 
application. Similarly the "pingApplication" method invokes relevant methods on each of 
the component to get information about the status of the application.  
 

3. The Application Factory Service 
 
The application coordinator component described above is designed to be capable of 
launching and coupling together the components necessary to build a distributed 
application and shutting them down when the user is finished.  It also provides the WSDL 
document that defines the ensemble service.  It can also provide state information about 
the running application to the user.  It is the job of the application factory service to 
launch an instance of the application coordinator.   
 
A “generic” application factory service (GAFS) is a stateless component that can be used 
to launch many types of applications.   The GAFS accepts requests from a client that 
consists of the static and dynamic application information.  The GAFS authenticates the 
request and verifies that the user is authorized to make the request.   Once authentication 
and authorization are complete, the GAFS launches an application coordinator. The 
GAFS passes the static and dynamic application information to the application 
coordinator by invoking its createApplication method. Once the application component 
instances have been created, connected and initialized, the application coordinator builds 
a WSDL document of the ensemble application and returns that to the GAFS, which 
returns it to the client.  When the GAFS comes up, it generates a WSDL describing itself 
and binds the WSDL to a registry to facilitate discovery of this service. The service 
maintains no state information about any of the application instances it launches.   
 
There are two ways to make the GAFS into an application specific service. The first 
method is to build a web portlet that contains the necessary user interface to allow the 
user to supply any needed initialization parameters.  The portlet then constructs the 
needed dynamic and static application XML documents and sends them to the GAFS to 



use to instantiate the application coordinator.  The other method is to attach an 
application specific component to the GAFS which contains the application specific 
XML.    

 
Figure 6.  Complete Picture of Portal, Application Factory Service and distributed 
ensemble application. Each component has a GridService port (GS) and a Go 
control port. 
 

The complete picture of the application factory service and application life cycle is 
shown in Figure 6.  The basic order of events is listed below. 

1. When the factory service comes up it registers itself with a directory/discovery 
service. 

2. A web portlet can be used to discover the service. 
3. The Web portlet contacts the factory service and initial configuration parameters 

are supplied. 
4. The factory service contacts the authorization service and, if the user is 

authorized,  
5. it contacts the resource broker which is used to compose the dynamic application 

information. 
6. The factory service instantiates the application coordinator which then instantiates 

the rest of the application components and connects them.  It also builds the 
WSDL document for the distributed application that describes the exported ports 
of the ensemble. 

7. The WSDL is returned to the factory, which returns it to the portal. 
8. Using the ensemble application WSDL, the user can contact the application and 

interact with it. 
 



4. Conclusions 
 
The prototype XCAT application factory service components described here are available 
for download at http://www.extreme.indiana.edu/afws.  The version to be released in 
November, 2002 will contain the full, OGSA compliant components and contain several 
example service factories.  The application factory service described here provides a web 
service model for launching distributed Grid applications.  There are several topics that 
have not been addressed in this document.  Security in XCAT is based on SSL and PKI 
certificates.  The authorization model is based on a very simple access control list.  Other, 
more sophisticated authorization policies are under investigation.   
 
The other area not discussed here is the component event system.  This is based on a 
simple XML/SOAP based messaging and event system and is available at 
http://www.extreme.indiana.edu/xgws. Any component may either publish or subscribe 
to event streams generated by other components.  A persistent event channel serves as a 
publication/subscription target.     
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