
Data-driven computational science is
characterized by dynamic adaptation
in response to external data. Appli-
cations of this type, which are often

data- and I/O-intensive, run as parallel or distrib-
uted computations on high-end resources such as
distributed clusters or symmetric multiprocessing
machines. On-demand weather forecasting is a
canonical example of a data-driven application. As
the article “Service-Oriented Environments in
Research and Education for Dynamically Inter-
acting with Mesoscale Weather” (pp. XX–YY in
this issue) describes, on-demand  weather fore-
casting is the automated process of invoking a
forecast model run in response to the detection of
a severe weather condition. The existing frame-
work for running forecast models has drawbacks
that we must overcome to bring about dynamic
on-demand forecasting. For instance, the current
investigation process requires a lot of human in-
volvement, particularly in the staging and moving

of the files required by the model and in the in-
vocation of downstream tools to visualize and an-
alyze model results. Although scripts exist to
automate some of the process, a knowledgeable
expert must properly configure them.

The Linked Environments for Atmospheric Dis-
covery (LEAD) project addresses the limitations of
current weather forecast frameworks through a
new, service-oriented architecture capable of re-
sponding to unpredicted weather events and re-
sponse patterns in real time. These services are
intended to support the execution of multimodel
simulations of weather forecasts on demand across
a distributed Grid of resources while dynamically
adapting resource allocation in response to the re-
sults. At the system’s heart is a suite of core services
that together provide the essential functionality
needed to invoke and run a complex experiment
with minimal human involvement. Specifically, it
lets the user define an experiment workflow, exe-
cute the experiment, and store the results. (See the
“Related Work” sidebar for a discussion of other
work in this area.)

In this article, we focus on three services—the
MyLEAD metadata catalog service, notification
service, and workflow service—that together form
the core services for managing complex experi-
mental meteorological investigations and manag-
ing the data products used in and generated during
the computational experimentation. We show how
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the services work together on behalf of a user, eas-
ing the technological burden on the scientists and
freeing them to focus on more of the science that
compels them. User interaction with the system is
through the LEAD portal. We’ve shown the ser-
vices in demos at several conferences, and released
the MyLEAD v0.3alpha in May 2005 and the
LEAD portal in June 2005. 

Metadata Catalog Service
Scientists have long had to manage the data products
of their experiments without help from the
underlying software. For example, mesoscale mete-
orologists use weather observations from satellites
and sensors as initial conditions. Moving the data
from the machine receiving it (usually a computer at
the researcher’s institution) to the large multiproces-
sor machine that will run the forecast is largely a
manual process. After the forecast model completes,
the scientist must manually copy the results to his or
her local file system. (For further details, see the
“Data in Mesoscale Meteorology” sidebar.)

In some systems, the process is automated
through large and complex scripts. This process
works reasonably well until, some months or years
in the future, a scientist is searching for a specific
file or set of results. Retrieving specific files from
prior experiments is so difficult that much of data
written to long-term store is never accessed again. 

The personal metadata catalog1—the corner-
stone in managing scientific data—is a collection of
descriptions of the key digital products used and
generated during a computational experiment, in-
cluding application-specific (or semantic) metadata.

For a Doppler radar observational scan, for exam-
ple, the metadata could include the scan’s starting
time, instrument type and spatial location, or
unique four-letter mnemonic.

The catalog is organized around the notion of
the experiment, loosely defined as the investigation
of mesoscale weather phenomena. It can involve
any number of model runs extending over several
days. A MyLEAD Web service manages multiple
personal metadata catalogs, handling as many as
100 catalogs at each site. The service is distributed
and replicated, and interacts with other services,
most notably an ontology service, to provide rich
query access. By automating the metadata’a orga-
nization in the catalog and exposing a familiar vo-
cabulary for querying, we allow rich query access
that doesn’t require users to understand the under-
lying data model to write queries to it.

Service Architecture
The MyLEAD architecture can be viewed as a Web
service composed of distributed services. An in-
stance of the MyLEAD service resides at each site
in a grid testbed. For example, each of the five sites
in the LEAD grid runs a long-lived server-side ser-
vice and a client-side service, as Figure 1 shows.
The MyLEAD service at a site manages the per-
sonal metadata catalogs for users local to that site.
A storage repository will reside at two sites in the
LEAD grid and will be used to store the files them-
selves. The user interacts with the MyLEAD ser-
vice through the LEAD portal, which is Web
browser accessible from anywhere on the Internet. 

The server (Figure 1c) is a long-lived Grid ser-

Related Work in Grid Technology

Alarge group of researchers has developed the Grid tech-
nology that’s used as a foundation for this work.1,2 The

LEAD project’s goals and requirements are similar to several
other efforts with large data management components. The
Grid Physics Network (GriPhyn, www.griphyn.org) project
pioneered the “virtual data” concept—data that can be au-
tomatically located from caches on a Grid or derived or red-
erived from workflows executing on remote resources.
GriPhyn worked with other research projects, such as the
Sloan Digital Sky Survey (www.sdss.
org), the Laser Interferometer Gravitational Wave Observa-
tory project (LIGO, www.ligo.caltech.edu) for detecting
gravitational waves, the International Virtual Data Grid Lab-
oratory (iVDGL, www.ivdgl.org), and the Particle Physics
Data Grid (PPDG, www.ppdg.net). Many of these physics
projects have formed a larger Grid collaboration called the

Open Science Grid (http://opensciencegrid.org).
The UK e-science program supports another important

collection of projects that are closely related to our work. No-
table among these are the “MyGrid: Middleware for in silico
experiments in biology” project (www.mygrid.org.uk). My-
Grid has pioneered an approach to combining metadata and
semantic grid technology with Web service-based workflow
systems that is promising for future work in this area. The Ed-
inburgh e-science center’s Open Grid Service Architecture
Data Access and Integration (OGSA-DAI, www.ogsadai.org.
uk) project is a foundation for our MyLEAD system.
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vice built on top of a relational database. It extends
the Globus Toolkit Metadata Catalog Service
(MCS)2 and the Open Grid Services Architecture
Data Access and Integration (OGSA-DAI) grid in-
terface layer.3 MyLEAD augments the MCS data-
base schema with support for spatial and temporal
attributes. The extensions are supported through
additional methods for database access and opti-
mizations implemented as database stored proce-
dures. The MyLEAD agent (Figure 1b) manages
stateful interactions between the user and the server. 

User interaction (Figure 1a) with the service is
through the LEAD portal. MyLEAD provides
portlets for browsing, querying, and managing a
person’s personal information space. The physical
data products are stored separate from the meta-
data catalog description in a storage repository.
Query access to data objects is through a separate
query service that contacts the catalog service. Re-
sults can be delivered to the user at the portal or to
a service //can’t read fax// on the user’s behalf. 

The storage repository could be a local file sys-
tem, but storage repository solutions—the replica
locater service (RLS),4 storage resource broker
(SRB),5 and storage resource manager (SRM),6 for
example—provide additional abstractions beyond

a file system API, such as a notion of a container,
location-transparent data storage, and global nam-
ing. Although the MyLEAD metadata catalog
could work with any of these repository tools, SRM
and SRB tightly couple their own metadata catalog
to their storage system, which could introduce a re-
dundancy with costly performance implications.

MyLEAD Agent: Actively 
Engaged in Experiment
One of the requirements of the MyLEAD meta-
data catalog service is that mesoscale meteorolo-
gists be able to issue queries on application-specific
terms, such as “precipitation,” “vorticity,” and “at-
mospheric pressure.” With a traditional database
query language like SQL, the user would have to
know the names and the layout of the tables stor-
ing the metadata information. We hide that infor-
mation from the user, and we can do this relatively
easily by building graphical interfaces in which a
user can construct a query by selecting terms that
are pulled together to form a conjunctive query.
We go a step beyond this, however, to give the user
the illusion of hierarchical organization of the
space. We do this because hierarchical organization
of information is intuitive for humans. For exam-
ple, telephone books have a hierarchical organiza-
tion that is obviously the most useful layout of the
information available in printed form. 

We accomplish the structural abstraction by em-
bedding knowledge in the agent. A MyLEAD agent
works on a user’s behalf during an experimental in-
vestigation. That is, it represents a user and is dedi-
cated to a single workflow instance. A workflow
instance, which we define more precisely later, can
be thought of as a sophisticated script that carries out
multiple steps in an experimental investigation. The
agent knowledge is put to use to track the different
modes, or states, of system execution (for example,
model input state and model execution state). It uses
this knowledge to actively organize the metadata
into named buckets corresponding to that state.
These named buckets can then be tied to user con-
cepts through a dictionary maintained by an ontol-
ogy service. For instance, an example concept is
“model output files from second iteration.” Users is-
sue queries not only on the atmospheric terms, but
also on stages in the investigation. The latter is
achieved by a user selecting regions from a graphi-
cal depiction of the workflow.

The finite state machine shown in Figure 2 is
used to implement the knowledge that the
MyLEAD agent maintains about the experiment’s
current state. Transitions between states occur
when status events arrive from the notification ser-
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Figure 1. Service architecture and component interaction. Each site in
the LEAD testbed includes a persistent server-side service and a client-
side service. The MyLEAD service manages users’ personal metadata
catalogs. 
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vice or a user triggers a transition though an action
at his or her keyboard. For example, a user speci-
fies the investigation in which they wish to work.
Entering the name of a new or existing experiment,
or execution of a workflow, causes the portal to
send a status event to the MyLEAD agent, upon
which the latter transitions from the “investiga-
tion” state to the “experiment” state. 

A scientist creates a computational experiment
by connecting application services together graph-
ically to form a workflow. When the workflow
script is ready to be executed, the workflow engine
(described later) generates an event that causes the
MyLEAD agent state machine to transition to “in-
put staging state.” In this state, the agent creates a
collection if none exists for the experiment run.
Any files received while the agent is in the input
staging state will be stored to this collection. When
the agent receives an event notifying it of a transi-
tion to model execution, it transitions to the
“model execution state,” and creates another col-
lection if none exists at this state. 

The analysis/generation state corresponds to an

experiment’s postprocessing stage, which is cap-
tured by a loop from the analysis state through file
creation and can be repeated any number of times.
As noted in the sidebar, analysis can trigger addi-
tional model execution rounds. The agent could
reach the error state from any state in the diagram.
The actual finite state machine is considerably
more complex than depicted here. 

Scientists can use knowledge of the experiment
process to track a logical file’s provenance in the
catalog. Knowing the steps that went into gener-
ating a file can help scientists pinpoint sources of
errors in the experimental run in case they find an
anomaly in the file. Such trace information also
helps peers in the scientific community under-
stand and verify the experiment when its results
are published. Scientists can correlate further no-
tifications from the workflow engine containing a
step’s runtime parameters with the arrival of in-
termediate logical files to determine the files’
complete lineage. MyLEAD can store this prove-
nance as part of the file’s metadata. In a sense, this
would allow the entire experiment run to be visu-
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Figure 2. Finite state machine showing an experiment’s current state. The MyLEAD agent encodes control flow into a finite state
machine and transitions between states based on notification messages from the executing experiment.



26 COMPUTING IN SCIENCE & ENGINEERING

ally reconstructed once it finishes, and thus let sci-
entists drill down into sections of interest for fur-
ther study.

This article focuses on the cooperation between
services that occurs under the cover of the experi-
ment to track changes, monitor progress, store re-
sults, move files, and a host of other activities that
relieve the scientist of the more mundane technol-
ogy-based tasks that consume so large a part of a
scientist’s time during a computational investiga-
tion. MyLEAD functionality goes beyond what is
described in this article, however. It supports ver-
sioning of experiments. MyLEAD creates a snap-
shot of an experiment upon user request, and
archives it in read-only form. The archived version
is stripped of content that is no longer needed or
can be obtained elsewhere—status messages and
publicly available input files, for example.
MyLEAD also lets the meteorologist or teacher
share his or her files or file collections with a small
group or publish products to the broader virtual or-
ganization-wide resource catalog. 

Web Services-
Based Notification System
As noted earlier, the MyLEAD agent is based on
Web service technology. A Web service is a set of
network addressable endpoints operating on XML-
encoded messages. Developers use the Web Ser-
vice Definition Language (WSDL)7 to specify the
types of messages a service can receive and re-
sponses it can make. A service-oriented architec-
ture is based on the concept of building
applications by composing and orchestrating in-
teractions between Web services. A workflow in
this context is a specific template for an application
based on the composition of a set of services. 

Numerous services comprise the LEAD system.
Two important classes of services at the application
level are

• application components, which are services that
can execute instances of specific scientific ap-
plications on compute and data resources; and

• notification services, which let the application

Data in Mesoscale Meteorology

In mesoscale meteorology, researchers investigate weather
phenomena such as flash floods and tornadoes using data

from widespread sensors and instruments that continuously
measure atmospheric conditions. The meteorologists in-
volved in the Linked Environments for Atmospheric Discovery
(LEAD) project1 are interested in on-demand weather fore-
casting—that is, forecast model runs that are triggered by
threatening weather conditions. These runs, which can draw
on data from hundreds of observational sources, generate
what meteorologists refer to as ensemble runs—a collection of
forecast runs executing concurrently. Important technology
and science factors are converging to make significant ad-
vancements in forecasting possible.

Collaborative Adaptive Sensing of the Atmosphere
(CASA),2 a LEAD sister project, is developing small-scale re-
gional Doppler radars suitable for mounting on cell phone
towers. These radars have a 30-kilometer radius with far
higher resolution and frequency than the longer-range
WSR-88D Doppler radar. Additionally, large-scale computa-
tional grids, such as Teragrid (www.teragrid.org), are suffi-
ciently mature in their support infrastructure that
harnessing numerous compute resources on demand for
application processing is now feasible.

This scale of computational resource is none too late in
coming as forecast models’ demand increasingly large
amounts of computational resources. Running a single 27-
km resolution, 84-hour forecast over the US (a CONUS fore-
cast) consumes 60 processors (30 nodes) of a

dual-processor Pentium IV Xeon 2.0-GHz cluster and takes
six hours to complete. An ensemble requires significantly
more resources.

For instance, at 0600hr, a research meteorologist kicks off
a 2-km resolution, 12-hour regional forecast over the state
of Oklahoma. As an ensemble run, 20 copies of the model
are run concurrently, each with slightly different physics (or
eaual). The run completes by 0800hr, delivering 20 binary
files containing temperature, wind, and microphysics. The
files undergo statistical analysis to identify regions of uncer-
tainty corresponding to regions across the state that have
high levels of disagreement across the ensemble versions.
Such regions can occur when too little data on the region is
available. Figure A depicts the control flow.

To reduce uncertainty, meteorologists want to gather
more information about the identified regions. An appropri-
ate outcome of the statistical analysis, then, is to focus the
regional Doppler radars onto the regions of uncertainty to
gather additional data, as the directed line looping back to
the “NetRad radar ingest” phase (Figure A) illustrates. 

Suppose the radars then collect data from 0900hr to
1100hr. The application assimilation component converts
and assimilates this newly collected data into the 3D input
data grid (third and fourth boxes in Figure A), and kicks off
another forecast at 1100hr. This time the system generates
a six-hour forecast because it needs a forecast extending
only through the late afternoon hours when most severe
mesoscale weather occurs. The second run finishes at
1300hr and the system analyzes the ensemble results again.
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components publish application-specific
events to the MyLEAD agent and the work-
flow engines.

In addition, at the system level, the MyLEAD
agent itself is a service that interacts with the user at
the portal and subscribes to notifications concerning
the current state of the user’s experimental workflow. 

Publish–Subscribe Architecture
A central feature of event-driven distributed sys-
tems is a mechanism that lets one part of the sys-
tem broadcast a message so that every other part of
the system can learn about it. These messages,
known as events or notifications, convey information
such as system status, error messages, or metadata
about newly generated file objects. In the world of
Web services, there are two very similar standards
for describing how to deliver and receive notifica-
tions: WS-Eventing8 and WS-BaseNotification.9

Both are based on a publish–subscribe architecture. 
Our system uses the WS-Eventing standard,

which consists of four services:

• Event sinks consume events delivered to them
by event sources according to subscription re-
quests delivered to sources on behalf of the
consumer. 

• Event sources accept subscriptions for event de-
livery. A subscription is a message stating that
a specified event sink wants to receive events
from the specified source subject to the speci-
fied filter. In WS-Eventing, filters can be
XPath expressions or any other Boolean ex-
pression in some custom language specific to
the event source. In our case, the filter is just a
topic string. If the event contains a topic string
in its message header, we consider it a match
for any subscriber interested in that topic.

• Subscribers create subscriptions and send them
to event sources. (The subscriber needn’t be
the event sink that will receive the event
stream generated by the subscription.)

• Subscription managers help manage services

This time the uncertainty is reduced, giving the meteorolo-
gist a sufficiently high degree of trust in the forecast.

This example exposes a number of challenges in provi-
sioning for adaptive forecasts. In the flow graph in Figure A,
the underlying infrastructure must fetch data products
used in the forecast from where they reside. This might be
the scientists’ local file system or a storage repository. The
Advanced Regional Prediction System (ARPS) Data Assimila-
tion System (ADAS)3 (“Assimilate into 3D grid” in Figure A)
assumes that data products are located in a named direc-
tory on the local file system. The system must organize and
store products generated from the ensemble run to persis-
tent store. It must also store the analysis results, input con-
dition, status messages, workflow script guiding execution,
and so on.

In this example, the analysis results of the prior iteration
trigger subsequent loops through the graph. More point-
edly, a second loop iteration is initiated based on meteoro-
logical analysis, triggering a directive to the local radars in
the regions of the forecast area that have uncertainty.

A meteorology experiment’s data flow contains loops,
parallelism, and dynamic decisions based on application-
specific criteria that can’t be predicted. Using information
about the data to organize metadata records is a big step
toward making storage and retrieval more intuitive. 
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once they’re created. For example, to renew a
subscription, check its status, or unsubscribe,
a user contacts the subscription manager for
the source. A subscription’s response message
provides the subscription manager’s identity.

In the LEAD system, a central event source
known as the event channel handles all event sub-
scriptions. As Figure 3 illustrates, two primary
event sinks exist: the MyLEAD agent and the
workflow engine (the latter executes the individual
workflow instances). Although the event channel is
the system-wide event source, the real event
sources are the workflow engine and the applica-
tion services. As described earlier, MyLEAD orga-
nizes metadata around the notions of experiments,
collections, and users. To associate the events gen-
erated by a specific workflow execution to the cor-
rect context in MyLEAD, the event topic string
consists of the user-distinguished name and exper-
iment name. That is, each event is uniquely iden-
tified by a <user name/Project name/Experiment
name> tuple.

The event channel is the focal point of our WS-
Eventing implementation. The MyLEAD agent
and the executing workflow instance each subscribe
to messages associated with an experiment. To run
both the workflow engine and the application ser-
vices, the executing workflow instance publishes

state and metadata information, which MyLEAD
saves in the experiment’s record. The workflow en-
gine uses this state information to guide specific
workflow instances.

Wrapping Applications as Services
Most scientific applications are conventional For-
tran applications that are configured by a parame-
ter file or command-line arguments. They aren’t
Web services, nor can they publish or subscribe to
notifications. Consequently, to integrate them into
the service architecture, we embed them in a wrap-
per service. We’ve developed an application factory
service to aid in this task. 

After an application has been deployed on a host,
we write a simple XML service description docu-
ment describing the

• path to a script to launch the application,
• parameters used to invoke the application, and
• information about notifications that are pub-

lished by the application script.

Given this file, the application factory can auto-
matically generate a Web service with which to in-
voke the application. This service can be invoked
from a workflow or directly by a user from a Grid
Web portal.10 All that’s needed is authorization to
run the service, which is based on Web service se-
curity protocols and values for the application pa-
rameters. The application service can run multiple
instances of the application concurrently and pub-
lish the events associated with its execution to the
event channel.

Among the parameters common to most applica-
tions are the names of files used as input to the ap-
plications and the Grid location for storing output.
In a Grid environment, these files and directories
can be remote, so we usually use URLs to describe
them. The launch script moves the files to local di-
rectories where the Fortran application can find
them and then monitors the application. When the
application is complete, the launch script moves the
output to the desired location. It also publishes event
notifications about the progress, completion, and
possible errors in the application execution.

We use two types of scripts to wrap the applica-
tions, both of which can send events to the event
channel. One script type is an extension to the Apache
Ant build tool Open Grid Runtime Engine (OGRE)
under development at the US National Center for
Supercomputing Applications. The extensions in-
clude the ability to move files around the Grid using
the gridftp and other protocols. For example, we can
use the script in Figure 4a to move a file from a source

MyLEAD agent

Event channel

Workflow engine
Application service 1

Application service 2

Application service 3

Figure 3. Event channel. The event channel is the focal point for WS-
Eventing. The MyLEAD agent and workflow subscribe to messages
associated with an experiment. The workflow system runs the workflow
engine and application services and publishes state and metadata
information, which is saved in MyLEAD. The workflow engine uses this
state information to guide specific workflow instances.
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URL to a local temporary file
named “input.data” and then
publish an event.

The Web service generated
by the factory takes the parame-
ter “input.source.url” from a
Web service parameter when a
client invokes the service. An-
other parameter of the Web ser-
vice interface for this application
is “wse.topic,” the MyLEAD ex-
periment context name for this
execution.

The second type of applica-
tion script is based on Jython,
the Java implementation of the
Python scripting language. We
include this approach because
Python is well received by sci-
entific programmers who do ap-
plication scripting. Jython
scripts can also move files
around a Grid and publish and
subscribe to events. Figure 4b,
for example, shows the Jython script we would use
to script the file movement and event publication
in the OGRE example in Figure 4a. In this case, we
preinitialize the variable “context” with the
MyLEAD experiment context name.

A complete experiment can require orchestrat-
ing a dozen or more of these application services,
such as data decoders and data transformers, vari-
ous simulation programs, data miners, and anima-
tion renderers. This orchestration is encoded in the
workflow system.

Web services generated by the Application Fac-
tory are stateless. One supplies the Web service
with parameters to run the application and the ser-
vice executes the application. However, in some
cases a user might want to interact with the appli-
cation to “steer” it interactively. When an applica-
tion can interact with the user through a graphical
user interface, it loses this interactivity when the
workflow system launches the service. Although a
user could interact with a running workflow in-
stance, integrating the original application inter-
face into the workflow-user interaction is difficult.
Discovering good protocols for integrating appli-
cation interfaces into workflow executions is an in-
teresting area of future research.

Event-Driven Workflow System
Traditional workflow systems operate by executing
a fixed schedule of tasks based on a directed acyclic
dependency graph. When a task completes, another

set of tasks begins operating. LEAD uses two main
forms of workflows. The first is based on the OGRE
and Jython scripts described previously. These
scripts are designed to manage workflows that are
relatively short in duration (that is, not much longer
than the sum of the execution times of the tasks they
manage) and aren’t responsible for responding to dy-
namic changes in their execution environment. 

The more interesting form of workflow responds
to external events such as resource availability and
dynamically changing workloads caused by re-
quirement changes. This adaptive, dynamic work-
flow is the ultimate goal of the LEAD project. For
example, in LEAD, changes in the weather can de-
termine a workflow. A data mining agent might
watch a data source for special weather patterns.
When it detects such an event, the agent publishes
a notification that might reawaken a dormant
workflow. The better-than-real-time requirements
of weather predicting are another source of dy-
namic behavior. To meet computation deadlines,
the workflow must be agile in its resource use. If
tasks in the workflow require more computing, the
workflow must be able to discover the appropriate
computing resources and negotiate their use. This
requires a set of services that monitors the entire
computational Grid of available resources.

Many approaches to workflow in Grid applica-
tions exist. To achieve a more adaptive workflow
capability, we use a slightly modified version of the
standard Business Process Execution Language

<uricopy from=“{input.source.url}” to=“/tmp/input.data”/> 

<publish> 

<event message=“copy to /tmp/input.data complete”> 

<property name=“status” value=“INFORMATION”/> 

<property name=“topic” value=“{wse.topic}”/> 

<property name=“source” value=“Decoder”/> 

</event> 

</publish>
(a)

sourceURL = argList[1] 

cp = UriCopy() 

cp.setFrom(sourceURL) 

cp.setTo(“/tmp/input.data”) 

cp.execute() notifier.sendEvent(context, “INFORMATION,” “copy

to /tmp/input.data complete”)
(b)

Figure 4. Script for wrapping applications. We use two types of script to move a file from a
source URL to a local temporary file and publishing the event: (a) OGRE and (b) Jython.
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(BPEL),11 which was designed to orchestrate com-
plex interactions in a service-oriented architecture.

A LEAD BPEL workflow’s life cycle is simple.
First, the workflow instance notifies MyLEAD that
a new experiment has begun. Next, it requests avail-
able services—for example, it might request a re-
solver service to locate the data streams of current
weather conditions. Rather than using the “please-
do-this-while-I-wait-for-your-conclusion” remote
procedure call mechanism, we use the more modern
“literal document request” model. In this model, the
workflow sends a request to an application service
(for example, “Please execute the standard forecast
simulation code WRF [weather research and fore-
cast] with these parameters”). Rather than wait for
the WRF engine to send the computation’s results,
the workflow only receives a “request acknowledged”
response from the WRF service. To proceed to the
next task, however, the workflow might need to wait
for the results.

The BPEL basic primitives make expressing
this type of interaction simple. Suppose you want
a workflow that’s waiting for two possible mes-
sages. One message is a notification from an agent
that it has discovered a serious weather event; the
other is from a user asking to change the parame-
ters associated with a reaction to external events
or suspend operations. Figure 5 shows how we en-
code this type of message waiting in BPEL; the
language has many other simple XML tags for de-
scribing workflow sequencing, exception han-
dling, and deployment.

In its form and structure, a BPEL workflow is
not unlike a computer program that’s driven by a
graphical human interface: both are designed to re-

spond to events. In the case of a
graphical interface, the program
responds to mouse events. In
the case of a BPEL program,
the responses are to the work-
flow’s partner services—that is,
those with which it interacts.
The language has standard pro-
gram control structures like it-
eration and conditionals and a
rich facility for exception han-
dling. 

A persistent workflow engine
that saves each workflow in-
stance’s state in a database per-
forms the actual workflow
execution. After the workflow is
enacted, each task is a request to
a service to complete some oper-
ation. These services are the ap-

plication and data Web services that eventually
respond to the workflow engine with a message say-
ing that the task has been completed. Although the
workflow instance is a service, it becomes a virtual
service residing in the database until the workflow
receives a response. This can take minutes or hours. 

The workflow can respond to different scenar-
ios. If so designed, the workflow can wait for
months to respond to a specific notification, or se-
ries of notifications, signaling that a particular con-
figuration of weather conditions has occurred.

The workflow architecture’s most fundamental
limitation is that it can only execute workflows that
represent programmed responses to anticipated
weather scenarios. Our eventual goal is to build a
truly adaptive workflow system containing various
response scenario patterns that can be composed
in many ways using both automated and human-
assisted means.

As computational science grows, the
task of managing the data products
involved in scientific experimentation
grows as well. Tools to manage the

data must develop alongside the increasingly re-
source-capable computational environment.
The risk in ignoring this important problem is
that we severely disable the usability of the com-
plex computational capability we are providing. 

Although we’ve released early versions of the ser-
vices to the community, some of the functionality
that’s more complex to implement or of a more ex-
ploratory nature is still ongoing. In MyLEAD, for
instance, research in providing support for publish-

<pick> 

<onMessage partnerLink=“EventChannel” portType=“Lis-

tener” operation=“Notify” variable=“notification” > 

- inspect the notification variable to see what

type of event 

- this is and respond accordingly. 

</onMessage> 

<onMessage partnerLink=“UserServices” portType=“User-

Interface” operation=“kill”> 

- invoke tasks which will kill off pending and

running tasks 

</onMessage> 

</pick>

Figure 5. Wait message script. We use the Business Process Execution Language to tell the
workflow to wait for an event to be delivered.
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ing and sharing data products is ongoing. Atmos-
pheric researchers will be reluctant to store data
products in a new repository until they’re convinced
that it will preserve the privacy of their work. We’re
exploring a multifaceted approach to building trust
that includes visual GUIs, a well-articulated secu-
rity policy, and enforceable guarantees. Other areas
include versioning experiments through time and
improving service reliability and availability. We’ll
continue to work on the workflow component to
improve its ability to react to unanticipated events
and unplanned sequences of activities.
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