
Grid Metadata Catalog Service-Based
OGC Web Registry Service

Peisheng Zhao, Aijun Chen, Yang Liu, Liping Di, Wenli Yang, Peichuan Li
Laboratory for Advanced Information Technology and Standards

 School of Computational Science, George Mason University
Fairfax, Virginia 22030, USA

1-301-552-3829

{pzhao, chen6, yliu5, ldi, wyang1, pli2}@gmu.edu

ABSTRACT
Grid is a promising e-Science infrastructure that promotes and
facilitates the sharing and collaboration in the use of distributed
heterogeneous resources through Virtual Organization (VO). A
critical factor to the overall utility of Grid is a scalable, flexible
and robust registry mechanism. Although it provides some
mechanisms to store and access metadata for publishing and
discovering resources, such as MCS (Metadata Catalog Service),
the Grid registry is inadequate for dealing with domain-specific
resources. To enhance the earth science Grid systems, this paper
presents a geospatial registry approach in which the OGC (Open
GIS Consortium) WRS (Web Registry Service), a de facto
standard that supports the publishing of and run-time access to
geospatial resources, as a wrapper is used to extend the
capabilities of the conventional Grid MCS to the processing of
geospatial queries against multiple heterogeneous spatial data
sources and services. The approach presented not only focuses on
the specifics of descriptive information about spatial data,
services, and relevant information objects, but also emphasizes
using ontology to infer the semantic relationships between
vocabularies for integrating different information models. The
implementation of presented approach used in NASA Grid Data
Service environment is also illustrated in this paper.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information filtering,
Retrieval model, Search process

General Terms
Management, Design, Standardization, Languages.

Keywords
Grid, OGC, Catalog, ontology, OWL, semantic, information
model.

1. INTRODUCTION
Over the past several years, Grid technology has become an
increasingly prominent basic information infrastructure that
provides a series of services to support the sharing and coordinated
use of diverse resources in the dynamic, distributed “virtual
organizations”[9]. With its protocols and services concerned with
communication and authentication, resource registry and
negotiating access to multiple resources, there is now an
opportunity to provide a large-scale collaboration e-science
environment that spans many different projects, institutions and
countries. The Globus Toolkit [8][9], an open-source set of
services and libraries that implement key Grid protocols, has been
widely adopted as the Grid technology solution for scientific and
technical computing. In the field of earth sciences, the Committee
on Earth Observation Satellites (CEOS) started a CEOS-Grid
testbed [2] in 2002 for supporting diverse users worldwide in
easily accessing earth observation geospatial information and
aiding data providers in improving their operation efficiency. And
the Earth System Grid (ESG) [7] is being developed to provide a
seamless and powerful environment that enables the next
generation of global climate research. With the development of
Open Grid Services Architecture (OGSA) [10], NASA is
developing and deploying the Information Power Grid (IPG) [12]
with Earth Sciences Web Services Applications and Grid Data
Services to provide an interoperable, flexible, and scalable sharing
environment for the Earth Science modeling and analysis
community.

Earth science is a data-intensive scientific domain in which the
applications always produce and analyze a large volume of
distributed heterogeneous geospatial information. The Grid system
for earth science relies heavily on a metadata service to support
publishing and discovery of geospatial and non-geospatial
resources, such as service offers, interface definitions, dataset
descriptions, application schemas, style descriptors and
taxonomies. Metadata in catalogs represents resource
characteristics that can be presented and queried for understanding
and further processing by both humans and software. The Grid
Metadata Catalog Service (MCS) [19] as a Grid middleware
provides the ability to store and access metadata and to allow users
to register and retrieve data items based on the attributes of data
rather than data names in Grid. The MCS provides the mechanism
to extend its schema for a specific scientific domain and
implements policies regarding the consistency guarantees,
authentication, authorization, and auditing capabilities. It also
supports a logical name space that is independent of physical name

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GIS’04, Nov 12–13, 2004, Washington D. C., USA.
Copyright 2004 ACM 1-58113-979-9/04/0011…$5.00.

space and allows the specification of a logical collection hierarchy
and the notion of containers to aggregate small files. However, the
MCS is concerned with only those schemes and interfaces that are
at the general implementation level. There is no explicit scheme at
the logic level for cataloging registered objects and indicating their
relationships in the MCS. Consequently, it is very difficult to
represent and interpret the complex date models and relationships
in the MCS. For example, the MCS can not explicitly specify the
“operate on” association between a dataset and its service, service
binding and specification link. For interoperability, modeling a
geometry object to describe geographic position may use GML
(Geographic Markup Language), OGC (Open GIS Consortium)
WKT (Well-Known Text) or some binary encoding. The
information scheme of the MCS is insufficient to describe such
objects and relevant standards and information models. Moreover,
the MCS interfaces are proprietary and don’t support complex
conceptual transactions and queries for geospatial resources in the
Grid Web service environment. Therefore, the MCS can not
satisfy the demands of the earth science Grid system.

Currently OGC WRS (Web Registry Service) [16] as the part of
the OGC Open Web Services initiative is becoming the de facto
standard that supports the discovery of and binding to registered
geospatial information resources within an information
community. Its Registry Information Model (OGCRIM) provides
a formal structure representing geospatial metadata resources and
their interrelationships and a conceptual schema constraining the
kinds of objects stored in the registry and how these registry
objects and the relevant descriptive information are organized and
interpreted. The WRS also defines a set of standard public
interfaces for Web-based discovery and exploitation of geo-
processing functions. Note that the WRS is open because it does
not specify any implementation scheme. Therefore, user can
extend it at the application level and implement it using any
language on any platform and any system.

The analysis above illustrates that the WRS and the MCS are
complementary approaches: the former defines the metadata
representation at the conceptual level and the latter provides an
implementation scheme for storage and access of metadata.
Obviously, it is significant to integrate the WRS with the MCS to
provide a basic interoperable catalog for publishing and
discovering distribute heterogeneous geospatial information in the
earth science Grid systems. In this paper, we propose a flexible
and extensible approach that implements the WRS information
model and interfaces with the MCS. This approach not only
focuses on the specifics of descriptive information about spatial
data, services, and relevant information objects, but also addresses
using Ontology Web Language (OWL) to build semantic model
for inferring semantic equivalence between terms in different
information models.

The remainder of this paper is organized as follows. In section 2,
we provide background information about the WRS and the MCS.
In section 3, we present our approach for integrating different
information model and computational model between the MCS
and the WRS. In section 4, we describe our implementation of
Grid MCS-based OGC WRS. In section 5, we summarize some
related work. And finally, in section 6, we conclude our work and
present some future research directions.

2. BACKGROUND
2.1 OGC WRS
A registry service plays a ‘directory’ role in the open, distributed
systems: providers advertise the availability of their resources
using metadata in a registry, and users can then query the metadata
in the registry to discover interesting resources and determine
how to interactively run-time access them. OGC WRS defines a
Web-based common mechanism to classify, register, describe,
search and access metadata about geospatial information.

2.1.1 Information Model
The OGC registry information model (OGCRIM) is based on the
ebXML registry information model (ebRIM) [14]. This
information model specifies formally how domain objects are
organized, constrained and interpreted based on conceptual
structure. A high-level view of the model with most of the classes
appears in Figure 1.

RegistryObject

Classification RegistryEntry Association

ExtrinsicObject Service

OGCExtrinsicObject Slot

ClassificationScheme

ClassificationNode

Figure 1. Part of OGCRIM Class Hierarchy.

The “RegistryObject” class at the top level is an abstract base class
and provides minimal metadata for registry objects, such as name,
object type, identifier and so on. The “Slot” instances provide a
dynamic way to add arbitrary attributes to a registry object. The
“ClassificationScheme” class defines a tree structure made up of
“ClassificationNode”s to describe a structured way for classifying
or categorizing “RegistryObject”s. An “ExtrinsicObject” provides
required metadata about the content being submitted to the
registry, thus allowing any type of object to be catalogued. And
the “OGCExtrinsicObject” class adds the “contentURL” attribute
in order to refer to the content stored in remote repositories outside
of the registry. The “Association” class uses an “associationType”
attribute to identify the relationship between a source
“RegistryObject” and a target “RegistryObject”. Figure 2 shows
how a service is tightly-coupled with a dataset by specifying the
value “operatesOn” for the “associationType” attribute.

Figure 2. Association of “Service” and “Dataset”.

Service

name = “GMU WCS”

Association
sourceObject

targetObject

OGCExtrinsicObject

mimeType = “text/xml”

isOpaque = “false”

2.1.2 Public Interfaces
The WRS defines two of its own Web-based interfaces,
“WRSQuery” and “WRSTransaction” as figure 3 describes, to
constraint on ‘find’, ‘bind’ and ‘publish’ registry objects at the
geospatial conceptual level. Not only do the WRS interfaces
provide the basic set of operations, such as add, delete, modify and
query resource offers and type descriptions, but also provide a

Figure 3. WSDL [20] definitions for “WRSQuery” and
“WRSTransction”.

number of specific capabilities, such as modify classification
scheme and change registry object classification. The WRS adopts
the OGC filter [17] syntax for expressing spatial query constraints
in XML. This XML-encoded filter is a system neutral
representation of a query predicate that can be easily validated,
parsed and then transformed into whatever the target language is.
For example, it could be transformed into a WHERE clause for a
SQL SELECT statement to fetch data stored in a relational
database, or an XPath or XPointer expression for fetching data
from XML documents.

2.2 Grid MCS
The MCS provides a mechanism for publishing, discovering and
accessing metadata that describes the creation, transformation,
meaning and quality of data files or data items in Grid. It
maintains the mappings between logical name attributes of data
items and other descriptive metadata attributes and allows users to
query based on data attributes rather than data names.

Currently, MCS contains exclusive logical files information,
where the term “logical file name” (LFN) denotes a unique logical
identifier for data content, while assuming that physical file
metadata, which depends on the actual location of the file and the
characteristics of a given storage system, is stored in Globus
Replica Location Service (RLS) or elsewhere. The MCS provides
management of logical collections of files for supporting
authorization on groups of files, and supports logical views that
consist of zero or more logical files, collections and/or other
logical views for allowing more flexibility for users to group files
according to their interests. In addition, the MCS provides
authentication and authorization on the data items based on the
Grid Security Infrastructure to enable authorized users to

manipulate the MCS mappings and attributes. The MCS also
manages auditing metadata to record actions performed by the
metadata service, annotation metadata to describe logical data
items and transformation history metadata to record the creation
and transformations of a logical file. To maintain consistency
among data items, the MCS provides a “Master_Copy” attribute
to identify the physical location of a master copy of a file. In the
new version of MCS, the simple spatial attributes including
“Point”, “LineString” and “Polygon” and spatial relations
including “Mbrwithin”, “Mbrdisjoint”, “Mbrequal”,
“Mbrintersects” and “Mbroverlaps” are introduced to support
spatial location queries against a minimum bounding rectangle.
However, this support is still too general and simple to meet all of
the requirements of geospatial community. For the purpose of
supporting domain-specific metadata schemas, the MCS schema is
extensible for accommodating new user-defined attributes. Users
may create their own attributes by associating an attribute
identifier from table 1 with a particular object and an attribute
value from table 2.

The MCS assumes a file-based data model and provides a general
low level of data scheme and interfaces for implementation
coupled with replica service. Therefore, the MCS should be
extended to support more complex data types and relationships for
services, users and other resources and to provide an application
level of common interfaces for the domain-specific applications in
the service-oriented Grid environments.

Table 1. MCS_ATTRIBUTE schema.
Field Name Type Description

Id Integer Identifier for the attribute

Name Varchar(50) Name of the attribute

Attribute_typ Varchar(20) String/Integer/Float/Date/Time

Object_typ Integer 0 -- logical file,

1 -- logical collection,

2 -- logical view

Table 2. MCS_****_ATTRIBUTE schema

(****: string/integer/float/date/time).
Field Name Type Description

Att_id Integer Attribute id

Obj_id Integer Object id to which the attribute
belong to

Att_value **** Value of the attribute

The MCS and the WRS are different: the WRS provides a
geospatial conceptual level of information scheme and interfaces
for registry and the MCS provides a general implementation level
of metadata information scheme and interfaces. However, they
provide complementary approaches which can enhance the current
earth science Grid systems.

3. INTEGRATING the WRS with the MCS
From the descriptions presented in section 2, it is clear that there
are differences between the WRS information model and the MCS
data scheme. In this section we explain how to resolve these
differences to integrate the WRS with the MCS using ontology,

<portType name="WRSQueryPortType">

 <operation name="getCapabilities">…… </operation>

 <operation name="describeType">…… </operation>

 <operation name="getRecord">

 <input message="wrs:GetRecordRequest" />

 <output message="wrs:GetRecordResponse" />

 </operation>

 <operation name="getResourceByID">…… </operation>

</portType>

<portType name="WRSTransactionPortType">

 <operation name="transaction">…… </operation>

 <operation name="lockRecord">……</operation>

 <operation name="registerResource">…… </operation>

</portType>

namely rendering the OGCRIM class hierarchy through the MCS
data scheme by the OWL semantic model.

3.1 Semantic Model
The initial implementation of MCS assumes a file-based data
model in which the most manipulated unit is a logical file, while
OGCRIM assumes that any object can be registered. In order to
support new objects, the meaning of “file” in the MCS should be
extended to that of “RegistryObject” in ORCRIM, by which “file”
means not only data file, but also service, classification,
association and so on. And the table “MCS_LOGICAL_FILE” can
store the metadata for all kinds of objects instead of just for data
files. Thus “RegistryObject” is equal to “MCS_LOGICAL_FILE”
semantically:

<owl:Class rdf:ID="MCS_LOGICAL_FILE">
 <owl:equivalentClass rdf:resource="RegistryObject"/>

</owl:Class>

Table 3. Mapping OGCRIM “RegistryObject” elements to
MCS elements.

OGC RIM Element Path MCS Element Path
RegistryObject/Name

/LocalizedString/@value

MCS_LOGICAL_FILE

/Logical_name

RegistryObject/@objectType
MCS_LOGICAL_FILE

/Data_type

RegistryObject/@id
MCS_LOGICAL_FILE

/Data_id

RegistryObject

/AccessControlPolicy

/Permission/@methodName

MCS_PERMISSIONS

/Permissions

RegistryObject

/AccessControlPolicy

/Permission/Privilege

/PrivilegeAttribute/@name

MCS_DATA_PERMISSIONS/Subject

Table 3 shows that the basic attributes of “RegistryObject” from
OGCRIM have the elements corresponding to
“MCS_LOGICAL_FILE” from MCS. The “Name” and
“ObjectType” of “RegistryObject” can be mapped directly into the
“Logical_name” and “Data_type” of “MCS_LOGICAL_FILE”
directly:

<owl:DatatypeProperty rdf:ID="Logical_name">
 <rdfs:domain rdf:resource="#MCS_LOGICAL_FILE"/>
 <owl:equivalentProperty rdf:resource="#value"/>
 </owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="Data_type">
 <rdfs:domain rdf:resource="#MCS_LOGICAL_FILE"/>
 <owl:equivalentProperty rdf:resource="#ObjectType"/>
 </owl:DatatypeProperty>

Since the “AccessControlPolicy” class, as one of the attributes of
“RegistryObject”, aggregates the user’s access privilege and
“MCS_LOGICAL_ COLLECTION” describes authorization on
groups of files, the “PrivilegeAttribute” of “AccessControlPolicy”
can not be mapped into the elements of “RegistryObject” directly.
Hence the “MCS_PERMISSIONS” and the
“MCS_DATA_PERMISSIONS” from the MCS are combined to
accommodate the “Role”, “Identity” and “Group” of
“PrivilegeAttribute”:

<owl:Class rdf:ID="Permission">
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#MCS_PERMISSIONS "/>
 <owl:Class rdf:about="MCS_DATA_PERMISSIONS"/>
 </owl:unionOf>
</owl:Class>

“MCS_LOGICAL_FILE/Data_id” could not be used to store
“RegistryObject/@id” directly although they have same meaning,
because the former is an integer and the latter is a UUID string.
Note that MCS is easily and efficiently extensible to support new
attributes. Table 4 shows the corresponding elements of
“RegistryObject/@id” in MCS. Thus, “MCS_Attributes” and

Table 4. Mapping OGCRIM “RegistryObject@id” to MCS
elements.

OGC RIM Element Path MCS Element Path

MCS_Attributes/Name=[”ID”]

MCS_Attributes/AttributeType=[”string”]

MCS_String_Attributes/ Obj_id =
[MCS_LOGICAL_FILE/Data_id]

RegistryObject/@id

MCS_String_Attributes/Att_value =
[RegistryObject/@id]

“MCS_String_ Attributes” from MCS are linked to present
“RegistryObject@id”:

<owl:DatatypeProperty rdf:ID="id">

 <rdfs:domain rdf:resource="#RegistryObject"/>
</owl:DatatypeProperty>

<owl:Class rdf:ID="MCS_ID">
 <owl:unionOf rdf:parseType="Collection">

<owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#MCS_ATTRIBUTTES "/>

<owl:Restriction>
 <owl:onProperty rdf:resource="#Name" />

 <owl:hasValue rdf:resource="id" />
</owl:Restriction>
<owl:Restriction>

 <owl:onProperty rdf:resource="#AttributeType" />
 <owl:hasValue rdf:resource="string" />
</owl:Restriction>

</owl:Class>
</owl:intersectionOf>
<owl:intersectionOf>

 <owl:Class rdf:about="MCS_STRING_ATTRIBUTE"/>
<owl:Restriction>

 <owl:onProperty rdf:resource="#Obj_id" />
 <owl:allValuesFrom rdf:resource="#Data_id" />
</owl:Restriction>
<owl:Restriction>

 <owl:onProperty rdf:resource="#Att_value" />
 <owl:allValuesFrom rdf:resource="#id" />
</owl:Restriction>

</owl:Class>

</intersectionOf>

</unionOf>

</class>
Actually the link between “MCS_Attributes” and
“MCS_****_Attributes” in table 5 performs as an OGCRIM
“Slot” that provides a dynamic way to add user-defined attributes
to a registry object (**** means here the basic data type, such as

string, integer). A new class “MCS_Attribute” is used for
representing such a kind of link.

Note that the relationship between “Slot” and “MCS_Attribute” is
“subClassOf”, not “equivlantClass” since “Slot” must be
“MCS_Attribute” and “MCS_Attribute” is not necessarily “Slot”:

<owl:Class rdf:ID="MCS_Attribute">
<rdfs:subClassOf rdf:resource="#Slot" />
 …

</owl:Class>

Table 5. Mapping OGCRIM “Slot” elements to MCS
elements.

OGC RIM Element Path MCS Element Path

Slot/ @name MCS_Attributes/Name

Slot/@slotType MCS_Attributes/AttributeType

Slot/RegistryObject/@id MCS_String_Attributes/Att_value

Slot/ValueList@values MCS_****_Attributes/Att_value

Moreover, this link can also be used to describe the subclasses
of OGCRIM “RegistryObject”, that is, every attribute specific to
the subclass is treated as a user-defined attribute in MCS and
associated with its owner by subclass identifier. Table 6
Table 6. Mapping OGCRIM “Association” elements to MCS

elements.

OGC RIM

 Element Path
MCS Element Path

MCS_Attributes/Name=[”associationType”]

MCS_Attributes/AttributeType=[”string”]

MCS_String_Attributes/ Obj_id =

[Association@id]

Association

/@associationType

MCS_String_Attributes/Att_value =

[Association/@associationType]

MCS_Attributes/Name=[”sourceObject”]

MCS_Attributes/AttributeType=[”String”]

MCS_String_Attributes/ Obj_id =

 [MCS_LOGICAL_FILE/Data_id]

Association

/sourceObject/@id

MCS_String_Attributes/Att_value =

[Association/sourceObject/@id]

MCS_Attributes/Name=[”targetObject”]

MCS_Attributes/AttributeType=[”String”]

MCS_String_Attributes/ Obj_id =

 [MCS_LOGICAL_FILE/Data_id]

Association/

targetObject/@id

MCS_String_Attributes/Att_value =

[Association/targetObject/@id]

shows the relevant elements in MCS for the attributes of
“Association”, a subclass of “RegistryObject”. Following is a
semantic description about one of the attributes of “Association”,
“associationType”:

<owl:Class rdf:ID="associationType">

 <rdfs:subClassOf rdf:resource="#MCS_Attribute" />

<owl:Restriction>

 <owl:onProperty rdf:resource="#name" />

 <owl:hasValue rdf:resource="associationType" />

 </owl:Restriction>

<owl:Restriction>

 <owl:onProperty rdf:resource="#AttributeType" />

 <owl:hasValue rdf:resource="string" />

 </owl:Restriction>

<owl:Restriction>

 <owl:onProperty rdf:resource="#Obj_id" />

 <owl:allValuesFrom rdf:resource="&Data_id"/>

 </owl:Restriction>

<owl:Restriction>

 <owl:onProperty rdf:resource="#Att_value" />

 <owl:allValuesFrom rdf:resource="&Assoication;id"/>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

Table 7. Mapping OGCRIM “Service” and “Classification”
elements to MCS elements.

OGC RIM
Element Path MCS Element Path

MCS_Attributes/Name=[”ServiceBinding”]

MCS_Attributes/AttributeType=[”String”]

MCS_String_Attributes/ Obj_id =

[MCS_LOGICAL_FILE/Data_id]

Service

/ServiceBinding

/@id
MCS_Integer_Attributes/Att_value =

[Service/ServiceBinding/@id]

MCS_Attributes/Name=[”SpecificationLink”]

MCS_Attributes/AttributeType=[”String”]

MCS_String_Attributes/ Obj_id =

[MCS_LOGICAL_FILE/Data_id]

Service

/ServiceBinding

/SpecificationLink

/@id MCS_String_Attributes/Att_value =

[Service/ServiceBinding/SpecificationLink@id]

MCS_Attributes/Name=[”ClassifiedObject”]

MCS_Attributes/AttributeType=[”String”]

MCS_String_Attributes/ Obj_id =

[MCS_LOGICAL_FILE/Data_id]

Classification

/ClassifiedObject

/@id
MCS_String_Attributes/Att_value =

[Classification/ClassifiedObject/@id]

MCS_Attributes/Name=

[”ClassificationNode”]

MCS_Attributes/AttributeType=[”String”]

MCS_String_Attributes/ Obj_id =

[MCS_LOGICAL_FILE/Data_id]

Classification

/ClassificationNode

/@id

MCS_Sring_Attributes/Att_value =

[Classification/ClassificationNode/@id]

Likewise, consider the subclass “Service” which not only records
its own metadata, but also associate itself with “Classification” for
type query and “ServiceBinding” for run-time accessing. Table 7
indicates how a “Service” and its associations are related to the
elements in the MCS. A “ServiceBinding” may have a

“SpecificaionLink” instance to describe how to access the service
using a technical specification in form of a WSDL document or
another. And the “ClassificationNode” within its classification
scheme are applied to the “ClassifiedObject” in the
“Classification”. A part of semantic description of the attributes of
“Service” and “Classification” is as follows:

<owl:Class rdf:ID="serviceBinding">

 <rdfs:subClassOf rdf:resource="#MCS_Attribute" />

<owl:Restriction>

 <owl:onProperty rdf:resource="#Att_value" />

 <owl:allValuesFrom rdf:resource="&ServiceBinding;id"/>

 </owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="specificationLink">

 <rdfs:subClassOf rdf:resource="#MCS_Attribute" />

<owl:Restriction>

 <owl:onProperty rdf:resource="#Att_value" />

 <owl:allValuesFrom rdf:resource="&SpecificationLink;id"/>

 </owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="classifiedObject">

 <rdfs:subClassOf rdf:resource="#MCS_Attribute" />

<owl:Restriction>

 <owl:onProperty rdf:resource="#Att_value" />

 <owl:allValuesFrom rdf:resource="&Service;id"/>

 </owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="classificationNode">

 <rdfs:subClassOf rdf:resource="#MCS_Attribute" />

<owl:Restriction>

 <owl:onProperty rdf:resource="#Att_value" />

 <owl:allValuesFrom rdf:resource="&ClassificationNode;id"/>

 </owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Figure 4． Storing OGCRIM “Service” instance into MCS tables.

Id Name Attribute_type …

101 Service String

102 ServiceBinding String

103 accessURI String

104 SpecificationLink String

105 UsageDescription String

MCS ATTRIBUTES

<Service id="urn:uuid:39a8afb6-0773-425d-9ced-c9e2a6c0e17f" objectType="Service">

<Name><rim:LocalizedString rim:lang="en" value="WCS provider" /></Name>

<ServiceBinding id="urn:uuid:4fea22c7-2c34-41dc-a74b-f215aaac32e4" objectType="ServiceBinding"
accessURI="http://laits.gmu.edu/cgi-bin/NWGISS/WCS">

 <SpecificationLink id="urn:uuid:0618d7cc-ec33-4a98-8763-912c0fa42f6f" objectType="SpecificationLink”>

<UsageDescription> <rim:LocalizedString rim:lang="en" value="Query operations bound to HTTP GET and/or
HTTP POST and/or SOAP." />

</UsageDescription> ……

Data_id Logical_name Data_type …

10001 WCS provider Service

10002 ServiceBinding

10003 SpecificationLink

MCS_LOGICAL_FILE

Att_id Obj_id Att_Value

101 10001 39a8afb6-0773-425d-9ced-c9e2a6c0e17f

102 10002 4fea22c7-2c34-41dc-a74b-f215aaac32e4

104 10003 0618d7cc-ec33-4a98-8763-912c0fa42f6f

102 10001 4fea22c7-2c34-41dc-a74b-f215aaac32e4

103 10002 http://laits.gmu.edu/cgi-bin/NWGISS/WCS

104 10001 0618d7cc-ec33-4a98-8763-912c0fa42f6f

105 10003 Query operations bound to HTTP GET and/or HTTP POST
and/or SOAP

MCS_STRING_ATTRIBUTES

3.2 Semantic Inference
Once obtaining the semantic model as describe above, an
inference engine is used to derive the mapping facts which are
entailed from some base OWL and instance data together with
other optional ontology information and the axioms and rules
associated with the inference engine.

The figure 4 illustrates how an instance of the “Service” class
appears in the WRS and its mapping in the MCS. From the
semantic model, we can derive the facts as follows:

(gcor:Service owl:sameAs gcor:MCS_LOGICAL_FILE)

(gcor:ServiceBinding owl:sameAs gcor:MCS_LOGICAL_FILE)

(SpecificationLink owl:sameAs gcor:MCS_LOGICAL_FILE)

……

(gcor:MCS_ATTRIBUTES gcor:Name gcor:Service)

(gcor:MCS_ATTRIBUTES gcor:Name gcor:ServiceBinding)

(gcor:MCS_ATTRIBUTES gcor:Name gcor:SpecificationLink)

 (gcor:MCS_STRING_ATTRIBUTES gcor:Att_value gcor: 39a8afb6-
0773-425d-9ced-c9e2a6c0e17f)

(gcor:MCS_STRING_ATTRIBUTES gcor:Att_value gcor: 4fea22c7-
2c34-41dc-a74b-f215aaac32e4)

(gcor:MCS_STRING_ATTRIBUTES gcor:Att_value gcor: 0618d7cc-
ec33-4a98-8763-912c0fa42f6f)

……

Note that these facts include inferences based on subclass
inheritance (being a “gcor:Service” implies it is an
“gcor:RegistryObject” which is equivalent to
“gcor:MCS_LOGICAL_FILE”; likewise with
“gcor:ServiceBinding” and “gcor:SpecificationLink”) and the
property restriction (“gcor:Att_value” derives from the specific
“AllValuesFrom” restriction).

4. IMPLEMENTATION
Figure 5 presents the architecture of MCS-based WRS as it is
currently implemented in our testbed system. Figure 6 shows the
Web interface for “getRecord” operation in this prototype
(http://llinux.laits.gmu.edu:8080/WRS/index.html). The current
implementation uses Globus Toolkit 2.2 as the basic infrastructure,
an Apache Web server front and a MySQL database backend. All
of the applications are written in Java.

“WRS Agent” is a core component that plays the role similar to a
wrapper between the WRS and the MCS. Its “OGCRIM Object
Generator” is invoked by WRS message to generate necessary
OGCRIM class instances. And then these instances are mapped by
its “WRS/MCS Mapping Engine” into MCS data scheme based on
the semantic model described in section 3. The previous WRS
message thus is translated into a MCS command and a RLS
command. Conversely, the “WRS/MCS” Mapping Engine receives
a response from MCS and RLS to map it into OGCRIM scheme
and the “OGCRIM Object Generator” uses this scheme to

generate relevant objects. So the MCS/RLS response becomes the
WRS response.

Figure 5. Architecture of the implementation.

Every OGC Web service has its own capability profile containing
the metadata about the service and the service provider and
describing which operations the service provides and the data
layers it serves. The “Geo-Agent” component is responsible for
checking the available capability profiles and using them to
register the resources they represent through the “WRSTransaction
Interface”. It also supports to check and parse other specification
documents, such as WSDL, for publishing.

Figure 6． Web Interface for “getRecord” Operation.

Following is a simple scenario for discovery and access of service
and data, which uses WRS, MCS and RLS.

1) The “Client” queries the “OGC WRS” using a WRS
message through “WRSQuery Interface”.

2) The “OGC WRS” translate the WRS query into MCS
query using “WRS Agent”.

Database

WRSQuery Interface/
WRSTransaction Interface

WRS Agent

User

Web Client OGC Compliant client
Capability Profile/

Specification
Document (WSDL)

GeoAgent

OGC Web/Grid
Service

OGCRIM Object
Generator

WRS/MCS Mapping
Engine

OGC WRS
Web Coverage Service

Web Feature Service

Web Map Service

MCSRLS

Database
RLS Agent MCS Agent

3) The MCS query is sent by “MCS Agent” to the “MCS
Server” for querying.

4) The “MCS Server” responds with a list of logical name
attributes for query items with matching attributes.

5) The “OGC WRS” queries “RLS Server” using “RLS
Agent”.

6) The “RLS Server” returns a list of physical name
attributes for the query items identified by the logical
name.

7) The “OGC WRS” translate the results into a WRS
message.

5. RELATED WORK
The MCS initially is file-data oriented, that is, it records the file
metadata for data discovering. It is based on MCAT Metadata
Catalog [13] of Storage Resource Broker (SRB) [1] from San
Diego Supercomputing Center. Both of them support logical name
space, logical collection and container, and GSI authentication, but
the MCAT stores both logical and physical metadata and can be
used as a stand-alone component, while the MCS is one of
component in a layered, composed Grid architecture. In [19], it
gives out some MCS application experiences on ESG. Replica
Metadata Catalog developed by European DataGrid’s Reptor
project [11] has similar design and function as the MCS.

The WRS owes a great deal to the ebXML model. Currently,
prominent models within the Web services realm include the
ebXML and the UDDI [15] model. The API (Application Program
Interface) associated with both models support multiple query
patterns: browse and drill-down, or filtered queries against
specified registry objects. The UDDI model focuses more on
business entities and associated service descriptions. An extended
UDDI registry, which allows to record user-defined attributes
about service, is described in [18]. The ebRIM, which draws on
the ISO 11179 set of standards to provide comprehensive facilities
for managing metadata, is more general and extensible. How to
exploit the class hierarchies in ebXML registries at the semantic
level for efficient service discovery and composition is reported in
[5]. In [6], there is a description of how OWL ontologies stored
and accessed through the ebXML classification hierarchy are used
by software agents for automatic service discovery and
composition. The WRS extends the capabilities of the ebXML
service to address the relationship between service and data
explicitly.

In [4], how to integrate Grid technology with OGC Web services
for NASA EOS data is described. In this paper, we combine the
merits of the MCS and the WRS to build a MCS-based WRS for
publishing and discovering OGC Web service and data in Grid
through standard Web interfaces.

6. CONCLUSION
To be able to exploit services and relevant data in Grid, catalog
middleware should contain not only metadata information about
individual item but also relationship information to indicate the
association between registry objects. Therefore a well-defined
registry information model plays a very important role in Grid
catalog middleware. In this paper, we have presented how a MCS
is augmented with the OGCRIM to support cataloguing geospatial
service and data in Grid and described the design and
implementation of a MCS-based WRS. What distinguishes our

work is that it makes the MCS geo-enabled and object-oriented by
mapping the OGCRIM into the MCS data scheme and
implementing the WRS interfaces in the MCS. And For the
purpose of supporting flexible semantic matching between
different information models, we are investigating how the WRS
and the MCS can be enhanced by using ontologies.

In the next step we will implement a semantic OGCRIM based on
DAML-S [3] ontologies and geospatial domain ontologies. Here
DAML-S ontologies modulate the structure of registry object and
indicate the relationships between registry objects, and domain
ontologies play the role as meta-ontologies about DAML-S
ontologies for indicating the relationships between the terms used
in DAML-S ontologies. By using ontologies, the matching process
can perform inference on the subsumption hierarchy to get the
recognition of semantic matches regardless of syntactic
differences. However, how to build domain ontologies remains a
significant problem for us because of the complexity of geospatial
information. Currently, there are three sets of metadata standard
about geospatial information, respectively from ISO19115, FGDC
and ECS. They are being widely used to describe geospatial
information. Therefore, the terms in these standards are the best
candidates to be used to build domain ontologies.

7. ACKNOWLEDGMENTS
This research project is supported by grants from NASA Earth
Science Technology Office (ESTO), NASA Earth Science Data
and Information System (ESDIS) project, and Open GIS
Consortium (OGC).

8. REFERENCES
[1] Baru, C., Moore, R., Rajasekar, A., and Wan, M., The SDSC

Storage Resource Broker”, presented at Proc. CASCON’98
Conference, 1998.

[2] CEOS-Grid Task Team, V1.0 CEOS-Grid Interim Task Team
Project Plan, Sep. 20, 2002

[3] DAML Services Coalition. DAML-S: Web Service
Description for the Semantic Web. In The First International
Semantic Web Conference (ISWC), June 9-12, 2002, Sarinia,
Italy.

[4] Di, L., Chen, A., Yang, W., Zhao, P., The Integration of Grid
Technology with OGC Web Services (OWS) in NWGISS for
NASA EOS Data. HPDC12 & GGF8 on June 24 - 27, 2003,
Seattle, USA.

[5] Dogac, A., Kabak, Y., Laleci, G., A Semantic-Based Web
Service Composition Facility for ebXML Registries. The 9th
International conference of Concurrent Enterprising, Espoo,
Finland, June 2003

[6] Dogac, A., Kabak, Y., Laleci, G., Enriching ebXML
Registries with OWL Ontologies for Efficient Service
Discovery. The 14th International Workshop on Research
Issues on Data Engineering. Boston, USA , March 28-29,
2004

[7] ESG, “The Earth Systems Grid”.
http://www.earthsystemgrid.org

[8] Foster, I., Kesselman, C. Globus: A Toolkit-Based Grid
Architecture. In Foster, I. and Kesselman, C. eds. The Grid:

Blueprint for a New Computing Infrastructure, Morgan
Kaufmann, 1999, 259-278

[9] Foster, I., Kesselman, C. and Tuecke, S. The Anatomy of the
Grid: Enabling Scalable Virtual Organizations. International
Journal of High Performance Computing Applications, 15(3).
200-222. 2001.
www.globus.org/researcch/papers/anatomy.pdf

[10] Foster, I., Kesselman, C., Nick, J. and Tuecke, S. The
Physiology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration.
http://www.globus.org/ogsa/, 2202a

[11] Guy, L., Kunszt, P., Laure, E., Stockinger, H., Stockinger, K.,
Replica Management in Data Grids. Global Grid Forum 5.

[12] IPG, “NASA Power Information Grid”.
http://www.ipg.nasa.gov

[13] MCAT, MCAT- A Mtea Information Catalog (Version 1.1).
[14] OASIS/ebXML Registry Technical Committee.

OASIS/ebXML Registry Information Model v2.0 Approved
Committee Specification. http://www.oasis-
open.org/committees/regrep/documents/2.0/specs/ebRI
M.pdf

[15] OASIS UDDI Specifications TC – Committee. UDDI
Version 3.0.1 UDDI Spec Technical Committee
Specification. http://uddi.org/pubs/uddi-v3.0.1-
20031014.pdf

[16] Open GIS Consortium Inc. OWS1 Registry Service. 2002-07-
26

[17] Open GIS Consortium Inc. Filter Encoding Implementation
Specification Document. 2001-12-19

[18] Shaikhali, A., Rana, O., Al-Ali, R., Walker, D., “UDDIe: An
Extended Registry for Web Services”. Workhshop on Service
Oriented Computing: Models, Architectures and Applications
at SAINT Conference, Florida, January 2003

[19] Singh, G., Bharathi, S., Chervenak, A., Deelman, E.,
Kesselman, C., Manohar, M., Patil, S. and Pearlman. L. A
Metadata Catalog Service for Data Intensive Applications.
SC’03, November 15-21, 2003, Phoenix, Arizona, USA

[20] Web Service Description Language(WSDL).
http://www.w3.org/TR/wsdl

