
1

A Generic Framework for Building Services and
Scientific Workflows for the Grid

Gopi Kandaswamy, Liang Fang, Yi Huang, Satoshi Shirasuna and Dennis Gannon
(Department of Computer Science, Indiana University, Bloomington, Indiana)

Abstract— Web Service architectures have gained popularity
in recent years because they allow software and services from
various organizations to be combined easily to provide inte-
grated and distributed applications. However, most applications
developed and used by scientific communities are not Web
Service oriented and there is a growing need to integrate them
into Grid applications based on Web Service architectures.
But are scientific communities willing to rewrite each of their
applications as a Web Service? Do they want to write complex
software to manage user authentication and authorization? Do
they want to write complex interfaces between applications to
manage interactions between them? Can they afford to keep
up with rapidly changing service-oriented technologies today?
What they do want is to be able to do experiments of ever
increasing complexity using scientific workflows. In this paper
we describe a framework that allows scientists to wrap their
existing applications as Web Services without having to write
any extra code or modify their applications in any way. The
framework also allows scientists, educational users and other
users to discover these application services, interact with them
and compose scientific workflows from the convenience of a Grid
Portal.

Index Terms— Grid Services, Grid Workflows, Grid Portals,
Grid Security

I. INTRODUCTION

Because of the role played by Grid technologies in large-
scale scientific collaborations, Web Service architectures have
grown in significance in recent years. Consequently, many sci-
entific communities are feeling a growing need to convert their
legacy applications into Web Services. Unfortunately, most of
the applications developed and used by scientific communities
are command-line applications written in FORTRAN, C and
a host of scripting languages. They are fast, efficient and easy
to use. However, they are usually platform dependent and are
difficult to integrate with applications from other communities.
There is no standard way of registering these applications so
that they can be discovered by interested clients and end-
users. Programmatic access from remote clients is difficult.
Many of them lack a graphical user interface, which makes it
cumbersome for end-users to interact with them. Also, there is
no standard way to describe their input parameters and output
results and to monitor their progress as they run for extended
periods of time on the Grid. By converting these command-
line applications into application services, we can overcome
most of the aforesaid limitations. An application service is
an application with a Web Service interface to it. The Web
Service interface is described in the Web Service Definition
Language (WSDL) [1] as a set of endpoints operating on mes-
sages containing document-oriented information. We discuss

our experiences with a framework we have built that allows
scientists to not only wrap their applications as services and
deploy them on the Grid, but also securely interact with these
services, compose scientific workflows using these services
and monitor the status of their workflows on the Grid. The
framework has four primary components:
• A Grid Portal, which is a Web Server and a gateway for

users to access services, compose workflows and manage
data.

• A generic Factory [2] Service that is invoked from the
Portal by application providers to wrap applications as
services and create new instances of these services on
the Grid.

• A workflow composer tool that allows users to compose
complex and interesting workflows from application ser-
vices.

• A Notification Service that allows application services
to send messages that are logged by the Portal and
monitored by the workflow instance.

Our primary focus in this paper is on the design of the
application services and the associated security architecture.
We begin by discussing some related work in section II. In
section III we show how application services can be created
and accessed from a Grid Portal. We discuss the architecture
of the application services in section III-C. In section III-D
we describe the authentication and authorization mechanisms
implemented by these services. We then show how users can
compose scientific workflows from these services in section
IV.

II. RELATED WORK

Several frameworks have been developed to compose and
run scientific workflows on the Grid. However, most of them
do not support wrapping an application as a Web Service.
SoapLab [3], [4] is a set of Web Services that provides pro-
grammatic access to some applications on remote computers.
It can create two types of Web Service; Analysis Service
and Derived Analysis Service. While the former allows users
to send input data as weakly typed name-value pairs, the
later has strongly typed methods for sending input data and
receiving results. SoapLab uses Apache Axis [5] to create
Java implementation classes and deployment descriptors for all
Derived Analysis Services. It uses CORBA [6] on the server
side for finding, starting, controlling and using applications.
Although SoapLab serves to wrap as a Web Service almost any
command-line tool, it has a number of limitations. SoapLab



2

does not have a rigorous Notification Service that can accept
CORBA events and propagate them to clients. This makes
monitoring the status of services and workflows difficult.
SoapLab is not Grid enabled and service-level authentication
and authorization are not addressed. Also, the basic problem
with code generation and deployment is that if the server side
logic changes, then the implementation classes have to be re-
generated and re-deployed. This can be a time consuming
process for large scientific workflows involving hundreds of
services.

Gowlab [7] is an application that enables ordinary Web
pages to be wrapped as Web Services. It also allows pro-
grammatic access to these services. However, these services
are difficult to maintain because of the non-standardized and
changeable nature of Web pages. Also, most Web pages are
non-trivial and require the Gowlab service provider to write
Java implementation classes to extract information from them.

Pise [8] is a great tool for generating Web interfaces for
Molecular Biology applications. It does not wrap applications
as Web Services but merely adds a friendly user interface to
them. It supports a variety of interfaces like HTML, Tcl/Tk and
X11. It also allows users to compose workflows from them.
However, Pise does not handle authentication and authoriza-
tion issues that arise when users access application services
that run under the credentials of the application provider. It
does not have a rigorous notification mechanism. Moreover, it
is a toolkit specific to Molecular Biology applications and is
not very extensible.

The GridLAB [9] project aims to provide application tools
and middleware for Grid environments. It uses the Grid
Application Toolkit (GAT) [10] which is set of APIs that
Grid application programmers can use for uniformly accessing
numerous Grid Services and middleware. However, GAT does
not address the problem of wrapping existing applications as
Web Services.

Kepler [11] is an open-source scientific workflow system.
It allows scientists to design and execute scientific workflows
on the Grid. It features a generic Web Service Actor which
can take the URL of a WSDL and instantiate any operation
specified in the WSDL. After instantiation, the Web Service
Actor can be used in a scientific workflow as a local compo-
nent. However, a Web Service Actor merely serves as a client
to Web Services. It does not create Web Service wrappers for
applications.

There are a number of others frameworks like SeqHound
[12], BioMoby [13] and Kegg [14] that are specific to Bio-
Informatics and are not extensible.

III. BUILDING SERVICES FROM APPLICATIONS

Our framework provides the Generic Service Toolkit to en-
able application providers to wrap their applications as secure
services. The service and the application run under the identity
of the application provider, who authorizes interested users
access to her service. If every user of a Grid Portal wanted
to run her own instance of the service she wanted to access,
there would be too many independent and persistent services
for the Grid to handle. From our experience we have realized

that it is unrealistic to get a large number of services running
independently and persistently without a huge commitment
in the form of resources and support infrastructure. However,
we feel that it is possible to support a small number of
Factory Services running persistently that can dynamically
create instances of other transient and possibly stateful services
on the Grid. The Generic Service Toolkit features the Generic
Factory Service and the Generic Service Client. The Generic
Factory Service is a stateless and persistent Web Service that
can be used for creating and deploying application services on
the Grid. The Generic Service Client can be used to interact
with the Factory and the application services that it creates.
Application providers, who want to wrap their applications as
a service, need to give the Factory a description of the service.
Our Factory uses a schema that we call the ServiceMap, for
describing a service.

A. The ServiceMap Schema

The ServiceMap schema contains information about the
service port-types, including their operations and the input and
output parameters. It also contains configuration parameters
that are needed to instantiate the service. A ServiceMap docu-
ment that conforms to the ServiceMap schema has four main
elements; service, portType, creationParameter and policy.
The service element describes the service to be created. It
contains the name of the service and a short description of
the service. It also contains metadata about the service. The
metadata element supports any XML schema. A ServiceMap
document for a simple data decoder that translates a data file
from one format to another is illustrated below.

<service>
<serviceName> Decoder </serviceName>
<serviceDescription>
Data decoder

</serviceDescription>
<metadata> Anything </metadata>

</service>
<portType>

<portName> DecoderPort </portName>
<portDescription>
Port to decode data

</portDescription>
<metadata> Anything </metadata>

</portType>
<method>

<methodName> Run </methodName>
<methodDescription>
Runs the decoder

</methodDescription>
<metadata> Anything </metadata>
<script>
<typeOfScript> ogre </typeOfScript>
<scriptFile> decoderScript.xml </scriptFile>

</script>
<inputParameter>
<parameterName> topic </parameterName>
<parameterDescription>

The topic for notification messages
</parameterDescription>
<metadata> Anything </metadata>

</inputParameter>
</method>
<creationParameter>

<host> chinkapin.cs.indiana.edu </host>
<workDir> /tmp/decoder </workDir>

</creationParameter>



3

The portType element contains a name, description, metadata
and a list of operations (also known as methods). Each
operation has a name, a description and metadata. It also
contains an application which is either a simple command-
line executable like a UNIX command or a more sophisticated
script written in OGRE [15], Jython, Python, Perl etc. When an
operation is invoked on the service, the application is invoked.
The input parameters to the application are specified as input
parameters to the operation. Each input parameter has a name,
description, metadata and a list of default values. In the current
implementation, the input parameter values must be strings. In
future we plan to support complex object types. Default val-
ues are specified using the parameterValue element. Security
policy information can be specified using the policy element.
In the current implementation, the policy specification is quite
primitive and allows the application provider to specify a list
of users and groups who are authorized to access the service
and a lifetime for the policy. We will discuss more about this
in section III-D. The creationParameter element specifies the
physical location where the service will be started. It contains
the host and the working directory of the service.

B. Creating and Accessing Services from the Portal

The standard Grid Portals we describe here are based
on the JSR-168 portlet container model [16]. When a user
authenticates with the Portal, a "context" is created for that
session of the user. What the user sees is a set of portlets that
each have a user interface and some back-end logic that runs
in the Portal Server. The application provider uses the Generic
Factory Service to wrap an application as a Web Service.
To do so, she first uses the Proxy-Manager Portlet to load
her Grid proxy certificate into her Portal context. She then
uses the Generic Service Client (also known as the Generic
Service Portlet shown in Figure 1) to access the Factory. To
create a service, she uploads the ServiceMap document to the
portlet which it then transfers to the Factory. After validating
the ServiceMap document, the Factory creates and starts the
service on the specified host using Globus Resource Allocation
Manager (GRAM) [17], [18]. To do so it needs the proxy
certificate of the application provider which it obtains from
her Portal context. After it is instantiated, the service registers
its WSDL with a Registry Service. This allows the service to
be discovered by interested clients and end-users that search
for it in the Registry using its name or metadata. The Registry
returns the service’s WSDL that the clients use to access the
service. While client programs such as workflows access the
service programmatically, end-users rely on the graphical user
interface that is generated by the service itself; a concept that
we borrowed from WSRP [19].

When a user accesses a service using the Generic Service
Portlet, the portlet requests the service for a user interface. The
service then creates a user interface in the form of a HTML
page and sends it back to the portlet which is displayed to the
user. A sample user interface is shown in Figure 2. The user
interface shows all the operations that the user is allowed to
invoke on the service. When the user selects an operation,

Fig. 1. Generic Service Portlet

the portlet sends another request to the service to obtain
the user interface for that operation (Figure 3). It is also a
HTML form that the user needs to complete in order to invoke
the operation. In the ServiceMap document, the application
provider can describe the user interface that she wants her
service to create for its users. For example, she can specify
the user interface for an input parameter in its metadata. The
formElement in the metadata of an input parameter tells the
application service what “HTML form element” to use to
display the default values for that parameter. There are a
number of these form elements that are supported; ListBox,
RadioButton, CheckBox and RemoteFile to name a few. Some
of these have special properties. For example, the RemoteFile
provides a “browse” button for the user to upload a file to the
portlet which will then transfer it to the application service
using GridFTP [20]. The ServiceMap document also allows
the application provider to specify different user interfaces
for different groups of users. This means that while novice
users enjoy a simple interface to the service, advanced users
can get a richer interface that gives them better control of the
applications that these services encompass. We plan to support
multiple and complex user interfaces in the next release of our
Generic Service Toolkit.

After the user specifies all the input parameter values for an
operation, the portlet sends a SOAP message to the service to
invoke that operation. The service invokes the application and
sends notification messages about its status and the status of
its application to a Notification Service. Clients and end-users
can then listen to these notification messages by subscribing
to the topic to which the notification messages are being sent.
Figure 4 shows the Notification Viewer that we use from our
Portal for viewing notification messages.

The Notification Service we use is called WS-Messenger. It
is our implementation of a notification model and is compliant
with the WS-Notification [21] and WS-Eventing [22] speci-
fications. It provides a messaging service for Web Services
based on the publish/subscribe paradigm. WS-Messenger uses
a topic based notification channel for sending notifications.
A topic is a subject of common interest among the services
participating in a workflow, to which all notification messages
of the workflow are sent. The publish/subscribe notification
mechanism and the creation of a topic are transparent to end-



4

Fig. 2. Service Interface

Fig. 3. Method Interface

users. There are three main components in our notification
model; the Notification Consumer, the Notification Publisher,
and the Notification Broker [23]. The Notification Consumer is
an event sink. It is a Web Service that waits for notifications to
arrive and handles them appropriately. All services that need to
receive notifications use this service. The Workflow Execution
Engine that executes a workflow subscribes to this service
to receive notifications from all the services in the workflow.
The Notification Publisher is used to publish notifications. All
services created by the Generic Factory Service have a built-in
Notification Publisher to publish notifications. The Notification
Broker is a service that acts as an intermediary and relays
messages from a publisher to a consumer. It is persistent

Fig. 4. Notification Listener

in nature and stores messages that cannot be delivered to
the consumer. These messages can be retrieved later by the
consumer.

C. Architecture of an Application Service

The Factory creates an application service from its de-
scription in the ServiceMap document. Neither the application
provider nor the Factory generate any code for implementing
the service interface. Also, no client side stubs or server side
skeletons are created. So how does the Factory convert a
service description into an actual service? The answer lies
in the message processor that is present in all application
services created by the Factory. The message processor is a
very simple Web Service. It receives SOAP request messages
and returns SOAP response messages as all Web Services do.
However, it cannot process the request messages because it
does not know how to process them. The information that it
needs to process the request messages is given to it by the
application provider as a ServiceMap document. When given
a ServiceMap document, the message processor reconfigures
itself to support all the operations specified in the document.
It then generates its WSDL and registers it with a Registry.
Based on the information in the service’s WSDL, a client
can create a SOAP request message for the operation that
the user wants to invoke on the service. When the message
processor receives such a request message, it validates the
request message and invokes the application associated with
the operation, in a separate thread of execution. The mapping
between the operation and the application is obtained from the
ServiceMap document. The list of input parameter values for
the operation has a one to one correspondence to the list of
input parameter values for the application.

The Factory can invoke almost any command-line appli-
cation like UNIX commands or more sophisticated scripts
written in OGRE, Jython, Python, Perl etc. OGRE, Jython and
Python scripts are executed within the application service’s



5

Java Virtual Machine. This enables the service to monitor
the status of these scripts and send notification messages to a
Notification Service.

The design of the message processor is simple yet powerful.
It makes the application service lightweight yet highly config-
urable. No code generation or code deployment is needed to
create a service from its description. If the server side logic
changes, the application provider needs to just upload the new
ServiceMap document to the application service; there is no
need to create a new application service or a new instance of
the application service. As an interesting side note, the Factory
itself is an application service that is capable of creating
other application services. It has the same simple message
processor and a ServiceMap document that specifies a single
operation viz. createService. This operation takes as input a
ServiceMap document and creates an application service from
it. Thus the Factory and all other application services have the
same architecture; a message processor that processes request
messages according to the specifications in the ServiceMap
document.

D. Security in Application Services

Figure 5 shows the interactions among various services in
our framework. An application provider securely logs into the
Portal and loads her Grid proxy certificate into her Portal
context. She then uploads the ServiceMap document to the
Factory, which uses her proxy certificate to start the service on
the remote host using GRAM. After the service is instantiated,
it registers its WSDL with a Registry. Then, based on the
policy information in the ServiceMap document, the service
creates capability tokens and registers them with the Capability
Manager [24] Service. Capability tokens are created using
XPOLA [24]. Conforming to the principle of least authority
(POLA), XPOLA is a fine-grained authorization infrastructure
for Web and Grid Services and is based on capabilities.
Every capability token is a detailed policy document con-
taining authorization information for the service instance and
all its operations. It is signed by the application provider’s
proxy certificate. The whole infrastructure includes a persistent
Capability Manager Service, plug-in capability handlers on
the service and client sides and a portlet-based user interface
(shown in Figure 6) for providers and users to manage their
capability tokens. Enforcement plug-in handlers guarantee that
a user’s request can do no more than what it is allowed as
specified in the assigned capability token. It is important to
note that application providers and users rarely need to manage
their capability tokens because the framework manages them
on their behalf, as follows:
• The application services create the capability tokens from

the policy information in the ServiceMap document and
register them with the Capability Manager Service.

• The Generic Service Portlet contacts the Capability Man-
ager Service and loads the user’s capability tokens into
her Portal context just before accessing any service.

• The application services renew their capability tokens
after they expire. The renewal policy is specified in the
ServiceMap document by the application provider.

Fig. 5. Service Interactions

To access a service, a user logs into the Portal. She then
uses the Generic Service Portlet to access the service. The
portlet contacts the Capability Manager Service and loads the
user’s capability tokens into her Portal context. The portlet
then sends a request to the service using SSL. The user’s proxy
certificate is used for authenticating the user to the service and
the application provider’s proxy certificate is used for authen-
ticating the service to the user. After mutual authentication, the
service returns the user interface. All further interactions with
the service are secure and are done through the portlet using
SSL. When the user invokes an operation on the service, the
portlet sends a SOAP request message along with the user’s
capability token, signed by the user’s proxy certificate. The
service verifies the authenticity of the request and carries out
the operation on behalf of the user, if the user is authorized
to do so. While this protocol may seem potentially slow and
complex, our initial experience is that it is neither slow nor is
the complexity a problem because the framework handles it a
manner that is transparent to application providers and users.
A more detailed and quantitative analysis of the performance
is underway and will be published later.

IV. COMPOSING WORKFLOWS FROM THE PORTAL

So far, we have described how to wrap a single application
as a Web Service. However, it is common for scientists to
execute a sequence of applications to get desired results. In the
traditional way, several command-line applications are glued
together by scripting languages such as OGRE, Jython, Perl
etc. This works well if the application is not distributed on
the Grid. In the case of complex applications that operate
across a Grid, a more service-oriented system is needed. Our
workflow composer, called X-Workflow Composer, enables
users to graphically compose workflows from Web Services.
It provides an easy-to-use GUI that allows users to search for
interesting services, visually connect them together to form
workflows and execute the workflows on the Grid.

As we have seen in section III-A, an application provider
uses the ServiceMap document to describe her service. This
document is converted to an abstract WSDL by our workflow



6

Fig. 6. Capability Manager Portlet

composer and registered with a Registry. While a WSDL
represents a service instance, an abstract WSDL represents
a service. It allows the user to create workflows from non-
existent services. These services can be instantiated dynami-
cally by the Factory when the workflow is actually executed
on the Grid. The abstract WSDL contains information about
the port-types of the service, the operations and their input
and output data types. Using the X-Workflow composer, the
user first searches a Registry for interesting services. Each
service is represented as a node with one or more inputs
and outputs. The user creates a graph by interconnecting the
services that constitute the workflow. The abstract WSDL also
contains metadata about the service, port-types, operations
and the input and output parameters. Some of this metadata
is provided by the application provider in the ServiceMap
document. Metadata about the input and output parameters
can be obtained from a THREDDS [25] Catalogue Gener-
ator Service. In the next release of our composer, we plan
to incorporate a plug-in module that can extract semantic
information from the various types of metadata and assist
the user in composing workflows. Figure 7 shows a snapshot
of the X-Workflow Composer creating a workflow. After
the user creates the graph that represents the workflow, the
composer analyzes the dependencies among the constituent
Web Services. It then creates a workflow script in Jython
which can be executed by our Jython Workflow Engine. We
are currently working on supporting workflow scripts in BPEL
[26] which is a promising standard for describing workflows
in the Web Services world.

A particular abstract application service may have several
concrete instances running at the same time on the Grid. Each
service instance may have a different policy associated with
it. For example, services of a particular scientific community
may not allow users of other communities to access them.

The services created by our Generic Factory Service include
this policy information in their WSDLs. Before executing
the workflow, our Workflow Engine searches the Registry
for service instances that satisfy the policy requirements.
Our current Workflow Engine requires all services in the
workflow to be running at the time of invocation. We will
overcome this limitation when we replace Jython workflow
scripts with BPEL workflow scripts and use a BPEL Workflow
Engine that can dynamically create service instances using
our Factory. After starting the workflow, the Workflow Engine
receives notification messages from the services to monitor
their status. Notification messages contain status information
and output parameters. The Workflow Engine may use the
output parameters of a service as the input parameters to the
next service in the workflow. It also monitors the services for
error messages. In the event of a failure of a service invocation,
the entire workflow is stopped. In our next version where we
plan to use BPEL scripts, the BPEL Workflow Engine will be
able to handle failures more gracefully.

Fig. 7. Workflow Composer

V. CONCLUSIONS

Our generic framework allows scientists to wrap appli-
cations as Web Services, compose workflows from them
and execute them on the Grid. The services created by our
framework generate their own graphical user interface, which
allows end-users to interact with them using thin and generic
Web Service clients. Security is one of the prime concerns in a
distributed environment. Our framework takes care of authen-
tication and authorization during all client-service interactions
in a manner that is almost transparent to application developers
and end-users. Users can search for services and compose
workflows by visually interconnecting them in a workflow
composer. Services use notification messages to report their
status and results. Using this framework we have been able to
integrate some real scientific applications into distributed Grid
applications based on Web Service architecture.

REFERENCES

[1] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, “Web
Services Description Language (WSDL) 1.1,” 15 Mar. 2001;
http://www.w3.org/TR/wsdl



7

[2] D. Gannon, R. Ananthakrishnan, S. Krishnan, M. Govindaraju, L.
Ramakrishnan, and A. Slominski, “Grid Web Services and Application
Factories,” Grid Computing: Making the Global Infrastructure a Reality.
Fox, Berman and Hey, eds., Wiley, 2003.

[3] M. Senger, “Soalab: SOAP based analysis web service,” 24 Feb. 2005;
http://industry.ebi.ac.uk/soaplab

[4] M. Senger, P. Rice, and T. Oinn, “Soaplab - a unified Sesame door to
analysis tools,” Proceedings of the UK e-Science All Hands Meeting,
2-4 Sep. 2003

[5] “Axis,” 10 Apr. 2005; http://ws.apache.org/axis
[6] “CORBA/IIOP specification,” 04 Mar. 2001;

http://www.omg.org/technology/documents/formal/corba_iiop.html
[7] M. Senger, “Gowlab: Web pages as web services,” 3 Mar. 2005;

http://industry.ebi.ac.uk/soaplab/Gowlab.html
[8] C. Letondal, “PISE: A tool to generate web inter-

faces for molecular Biology programs,” 10 Dec. 2004;
http://www.pasteur.fr/recherche/unites/sis/Pise

[9] “GridLab products and technologies,” 6 Apr. 2005;
http://www.gridlab.org/about.html

[10] “Grid(Lab) Grid Application Toolkit,” 30 Jun. 2004;
http://www.gridlab.org/WorkPackages/wp-1

[11] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M.
Jones, E. Lee, J. Tao, Y. Zhao, “Scientific Workflow Management and the
Kepler System,” Concurrency and Computation: Practice & Experience,
Special Issue on Scientific Workflows, to be published 2005

[12] “SeqHound,” 10 Apr. 2005; http://www.blueprint.org/seqhound
[13] “BioMoby,”; http://biomoby.org
[14] “Kegg,” 10 Apr. 2005; http://www.genome.jp/kegg
[15] S. Hampton and A.L. Rossi, “OGRE: Programmer’s manual,” 10 Apr.

2005; http://corvo.ncsa.uiuc.edu/ogre/docs/manual/index.html
[16] “JSR 168 portlet specification (final release),” 7 Oct. 2003;

http://www.jcp.org/aboutJava/communityprocess/final/jsr168
[17] I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure

Toolkit,” International Journal of Supercomputer Applications, vol. 11,
no. 2, 1997, pp. 115-128

[18] “GT3 GRAM architecture,” 4 Jun. 2003; http://www-
unix.globus.org/developer/gram-architecture.html

[19] A. Kropp, C. Leue, and R. Thompson, “Web Services for
Remote Portlets specification,” 9 Mar. 2003; http://www.oasis-
open.org/committees/download.php/3343/oasis-200304-wsrp-
specification-1.0.pdf

[20] “The GridFTP protocol software,” 27 Sep. 2002;
http://www.globus.org/datagrid/gridftp.html

[21] S. Graham et al., “Web Services Base Notification version 1.0,” 5 Mar.
2004; ftp://www6.software.ibm.com/software/developer/library/ws-
notification/WS-BaseN.pdf

[22] D. Box et al., “Web Services Eventing (WS-Eventing),” Aug.
2004; ftp://www6.software.ibm.com/software/developer/library/ws-
eventing/WS-Eventing.pdf

[23] S. Graham et al., “Web Services Bro-
kered Notification version 1.0,” 5 Mar. 2004;
ftp://www6.software.ibm.com/software/developer/library/ws-
notification/WS-BrokeredN.pdf

[24] L. Fang, D. Gannon, and F. Siebenlist, “XPOLA: An extensible
capability-based authorization infrastructure for grids,” 4th Annual PKI
R&D Workshop: Multiple Paths to Trust, 19-21 Apr. 2005

[25] B. Domenico, J. Caron, E. Davis, R. Kambic, and S. Nativi, “Thematic
Real-time Environmental Distributed Data Services (THREDDS): In-
corporating Interactive Analysis Tools into NSDL,” Journal of Digital
Information, vol. 2, no. 4, 2002.

[26] T. Andrews et al., “Business Process Execution Lan-
guage for Web Services version 1.1,” 5 May. 2003;
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf


