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Abstract engineering of grid computing standards to be compatible
with the current Web services conventions and specification
The convergence of Web services and grid computing hasThis convergence simplifies the design, development and de-
promoted SOAP, a widely used Web services protocol, into aployment of grid services in virtual organizations withelige
prominent protocol for a wide variety of grid applications. compute and resource characteristics.
These applications differ widely in the characteristicstwfir Two important Web services specifications are Web Ser-
respective SOAP messages, and also in their performance revices Description Language (WSDL) [11] and SOAP [17].
quirements. To make the right decisions, an applicatioetev WSDL provides a standard language to precisely specify all
oper must thus understand the complex dependencies betweehe information necessary for communication with a Web ser-
the SOAP implementation and the application. We proposevice, including the interface of the service, its locatiand
a standard benchmark suite for quantifying, comparing, and the list of communication protocols it supports.
contrasting the performance of SOAP implementations under  SOAP is the most commonly used Web services commu-
a wide range of representative use cases. The benchmarks argjcation protocol for information exchange in a distritaite
defined by a set of WSDL documents. To demonstrate the utiland heterogeneous environment. SOAP specifies how a
ity of the benchmarks and to provide a snapshot of the currentyessage—and the data within it—may be represented and
SOAP implementation landscape, we report the performancewrapped in XML. Though the SOAP specification permits the
of many different SOAP implementations (gSOAP, AxisJavayse of any transport protocol, HTTP is the de facto standard
XSUL and bSOAP) on the benchmarks, and draw conclusiongjye to its widespread use.
about their current performance characteristicés. The mapping of method signatures into request-response
formats, required by an RPC framework, is achieved via con-

Key Words: SOAP, Web Services, Grid Communication, ventions stated in the specification. SOAP supports one-way

Benchmark? messaging and various request-response type exchanges in-
cluding RPC.
i The combination of XML and HTTP lends many attrac-
1 Introduction tive traits to SOAP, including simplicity, expressivengsiat-

form and language independence, extensibility and robust-

Web services have emerged as the architecture of choicéiess. SOAP is a popular choice as the common underlying
for grid standards such as the Web Services Resource Frameprotocol for interoperability between grid services. Thes
work (WSRF) [14]. The WSREF initiative represents a re- features facilitate the use of SOAP in diverse applications
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mance within the constraints of the specification. study provides insight into the relative strengths and weak
The convergence of grid and Web services standards hasesses of different SOAP implementations under differsnt u
elevated the importance of SOAP, requiring the evaluatfon o age scenarios, and demonstrates the utility of the benéhmar
SOAP for data types and communication patterns used by gridsuite. The benchmark suite and driver programs can be used
applications. It is thus important to have a test framework t to continuously compare the performance of available toolk
determine if a particular SOAP toolkit can meet the perfor- its. The performance results in this paper show how effec-
mance requirements of an application, or if some other com-tively the benchmark suite can be used to select an apptepria
munication protocol should be employed. SOAP implemen- SOAP toolkit for specific application needs.
tations are interesting and important to compare, contmast Our work will benefit both SOAP developers and grid ap-
evaluate so users can make informed decisions based on evplications programmers alike. SOAP library developers can
dence of claimed benefits. A comprehensive benchmark suiteggain insights into the various factors and design choicas th
is necessary because: determine the performance of a SOAP toolkit, thereby im-
proving their ability to build better faster implementatso
e The requirements on any communication substrate for Application developers can use the benchmark suite to test
grid services varies for different applications. These re- and compare the performance of various aspects of different
quirements could include low latency, high throughput toolkits, and accordingly select the one that best suiis &pe
communication, minimal memory footprint, optimiza- plication’s needs. We include both floating-point and bédse6
tions to handle scientific data, efficient handling of large performance results so that scientific users can decidenehet
message sizes, capabilities to compress messages on thg not they will need to send their numerical data as base64-
fly, and support for streaming capabilities. Such dis- encoded binary. We ran our benchmarks on the following
parate requirements lead to a wide range of possible de-widely used toolkits: gSOAP, AxisJava, .NET, and XSUL. We
sign and implementation choices. The benchmark suitealso present results for bSOAP, which is an emerging SOAP
can aid in determining the toolkit that has the most op- toolkit.
timized SOAP implementation for a specific feature of  The remainder of this paper is organized as follows. Sec-
interest. tion 2 provides the motivation, description and insight® in
e Asimple and straight forward implementation of various the benchmark suite that we have designed. Section 3 de-
SOAP modules can limit performance. A good bench- scribes our experimental setup and a representative set-of p
mark can help developers identify where optimization formance results. We present a set of observations that can
may be useful. Ideally, SOAP toolkits should dynam- phe drawn from our test results in Section 4. We discuss re-

ically switch to clever optimizations for specific data |ated work in Section 5 and end with pointers to future work
structures, use cases and communication patterns. Wen Section 6.

discuss many such techniques in Section 2.

e Grid users have a wide range of SOAP implementation )
choices [26]. SOAP toolkits exist in languages such as2 Benchmark Suite
Java, C, C++, Perl, Python and C#. Itis important to have

a standard mechanism to quantify, compare, and evaluate  The henchmark suite consists of operations in WSDL files
the performance of each toolkit and study the strengths 51ong with bindings for SOAP calls and a driver that reads
and weaknesses for a wide range of representative USgace data from local files and automates the testing process
case scenarios. Each SOAP toolkit is made to implement the operations de-

fined in the WSDL documents for the benchmark. This sec-

For these reasons, we have designed and de_:veloped aCoMpn explains the rationale for each benchmark’s desigd, an
mon standard SOAP benchmark suite for testing the perfor-yegcribes various optimizations that can be used to improve

mance and scalability of different SOAP toolkits, with a fo-  yhe performance of a toolkit for the features exercised key th
cus on data structures commonly used in grid services. INyanchmark.

designing the benchmarks, we draw on our experience in im-
plementing and optimizing the performance of SOAP’s var- . o .
ious features for three different independent SOAP toglkit 2-1 Serialization, Deserialization and Round-Trip
gSOAP [30, 31, 32], XSUL [16, 20, 25], and bSOAP [4, 5, 6]. Performance

One contribution of this paper is in the design and speci-
fication of the benchmark. This suite provides SOAP imple-  SOAP has been expressly designed to support interoper-
mentors with working examples of SOAP features, and givesability between multiple different implementations. lItims-
them a way of testing and assessing the performance of theiportant to collect and analyze isolated performance sitatis
specific implementation of these features. Another comtrib  for serialization and deserialization because the toolkited
tion is the snapshot it provides of the current performanceby clients and servers may differ. With the recent release
of many popular SOAP implementations. This performance of WSRF implementations [15], we expect a wide range of



SOAP implementations to interact with well known WSRF the SOAP toolkit being tested, which serializes an array of

services. the requested size and type. The driver sends the invocation
for several iterations and measures the average perfoemanc
2.1.1 Serialization of the toolkit.

SOAP serialization converts in-memaory objects into an XML
stream that is sent on the wire in UTF-8 format. We list sev-
eral optimizations that address various stages of seatadiz Deserialization converts XML streams in wire-format to ob-
HTTP 1.0 requires the precise buffer length to be placed jects in memory. We discuss several important aspects of the
in the HTTP header'€ontent-Lengttield. A simple SOAP  deserialization process.
serialization algorithm allocates and extends the buSahe The widely used paradigms for parsing XML documents
data structures are traversed and converted to ASCII. Oncenclude Document Object Model (DOM), Simple API for
this conversion is completed, the buffer length is caladat XML (SAX) and XML Pull Parser (XPP) [20].
and added to the HTTP header. This naive approach can in- The DOM model maps the XML document into a tree rep-
voke multiple expensive memory operations to create asingl resentation in memory. This allows the document to be easily
large memory buffer with the SOAP payload. traversed and modified. However, for large documents, DOM
In [9] we describe how to avoid reading each character of parsing can be memory intensive. In contrast, SAX parsing
the XML tags from memory. If the tags are created as liter- never stores the entire XML document in memory. Instead, a
als, the characters comprising the tags are likely to been th callback model emits events for all the document’s elements
instruction stream as immediate operands. and tags. For large static documents, SAX is preferable to
bSOAP [6] reduces the number of system calls by using DOM. SAX is also often used when only a few specific el-
vectored sendo dispatch multiple buffers with a single call. ements of an XML document need to be extracted and pro-
gSOAP [32], on the other hand, uses a two-iteration algo- cessedPull parsing employed by the XPP parser, is special-
rithm. The first iteration traverses the data structurescatd  ized for parsing payloads in which elements are processed in
culates the required buffer length. The second iteration ge succession, and no element needs to be revisited. XPP pro-
erates the HTTP header, fills in the content length, andiseria vides the added feature of building a partial XML Infosettre
izes the SOAP message directly over TCP/IP. This approachin memory in an incremental manner.
avoids keeping the entire buffer in memory. DOM, SAX, and XPP require two passes through the XML
In earlier work we showed that the conversion of IEEE document; the parser tokenizes the document in the first pass
754 floating point data to ASCII is complex and can account and the application processes the content in the second. An
for 90% of end-to-end communication time [9]. Our analy- STL map is typically used to compare each tag retrieved by
sis with Sun Forte on a Blade 1000 determined a sharp dropthe parser with the one that is expected. Results in [9] show
in performance when the required precision ranges from 14that at r i e data structure, which ha3(1) lookups as op-

2.1.2 Deserialization

digits to 17 digits. posed taD(lg n) for STL map, can provide significant perfor-
The serialization bottleneck for floating point data is ad- mance improvement for matching tags that appear repeatedly

dressed in bSOAP througtifferential serialization6]. The gSOAP uses a performance-aware compiler that generates

idea behind differential serialization is to store copiépre- code for fast XML parsing and processing of native C/C++

viously sent messages within the stub that sends them. Whetypes. The algorithms are based on single-pass schema-
the stub is invoked for future calls, only the data that hanbe specific recursive-descent parsers for XML decoding antl dua
changed needs to be re-serialized into the message. Tt extepass encoding of the application’s object graphs in XML.
to which this optimization is effective depends on message Deserialization Benchmark Our benchmark consists of
size, content, structure, and the similarity between camnse SOAP messages for different sizes of frequently used data
tive messages. Shifting message contents in memory,redeali types (strings, integers and doubles). Payload elemeats ar
space from neighboring fields, and stuffing fields with whites fully namespace qualified and the driver verifies that the
pace can increase the cases when differential serializedio toolkit has appropriately handled all elements. Deseaali
be applied [5]. Our initial performance results demonstrat tion benchmarks for complex types are described later. Our
that differential serialization can improve send-timesisen tests include toolkits that use different models for pagsin
17 and 1000 percent [4, 5, 6]. XML documents: XSUL uses XPP, gSOAP uses a recursive
Serialization Benchmark Our benchmark suite measures descent parser, AxisJava can use SAX or DOM, and .NET
the serialization performance of various toolkits for geraf uses an efficient streaming parser via ¥M_Reader class.
different data types and sizes that are often used in grid ap-The benchmark driver sends trace data with SOAP payloads
plications. The significance of memory management, conver-of various sizes (and for various types of data) and invokes
sion to ASCII formats, cost of establishing TCP connections the method on the SOAP toolkit requiring it to deserialize th
and size of cache varies as the size of the array changes. Theequest. The driver repeats this test for several iteratfon
benchmark driver generates a request to invoke a method oreach toolkit and measures the performance.



2.1.3 End-to-End Performance payload can be sent in chunks, with each chunk preceded by

The determining factors f gt d verf its length. Small chunk sizes can ensure cache hits buttresul
. l? tE.! errrclimmg' ?C ofrs or e; ) O.'legl pert ormkaggi(:m?]re S&in many system calls. Large chunk sizes can reduce the num-
rialization, deserialization, and avaiiable networ : ber of system calls, but may not always lead to cache hits.

If. the_ salme t00|k!t N lésed folr_ bo_th the cllcljegt and_ V\_/ebdsfer- Thus, chunk size should be a configurable parameter, set ac-
vice implementation, deserialization could be optimize cording to the native system characteristics.

the parameters set by the serialization process. Even lthoug Streamina Benchmark The streaming benchmark mea-
the wire protocol is fixed for SOAP (1.1), the names of the 9 streaming o
sures the performance of serialization, deserializataorg

tags, placement of whitespaces, and serialization ordéataf end-to-end performance when chunking and streaming is used
members of an object are not fixed. Apart from SOAP pay- ith a persistent TCP/IP connection, compared to the case

load specific parameters, the TCP packet size and the size oahen it is turned off. For small messages. the cost of repeat.
sach chunk can be fine tuned if the same toolkit is used by Zedly establishin nétwork connection;J ca{n significantl IOim
sender-receiver pair. y 9 g9 y

End-to-End Performance Benchmark This benchmark pact performance. This benchmark quantifies the exact per-
. o L formance benefit of using streaming. The driver sends stream
combines the tests for serialization and deserializatibime ing data from trace data for primitives. arravs and complex
driver measures toolkit scalability for all primitive datepes, 9 P ' y P

and for arrays of primitives. A different benchmark measure types. It can be configured to vary the size of each chunk in
. : ! the SOAP payload.

complex data types, discussed later. This benchmark’s exam
ple users include those who download WSRF [15] and use the
default implementation, based on AxisJava, for both thentli
and service endpoints.

Results in [23] show that Base64 parameter encoding camz 2. 2 Namespaces
significantly reduce overhead, compared to standard XML en-
coding. To quantify this advantage, for all types and sim&s, XML namespaces are extensively used in SOAP messages.
have included it in the benchmark suite for serializatioe, d Namespaces are used to uniguely identify and distinguish be
serialization, and end-to-end performance measuremésat. T tween identical names of tags, elements and attributesh Eac
end-to-end benchmark driver sends trace data for semalize namespace is associated with a defining namespace name
SOAP messages (of various types and sizes) to the SOARURI). Each tag has a prefix that points to a fully qualified
toolkit being tested. The toolkit is required to deserializ name via a special attribute nametnins XML parsers typi-
this message and again serialize it as the return value dor th cally use a stack to store namespace prefixes and correspond-
method invocation. The driver repeats this process over seving URIs. The number of definimgmlnsnamespace bindings

eral iterations for each data type and size. in an XML message is typically much smaller than the num-
ber of uses of this namespace prefix. As a result, maintaining
2.2 Candidate Features for Optimizations the stack can result in several comparison operations,amd ¢

hurt the overall performance of the deserialization module

In this section we isolate the optimizations and related  Processing okminsattributes can be optimized by using
benchmarks for specific SOAP implementation features. Thejust one table lookup to determine a corresponding internal
measurement methodology for the benchmark driver is thenamespace prefix. The table should be populated with pre-
same as described in the subsection above. fixes obtained from the XML schemas of the SOAP messages.
The namespace stack can simply record the translated wrefixe
to provide efficient matching of qualified tags and avoid-stor
age and expensive comparison of namespace URIs.

Namespace benchmark Our benchmark consists of
As discussed earlier, calculation of HTTP 1.0 content lengt SOAP payloads with varying level of nested data structures
of the SOAP payload can hinder serialization performance. (linked lists). Several of the tag names and attribute names
We showed in [16] that the size of SOAP’s on-the-wire repre- in each level are identical, forcing toolkits to correctl-r
sentation is a factor of four to ten times greater than theeeor  solve them according to the namespace qualifications. The
sponding binary representation. SOAP processing is affiect payloads also have a varying number of namespace qualified
by both extra memory invocation for calculating the length, attributes. The synthetic data for these benchmark is based
and cache misses due to large buffers. HTTP 1.1's chunkingthe various attributes and nested elements required fargeme

2.2.1 Streaming vs Non-Streaming

and streaming feature can help address this problem. ing security standards for grid Web services, such as WS-
HTTP 1.1 explicitly supports overlapping the serializatio  Security [18]. The WS-Security standard enhances the SOAP
process with the network transmission of buffers [3Pgr- messaging protocol to provide message integrity and confi-

sistent connectionfkeep-alive) reuse the same TCP/IP con- dentiality by associating tokens (included as namespaak qu
nection for multiple calls between two endpoints. The SOAP ified elements and attributes) with each message.



2.2.3 Multi-ref scribed listeners. Events provide a de-coupled communica-
tion medium for grid applications. Typical uses of events in
clude monitoring, debugging, and reporting occurrenceh su
as a successful creation of a remote file. Event services (als
%alled notification services) should be extensible, language-
. - - . . . X independent, platform independent and provide readyrateg
to the identifier of the original object. Multi-ref is essiht tion with applications. The SOAP protacol is perfectly suit

to efficiently serialize cycllc_: data-structures. Th|§ gesis to meet these requirements. Notification services weregreco
analogous to the use of pointers and references in many pro-

) ) . nized as a common port type in the OGSI [12] specification.
gramming languages to refer to one instance of an object from hmark h defined th q
multiple locations. The serialization of co-referencejects Events Benchmark We have defined the event data struc-

require serialized objects to be stored in a table. Before antU'® @S @ complex type with three data members: an integer

object can be serialized, the table needs to be searched to déS€duence number), a double (time stamp) and a string ® stor

termine if the object has already been serialized, in whigtec ~ the €vent message. This definition provides both simplicity

theid-ref attribute must be used. A naive implementation can nd flexibility. The string can be used to store small values

hurt the scalability of the serialization process. For emtm such as airl for G.r|dFTP transfer, or a Ic_mg string requesting

if the equals(method has to be invoked on each object, as is "€S0Urce properties from a WSRF service.

often done in Java, serialization nfobjects will lead to an Our benchmark driver measures the performance of a

O(n?) serialization algorithm. For toolkits based in Java, we toolkit for sending and receiving events ranging from tems t

recommend the use ddentityHashMapwhich is optimized ~ thousands of events. The driver can be configured to choose

for use with with Java references. a string size that accurately reflects the needs of eventein t
Multi-ref Benchmark Our benchmark consists of an ar- application of interest.

ray of strings, wherein many of the strings are identical. A

multi-ref compliant toolkit must check for co-references f

every string. This is usually done via lookups in a hashetabl 2.3.3 Mesh Interface Objects

However, due to hash table’s overflow chains, it may not al-

ways perform a lookup in constant time. As the array size Scientific components on the grid frequently exchangssh

increases, the overhead of maintaining the logical colteren interface objectgMIO) structures of the form (int, int, dou-

Each co-referenced object is assigned a unique identiier, r
resented by an attribute value, when it is serialized the firs
time. If the same object appears again in a data structure, i
can be serialized with a multi-ref accesddrref, that points

of graph structures negatively affects performance. ble). The two integers represent a mesh coordinate and the
double represents the field value. A typical use of MIOs is
2.3 Latency in communication between two partial differential equatio

(PDE) solvers on different domains. Example applications
We definelatencyas the overhead incurred by a toolkit in include a climate model that ties together an atmospherie si
an end-to-end call when no parameters are sent or receivedulator with an ocean circulation simulator [10] and fluid sim
It quantifies the minimum response time of a toolkit. How- ulation that is coupled with a solids structure code [19].

ever, the latency measurement does not include costs asso- \jj0 Benchmark : The performance tests for MIOs record

ciated withcold startor warmup such as initialization costs  {he scalability of a SOAP toolkit as the number of MIOs is
due to loading of the necessary dynamic libraries or Jasacla aried from ten to 25,000.

files. Measurements are taken after the first few iterations.
Latency Benchmark The benchmark isvoid

echoVoi d() operations to test theverheadimposed

by a toolkit. Even though no parameters are sent, the chll sti

traverses all the layers of the serialization and deseaitidin

stack, and effectively measures the overhead that will be

inherent to every call.

2.3.4 MCS Benchmark

The Metadata Catalog Service (MCS) [24] is a well known
grid service that provides a framework for efficiently manag
ing the storage and retrieval of metadata associated wik la
o » collections of files generated by data-intensive applicesti
2.3.1 Application Specific Benchmarks Clients of MCS interact with the MCS Web service via the

We describe some benchmarks that are based on well knowf*Xis [28] SOAP implementation. A scalability study in [24]
services and widely used communication patterns used4n dis Shows that the Web service overhead causes an average per-
tributed applications. formance drop by a factor of 4.8. We contacted the authors

of [24] to obtain the synthetic data (for the names, types and
values of the attributes) used for their tests, and useddéo

fine this benchmark. Each attribute is a tuple consisting of
An event can be broadly defined as a time-stamped messaga name, type, and value. Our tests can be used to determine
with typed data that is delivered from a source to a set of sub-which is the best available toolkit for MCS.

2.3.2 Events



2.3.5 Google Web Service Linux toolkit gSOAP | XSUL | AxisJava
Latency (seconds)|| 0.00052| 0.00107| 0.01200
The Web service interface for the Google search engine [2] Windows toolkit NET XSUL | AxisJava
and Amazon.com [1] portal, are the two most widely used in-  "[atency (seconds)|| 0.0035 | 0.0038 | 0.0047
dustrial Web services. Though they are not grid servicey, th
are representative of the growing interest in using Web ser-
vices based protocols. Both Google and Amazon.com sites Table 1.  Latency is measured by the time in sec-
receive a large volume of requests daily, and serving these onds for the client to receive the full response from an
requests via SOAP can be expensive. Our benchmark mea- echoVoi d call. On Linux, XSUL's overhead is two
sures the performance of processing the response from the times greater than gSOAP’s. However, AxisJava’s over-
doGoogl eSear ch query of the Google Web service API. head is 10 times greater than XSUL's. On Windows,
.NET and XSUL have comparable overheads, while Ax-
isJava’s overhead is 33% higher than .NET's.

2.4 Binary Attachments via DIME and MIME

Two important protocols for sending binary large objects 3 Performance
(BLOBSs) as attachments are Direct Internet Message Encap-
sulation (DIME) [33] and Multipurpose Internet Mail Exten-

. 4 . e This section describes the performance of a representative
sions (MIME) via S.OA.P with Attac_hments (SwA) specifica- set of five toolkits when run against our benchmarks. We used
tion [33]. The motivation for sending binary data as attach-

. . R . two sets of drivers. A heavy-weight driver verifies the accu-
m_e ntg Is to ay0|d the overhead of sena”zguon qnd deserl'racy of every response from the tested toolkits. A lightgii
ahzr?uon for. binary daga. MO(Elcxver, for d|g|tglly d&gn_edﬁza driver reads trace data from files into a local buffer, thardse
tachments, it may not be possible to use standard seriafzat it to the different toolkits for several iterations, but the

techniques without affectmg the integrity of Fhe data. MM sponses are not checked for accuracy. This approach ensures
messages are sent as a series of records, with each recerd se[é)

: : X olkit accuracy, but keeps verification cost out of the réegmb
?Arﬁl\;eEd rf]rom the othe_r \_ll'a_‘? un|q$ﬁ n"!arkertstr;ng.ﬁDlME a_nd performance data. The light-weight driver was configured to
= have many simiiarties. € Important aifierénce IS ., aach benchmark for multiple iterations and calculage th
that in DIME, the header for each record contains the exact

. ) average time taken for each iteration.
siz€ .Of the recprd. If multiple attachments have been skel, t The versions of the tested toolkits are: gSOAP 2.7e, Ax-
receiver can directly access a particular record.

i _isJava 1.2RC2, .NET 1.1.4322, XSUL 1.99RC2 and bSOAP

O_ur benchmark sends multiple attachments, one to fifty, 0.5alpha. gSOAP is implemented in C/C++, bSOAP in C++,
varying the size of the attachment from 1KB to 100KB. The an4 xSUL and AxisJava are developed in Java. Some perfor-
aim of the benchmark is to determine the threshold pointwhenmance variations are due to the inherent efficiency of C and
it is better to use DIME instead of MIME (or vice versa). C++ implementations over Java. However, since the SOAP
wire-protocol is independent of any programming language
and interoperability is an important feature of SOAP, compa
ing implementations in different languages is useful.

Since the .NET implementation is available only on a Win-

The Java Dynamic Proxy Class [27], introduced in Java dows platform, we compared its performance with the Java
1.3, is an elegant and flexible feature that allows a class toimplementations of Axis and XSUL deployed on a Windows
implement a list of interfaces specified at runtime. This de- box. We also deployed gSOAP, AxisJava, XSUL and bSOAP
sign is in stark contrast to the use of classicubs and on Linux machines and tested the performance separately.
skel et ons. Stubs and skeletons shield run-time specific The results on Windows and Linux need to be viewed sep-
details from a user, and are generated by a specialized codarately, as the hardware configurations of the Windows and
generator. The dynamic proxy feature obviates the need forLinux machines were not identical.
a code generator in Java based SOAP toolkits, and provides a The Linux test environment consisted of two dual proces-
type-safe reflective dispatch of invocation on dynamicedér sor machines, each configured with 2.0 GHz Pentium 4 Xeon
ated proxies. The dynamic proxy, however, imposes a severavith 1GB DDR Ram and a 15K RPM 18GB Ultra-160 SCSI
performance penalty. Even though the generation of staticdrive running Debian Linux 3.1 (“sarge”) with the 2.4.26
stubs and skeletons for every server interface is cumbersom kernel. The machines were connected by Gigabit Ethernet.
it offers attractive performance benefits. Our benchmark isgSOAP and bSOAP were compiled with gcc/g++ version
designed to illustrate the exact performance penalty afgusi  3.3.4. XSUL and AxisJava were compiled with Java 1.4.2.
dynamic proxies. For this test, the toolkit must provide-sup Relevant socket options, for both gSOAP and bSOAP, include
port for switching between the two designs. SO KEEPALIVE, TCP.NODELAY, SO_.SNDBUF = 32768,

2.5 Dynamic vs Static Code Generation



and SORCVBUF = 32768. For fairness, when bSOAP is
compared with the other toolkits, it is set to re-serialile a
data (BSOAPL00 means bSOAP is serializing 100% of its
data).

For the tests on Windows (.NET, XSUL and AxisJava) we
used a Dell Dimension 4500 with Intel Pentium 4 2.26GHz
processor, 1GB of DDR SDRAM and 80GB Ultra ATA/100
hard drive running Windows XP. °

The performance graphs show the measured time in sec-
onds on the y-axis and the size of the application level data
on the x-axis. The effective throughput (bandwidth obtdine
by a given SOAP implementation) can be calculated directly
from the data points on each plot.

3.1 Summary of Performance Results

e Latency: Table 1 shows the overhead imposed by e
each toolkit, for both Windows and Linux platforms.
gSOAP’s overhead is less than XSUL by a factor of 2.
XSUL outperforms AxisJava by a factor of ten. On Win-
dows, AxisJava is also slower than .NET and XSUL.
The overhead of gSOAP is lower than that of the Java-
based toolkits (XSUL and AxisJava) as it does not incur
the cost of using reflection and dynamic proxy classes.
gSOAP uses statically generated stubs and skeletons for e
each remote call, which are known to be faster than dy-
namically generated code (proxies).

e Serialization: Figures 1 and 2 compare the serialization
performance of doubles and integers respectively. XSUL
and AxisJava perform similarly for all array sizes. The o
cost of the toolkit overhead is higher for AxisJava (as
can be seen in the results for latency), but it gets amor-
tized with increase in the size of data being sent. The
cost of serialization for large array sizes (especially for
floating point data) is dominated by the conversion of
data from floating point representation to the ASCII for-
mat [9]. AxisJava and XSUL use the same conversion
routines, and hence have similar performance character- o
istics for serialization.
bSOAP is more efficient than gSOAP for all array sizes.

For 25,000 elements bSOAP and gSOAP take 4% and
17% respectively, of the time it takes AxisJava to com-
plete the benchmark. gSOAP uses a two-iteration se-
rialization algorithm (described in 2.1.1), while bSOAP
directly allocates buffers during the serialization pisge

e Deserializationt We ran the deserialization benchmark
for doubles and strings. The tested version of bSOAP did
not have support for deserialization, and hence bSOAP
is not included in the graphs. Figures 3 and 4 show that
AxisJava does not scale well. For 10,000 elements, Ax-
isJava takes 5 times more time than XSUL, and 35 times
more than gSOAP to execute the benchmark. On Win-
dows (see Figure 5), XSUL and .NET have similar per-
formance. AxisJava’'s execution time exceeds .NET by a
factor of 6. The choice of an XML parser plays a signif-

icant role in deserialization of SOAP payloads. XSUL
uses an efficient pull parser (XPP) that has a low mem-
ory footprint and is specifically designed to access ele-
ments in a SOAP payload. AxisJava uses Xerces, which
is modular and flexible but inefficient for large payloads.
gSOAP also uses a custom pull parser during the deseri-
alization phase.

Events and MIOs: XSUL dynamically re-allocates
memory as it retrieves new XML nodes while deserial-
izing the XML graphs. This hurts its performance for
events and MIOs (Figures 6 and 7). XSUL's perfor-
mance exceeds AxisJava for less than 10,000 MIOs and
15,000 events. gSOAP outperforms both AxisJava and
XSUL for all sizes of MIOs and events. Figure 8 shows
a similar pattern for Windows-based toolkits; .NET out-
performs AxisJava by 50% for large array sizes.

Base64 Encoding Figures 9 and 10 compare end-
to-end and serialization performance respectively for
Base64 encoding. Results show that gSOAP and XSUL
outperform AxisJava. For end-to-end performance, Ax-
isJava is slower than XSUL by a factor of 2.3, while
XSUL is slower than gSOAP by a factor of 1.6. For se-
rialization, XSUL takes 49% more time than gSOAP to
complete the benchmark for 25,000 array elements.
End-to-End Performance When compared in isola-
tion, XSUL outperforms AxisJava for deserialization
but has similar performance for serialization. However,
when the two modules are combined in Figures 11 and
12, XSUL outperforms AxisJava.

Chunking and Streaming: We study the effect of
chunking and streaming for deserialization of events
(Figure 13) and serialization of doubles (Figure 14). For
deserialization, the performance improvement is 22%.
However, for serialization, AxisJava has no performance
improvement, suggesting an inefficient buffering algo-
rithm. gSOAP gains up to 42% with streaming for seri-
alization of doubles.

Differential Serialization: Figure 15 shows the per-
formance improvement in bSOAP when differential se-
rialization is used with different percentage of values
changed from the previous run. The best case, when all
the values are the same, is 6.7 times faster than the worst
case, when all values need to be re-serialized. bSOAP
serializes only those array elements that have changed
since the previous send. So, for test cases where subse-
quent sends are similar, the performance of other toolkits
will not change, while that of bSOAP will improve.
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Comparing Deserialization Performance for Arrays of Doubles
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Figure 1. This graph shows the effect on serial-

ization when the size of an integer array is scaled. The
performance of AxisJava and XSUL is similar. bSOAP
and gSOAP complete the benchmark in 4% and 17% re-
spectively of the time it takes for AxisJava for the largest
size (25,000 integers).

Comparing Serialization Performance for Arrays of Doubles
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Figure 3. Here we compare the deserialization per-

formance of AxisJava, gSOAP and XSUL. Each toolkit
is sent a SOAP payload for double arrays of various
sizes, asked to deserialize it and return it's size to the
driver. For arrays of 10,000 doubles, AxisJava takes 5.1
times as long to respond as XSUL, which in turn takes
7.8 times as long to respond as gSOAP.

Comparing Deserialization Performance for Arrays of Strings
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Figure 2. Here we compare the serialization perfor-
mance of four toolkits on arrays of doubles. As with the
integer case in Figure 1, the Java-based toolkits (Axis-
Java and XSUL) perform similarly. bSOAP and gSOAP
send the largest size (25,000 doubles) arrays in 13%
and 30%, respectively, of the time it takes for AxisJava
to do the same.
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Figure 4. This graph compares the deserialization
performance for strings. Again, XSUL performs signif-
icantly better than AxisJava for deserialization. For an
array size of 25,000, it takes AxisJava 7.4 times longer
to respond than XSUL, and XSUL takes 3.6 times as
long to respond as gSOAP.
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Figure 5. This graph compares deserialization perfor-
mance of Axis, XSUL and .NET for an array of doubles
on Windows. XSUL and .NET are comparable, while
AxisJava does not scale well for large array sizes. For
an array of 10,000 doubles, AxisJava’s deserialization
time is 6 times greater than those of XSUL and .NET.
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Figure 6. We compare the end-to-end performance

for arrays of Meshinterface Objects (2 integers and a

double). The plots show that for sizes greater than

10,000 objects, XSUL's performance considerably de-

grades compared to AxisJava. For 10,000 elements,
XSUL and AxisJava respectively take 11.7 and 12.3
times more time to execute the benchmark compared to
gSOAP.
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Figure 7.  This graph compares the performance

for the deserialization benchmark for events. Each
event object contains an integer, a double and a string.
XSUL's performance degrades considerably when it de-
serializes more than 15,000 elements, but for lesser
number of events, it outperforms AxisJava. gSOAP is
orders of magnitude faster in handling complex types
compared to the Java toolkits.

Comparing End-to-End Performance with Arrays of SimpleEvents on Windows
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Figure 8. We compare end-to-end (serialization and
deserialization) for .NET, AxisJava, and XSUL on Win-
dows. XSUL's performance drops for handling more
than 10,000 events. For sizes greater than 12,000, Ax-
isJava takes an average of 50% more time than .NET to
respond.
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Figure 9.  This graph shows the performance re-

sults for end-to-end performance of binary data that has
been base64 encoded (a feature provided by each of the
toolkits). XSUL outperforms AxisJava, while gSOAP
is consistently better than XSUL. For an array of size
10,000, XSUL is slower than gSOAP by a factor of 1.6,
while AxisJava is slower than XSUL by a factor of 2.3.

4 Observations on Current Toolkits based on

Benchmark Results

Comparing Serialization Performance for Arrays of Base64
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Figure 10. This graphs shows the performance

of AxisJava, gSOAP and XSUL for serializing data in
Base64 format. AxisJava performs poorly compared to
XSUL and gSOAP. XSUL takes 49% more time to com-
plete than gSOAP for arrays of 25,000 elements.

Comparing End-to-End Performance for Arrays of Ints

We briefly describe the conclusions that can be drawn from

our performance study of the current versions of five toolk-
its. The benchmarks and the associated drivers facilitate i
repeating these tests for newer toolkits and to study treeeff
of improvements that are added to existing SOAP implemen-
tations.

If low latency is critical, gSOAP is the ideal choice. On
Windows, XSUL or .NET have comparable latency. Ax-
isJava is not optimized for low latency requirements on
either Windows or Linux.

MCS [24] should use gSOAP or the .NET environment
as these two toolkits scale well with increase in the size
of complex data types. These toolkits can minimize the
Web service overhead, which was identified as the pri-
mary bottleneck in the use of Web services with MCS.
AxisJava, which is currently used, can severely hurt the
scalability of the system.

On Java-based Linux environments, XSUL should be
used if arrays of primitives need to be sent or received.
However, while XSUL can be used to send complex
types, its performance does not scale well for receiving
a sequence of complex data structures.

For grid applications that repeatedly exchange data with
similar structure, such as exchange ©@flassAdsbe-
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Figure 11. In this graph we show the end-to-end

performance for array of integers for AxisJava, XSUL
and gSOAP toolkits. This requires each toolkit to dese-
rialize, then re-serialize the input array. For an array of
size 10,000 elements, AxisJava’s time is a factor of 3.4
greater than XSUL's. For the same size, XSUL'’s time is
a factor of 6.2 greater than that of gSOAP.
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Figure 12. Similar to Figure 11, but using doubles in-

stead of integers, we compare end-to-end performance.

For an array of size 10,000 elements, the time taken by
AxisJava is a factor of 3.0 more than XSUL. For the
same size, XSUL takes a factor of 3.9 times more than
gSOAP.

Comparing Serialization Streaming Performance with Arrays of Doubles
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Figure 14. We studied the effect of streaming by

making AxisJava and gSOAP serialize arrays of doubles
with and without streaming enabled. Unlike in the case
of deserialization of events (see Figure 13), streaming
does not improve AxisJava’s serialization performance.
Streaming helps improve gSOAP'’s performance for all
sizes up to 25,000 elements, the maximum we tested for
this benchmark. By enabling streaming, gSOAP’s aver-
age response time for 10,000 elements was reduced by
42%.

Comparing Deserialization Streaming Performance with Arrays of SimpleEvents
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Figure 13. We studied the effect of streaming by

making AxisJava and gSOAP deserialize a large num-
ber of events with and without streaming enabled. Ax-
isJava consistently performs better when streaming is
used, taking 22% less time to complete for the 10,000
element array. gSOAP also trims its time with chunking
on this test by 22%.

tween cluster managers in Flock of Condors [8], bSOAP
performs extremely well. It also has impressive per-
formance gains when only a small percentage of data
changes during subsequent sends. bSOAP’s caching
mechanism is targeted towards such applications.

e bSOAP is comparable to gSOAP for sending arrays of
doubles, integers and strings. However, for receiving
data or end-to-end communication, gSOAP should be
used.

e The use of streaming and chunking greatly improves
the performance of gSOAP. With AxisJava, however, it
makes minimal difference for serialization in AxisJava,
though deserialization is helped. Whenever possible,
persistent socket connections should be used for SOAP
calls.

e OnWindows, .NET is highly optimized for all the bench-
marks. Its performance is comparable or better than
XSUL for all data types. If available, .NET should be
used instead of XSUL or AxisJava.

e The WSRF-Java implementation [13] uses the AxisJava
toolkit. Our performance results show that XSUL, .NET
or gSOAP based toolkits will be more efficient.

Axis Java is a widely-used toolkit under active develop-

ment. While it performed poorly compared to the others in



Comparing the Effect of Differential Serialization with Arrays of Doubles and the authors used real data from the Australian Stock Ex-

0.25 — — change for this purpose.
poan75. e The performance of three different SOAP implementations
02 _nggggg e ] (not named) are compared in [7]. Tests are conducted for
Y bsoap0 business-oriented data such as account records and iavoice
= o5l 1 The authors conclude that the main bottleneck is the seaiali
g ‘ tion and deserialization of messages, and that desetializa
£ a is generally more expensive than serialization for SOAP.
E T iy Karre and Elbaum [21] compare five Java-based XML
| parsers for well-formedness, validity and speed of parsing
0.05 / . XML documents. They have developed a metric to deter-
R mine the acceptance-accuracy and rejection-accuracychf ea
0%«/’*’5" PR T N T W T toolkit. For the performance study, they test the perforcean
0 10 20 30 40 S0 60 70 80 90 100 of parsing XML documents with varying number of tags. Our
Number of Elements in the Array (* 10°3) performance benchmark, in addition to including this test,
also includes workloads that vary the nesting level for each
Figure 15.  Differential serialization is optimized document and the number of hamespace qualified attributes

for use-cases when subsequent sends are similar. In
this benchmark. we measured the performance of
bSOAP when 0% (bSOAPO), 25% (bSOAP25), 50%

in each element.
Our work complements the related work in performance
evaluation and comparison of SOAP toolkits for business

(bSOAP50), 75% (bSOAP75), and 100% (bSOAP100) data, relational databases and interoperability tests.

of the values need to be re-serialized, rather than
copied, for each message from the previous message.
As expected, bSOAP’s optimizations reduce the serial-
ization time as the percentage of values that need to be
re-serialized is reduced. For 100,000 doubles, the best
case bSOAPO is faster than the worst case bSOAP100
by a factor of 6.7.

6 Conclusions and Future Work

We motivated a strong need for SOAP benchmarks and
described our benchmark suite, which effectively serves as
testbed for application programmers and Web servicesijibra
developers to experiment, evaluate, and compare the perfor
mance of their toolkits. We demonstrated the benchmark
suite’s efficacy by providing a current performance snapsho
our benchmark tests, we expect to see improvements in thdor widely used toolkits. The description and use of the benc
future. mark suite provide insights into relative strengths andkwea
nesses of various SOAP implementations.

Planned additions to the benchmarks include studying the
performance for emerging security standards, once they sta
lize. We will evaluate the performance results of AxisC+# an

The SOAP community currently uses a set of well-known SOAP implementations in languages such as Perl and Python.
SOAP payloads and interfaces to test ifieroperability of We will also include benchmarks and automated tests to mea-
various toolkits [34]. Our work complements these efforts sure toolkit memory footprints, which will be important for
in that it aims to provide a standard set of workloads to test embedded and hand-held devices.
the varioudeaturesandperformance characteristiasf SOAP
implementations, rather than their interoperability.

The XMark project [3] has designed an XML bench-
mark suite to examine the performance of XML repositories,
such as relational databases, for a wide range of queries tha [1] Amazon.com Web Serviceht t p: // ww. amazon. cont
are typical of real-world application scenarios. This benc gp/ aws/ | andi ng. htm . _
mark effectively compares different implementations of XM E} ,(iooRglesvcvr?:]igflsFm\:vZ;é / "‘I\Z’WVI'_Q?(Z?;‘;CODM I"j:‘:%'r:é o
databases with queries tha_t test specific primitives of tieey Manolescu, M.’ 3. Carey, ’R. Busse Thé XML Benchn’1ark
processor and storage attributes. . . Project. Technical report, Technical Report INS-R0103, CWI,

In [22], the per_forma_nce of SOAP is compared with Amsterdam, The Netherlands, April 2001.

CORBA and the Financial eXchange Protocol (FIX) [29], N. Abu-Ghazaleh, M. Govindaraju, and M. J. Lewis. Optimiz-
which is an established domain-specific protocol for cépita ing Performance of Web Services with Chunk-Overlaying and
markets. The motivation of this project is to study the appli

Pipelined-SendProceedings of the International Conference
cability of SOAP for realistic business computing scergrio on Internet Computing (ICIG)pages 482-485, June 2004.
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