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Abstract

The convergence of Web services and grid computing has
promoted SOAP, a widely used Web services protocol, into a
prominent protocol for a wide variety of grid applications.
These applications differ widely in the characteristics oftheir
respective SOAP messages, and also in their performance re-
quirements. To make the right decisions, an application devel-
oper must thus understand the complex dependencies between
the SOAP implementation and the application. We propose
a standard benchmark suite for quantifying, comparing, and
contrasting the performance of SOAP implementations under
a wide range of representative use cases. The benchmarks are
defined by a set of WSDL documents. To demonstrate the util-
ity of the benchmarks and to provide a snapshot of the current
SOAP implementation landscape, we report the performance
of many different SOAP implementations (gSOAP, AxisJava,
XSUL and bSOAP) on the benchmarks, and draw conclusions
about their current performance characteristics.1

Key Words: SOAP, Web Services, Grid Communication,
Benchmark.2

1 Introduction

Web services have emerged as the architecture of choice
for grid standards such as the Web Services Resource Frame-
work (WSRF) [14]. The WSRF initiative represents a re-
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engineering of grid computing standards to be compatible
with the current Web services conventions and specifications.
This convergence simplifies the design, development and de-
ployment of grid services in virtual organizations with diverse
compute and resource characteristics.

Two important Web services specifications are Web Ser-
vices Description Language (WSDL) [11] and SOAP [17].
WSDL provides a standard language to precisely specify all
the information necessary for communication with a Web ser-
vice, including the interface of the service, its location,and
the list of communication protocols it supports.

SOAP is the most commonly used Web services commu-
nication protocol for information exchange in a distributed
and heterogeneous environment. SOAP specifies how a
message—and the data within it—may be represented and
wrapped in XML. Though the SOAP specification permits the
use of any transport protocol, HTTP is the de facto standard
due to its widespread use.

The mapping of method signatures into request-response
formats, required by an RPC framework, is achieved via con-
ventions stated in the specification. SOAP supports one-way
messaging and various request-response type exchanges in-
cluding RPC.

The combination of XML and HTTP lends many attrac-
tive traits to SOAP, including simplicity, expressiveness, plat-
form and language independence, extensibility and robust-
ness. SOAP is a popular choice as the common underlying
protocol for interoperability between grid services. These
features facilitate the use of SOAP in diverse applications
with widely varying characteristics and requirements. Clients
and grid Web service endpoints can also add optimizations in
their implementations, without making limiting assumptions
about the capabilities and configuration of potential receivers
of these messages. Though SOAP has many vital features to
offer to grid applications, the specification has not been de-
veloped with performance as an important goal.

This has spurred our research towards the study of the bot-
tlenecks that are inherent to the protocols, and the develop-
ment of novel optimizations to attain the best possible perfor-



mance within the constraints of the specification.
The convergence of grid and Web services standards has

elevated the importance of SOAP, requiring the evaluation of
SOAP for data types and communication patterns used by grid
applications. It is thus important to have a test framework to
determine if a particular SOAP toolkit can meet the perfor-
mance requirements of an application, or if some other com-
munication protocol should be employed. SOAP implemen-
tations are interesting and important to compare, contrast, and
evaluate so users can make informed decisions based on evi-
dence of claimed benefits. A comprehensive benchmark suite
is necessary because:

• The requirements on any communication substrate for
grid services varies for different applications. These re-
quirements could include low latency, high throughput
communication, minimal memory footprint, optimiza-
tions to handle scientific data, efficient handling of large
message sizes, capabilities to compress messages on the
fly, and support for streaming capabilities. Such dis-
parate requirements lead to a wide range of possible de-
sign and implementation choices. The benchmark suite
can aid in determining the toolkit that has the most op-
timized SOAP implementation for a specific feature of
interest.

• A simple and straight forward implementation of various
SOAP modules can limit performance. A good bench-
mark can help developers identify where optimization
may be useful. Ideally, SOAP toolkits should dynam-
ically switch to clever optimizations for specific data
structures, use cases and communication patterns. We
discuss many such techniques in Section 2.

• Grid users have a wide range of SOAP implementation
choices [26]. SOAP toolkits exist in languages such as
Java, C, C++, Perl, Python and C#. It is important to have
a standard mechanism to quantify, compare, and evaluate
the performance of each toolkit and study the strengths
and weaknesses for a wide range of representative use
case scenarios.

For these reasons, we have designed and developed a com-
mon standard SOAP benchmark suite for testing the perfor-
mance and scalability of different SOAP toolkits, with a fo-
cus on data structures commonly used in grid services. In
designing the benchmarks, we draw on our experience in im-
plementing and optimizing the performance of SOAP’s var-
ious features for three different independent SOAP toolkits,
gSOAP [30, 31, 32], XSUL [16, 20, 25], and bSOAP [4, 5, 6].

One contribution of this paper is in the design and speci-
fication of the benchmark. This suite provides SOAP imple-
mentors with working examples of SOAP features, and gives
them a way of testing and assessing the performance of their
specific implementation of these features. Another contribu-
tion is the snapshot it provides of the current performance
of many popular SOAP implementations. This performance

study provides insight into the relative strengths and weak-
nesses of different SOAP implementations under different us-
age scenarios, and demonstrates the utility of the benchmark
suite. The benchmark suite and driver programs can be used
to continuously compare the performance of available toolk-
its. The performance results in this paper show how effec-
tively the benchmark suite can be used to select an appropriate
SOAP toolkit for specific application needs.

Our work will benefit both SOAP developers and grid ap-
plications programmers alike. SOAP library developers can
gain insights into the various factors and design choices that
determine the performance of a SOAP toolkit, thereby im-
proving their ability to build better faster implementations.
Application developers can use the benchmark suite to test
and compare the performance of various aspects of different
toolkits, and accordingly select the one that best suits their ap-
plication’s needs. We include both floating-point and base64
performance results so that scientific users can decide whether
or not they will need to send their numerical data as base64-
encoded binary. We ran our benchmarks on the following
widely used toolkits: gSOAP, AxisJava, .NET, and XSUL. We
also present results for bSOAP, which is an emerging SOAP
toolkit.

The remainder of this paper is organized as follows. Sec-
tion 2 provides the motivation, description and insights into
the benchmark suite that we have designed. Section 3 de-
scribes our experimental setup and a representative set of per-
formance results. We present a set of observations that can
be drawn from our test results in Section 4. We discuss re-
lated work in Section 5 and end with pointers to future work
in Section 6.

2 Benchmark Suite

The benchmark suite consists of operations in WSDL files
along with bindings for SOAP calls and a driver that reads
trace data from local files and automates the testing process.
Each SOAP toolkit is made to implement the operations de-
fined in the WSDL documents for the benchmark. This sec-
tion explains the rationale for each benchmark’s design, and
describes various optimizations that can be used to improve
the performance of a toolkit for the features exercised by the
benchmark.

2.1 Serialization, Deserialization and Round-Trip
Performance

SOAP has been expressly designed to support interoper-
ability between multiple different implementations. It isim-
portant to collect and analyze isolated performance statistics
for serialization and deserialization because the toolkits used
by clients and servers may differ. With the recent release
of WSRF implementations [15], we expect a wide range of



SOAP implementations to interact with well known WSRF
services.

2.1.1 Serialization

SOAP serialization converts in-memory objects into an XML
stream that is sent on the wire in UTF-8 format. We list sev-
eral optimizations that address various stages of serialization.

HTTP 1.0 requires the precise buffer length to be placed
in the HTTP header’sContent-Lengthfield. A simple SOAP
serialization algorithm allocates and extends the buffer as the
data structures are traversed and converted to ASCII. Once
this conversion is completed, the buffer length is calculated
and added to the HTTP header. This naive approach can in-
voke multiple expensive memory operations to create a single
large memory buffer with the SOAP payload.

In [9] we describe how to avoid reading each character of
the XML tags from memory. If the tags are created as liter-
als, the characters comprising the tags are likely to be in the
instruction stream as immediate operands.

bSOAP [6] reduces the number of system calls by using
vectored sendto dispatch multiple buffers with a single call.
gSOAP [32], on the other hand, uses a two-iteration algo-
rithm. The first iteration traverses the data structures andcal-
culates the required buffer length. The second iteration gen-
erates the HTTP header, fills in the content length, and serial-
izes the SOAP message directly over TCP/IP. This approach
avoids keeping the entire buffer in memory.

In earlier work we showed that the conversion of IEEE
754 floating point data to ASCII is complex and can account
for 90% of end-to-end communication time [9]. Our analy-
sis with Sun Forte on a Blade 1000 determined a sharp drop
in performance when the required precision ranges from 14
digits to 17 digits.

The serialization bottleneck for floating point data is ad-
dressed in bSOAP throughdifferential serialization[6]. The
idea behind differential serialization is to store copies of pre-
viously sent messages within the stub that sends them. When
the stub is invoked for future calls, only the data that has been
changed needs to be re-serialized into the message. The extent
to which this optimization is effective depends on message
size, content, structure, and the similarity between consecu-
tive messages. Shifting message contents in memory, stealing
space from neighboring fields, and stuffing fields with whites-
pace can increase the cases when differential serialization can
be applied [5]. Our initial performance results demonstrate
that differential serialization can improve send-times between
17 and 1000 percent [4, 5, 6].

Serialization Benchmark: Our benchmark suite measures
the serialization performance of various toolkits for arrays of
different data types and sizes that are often used in grid ap-
plications. The significance of memory management, conver-
sion to ASCII formats, cost of establishing TCP connections,
and size of cache varies as the size of the array changes. The
benchmark driver generates a request to invoke a method on

the SOAP toolkit being tested, which serializes an array of
the requested size and type. The driver sends the invocation
for several iterations and measures the average performance
of the toolkit.

2.1.2 Deserialization

Deserialization converts XML streams in wire-format to ob-
jects in memory. We discuss several important aspects of the
deserialization process.

The widely used paradigms for parsing XML documents
include Document Object Model (DOM), Simple API for
XML (SAX) and XML Pull Parser (XPP) [20].

The DOM model maps the XML document into a tree rep-
resentation in memory. This allows the document to be easily
traversed and modified. However, for large documents, DOM
parsing can be memory intensive. In contrast, SAX parsing
never stores the entire XML document in memory. Instead, a
callback model emits events for all the document’s elements
and tags. For large static documents, SAX is preferable to
DOM. SAX is also often used when only a few specific el-
ements of an XML document need to be extracted and pro-
cessed.Pull parsing, employed by the XPP parser, is special-
ized for parsing payloads in which elements are processed in
succession, and no element needs to be revisited. XPP pro-
vides the added feature of building a partial XML Infoset tree
in memory in an incremental manner.

DOM, SAX, and XPP require two passes through the XML
document; the parser tokenizes the document in the first pass,
and the application processes the content in the second. An
STL map is typically used to compare each tag retrieved by
the parser with the one that is expected. Results in [9] show
that atrie data structure, which hasO(1) lookups as op-
posed toO(lg n) for STLmap, can provide significant perfor-
mance improvement for matching tags that appear repeatedly.

gSOAP uses a performance-aware compiler that generates
code for fast XML parsing and processing of native C/C++
types. The algorithms are based on single-pass schema-
specific recursive-descent parsers for XML decoding and dual
pass encoding of the application’s object graphs in XML.

Deserialization Benchmark: Our benchmark consists of
SOAP messages for different sizes of frequently used data
types (strings, integers and doubles). Payload elements are
fully namespace qualified and the driver verifies that the
toolkit has appropriately handled all elements. Deserializa-
tion benchmarks for complex types are described later. Our
tests include toolkits that use different models for parsing
XML documents: XSUL uses XPP, gSOAP uses a recursive
descent parser, AxisJava can use SAX or DOM, and .NET
uses an efficient streaming parser via theXMLReader class.
The benchmark driver sends trace data with SOAP payloads
of various sizes (and for various types of data) and invokes
the method on the SOAP toolkit requiring it to deserialize the
request. The driver repeats this test for several iterations for
each toolkit and measures the performance.



2.1.3 End-to-End Performance

The determining factors for end-to-end performance are se-
rialization, deserialization, and available network bandwidth.
If the same toolkit is used for both the client and Web ser-
vice implementation, deserialization could be optimized for
the parameters set by the serialization process. Even though
the wire protocol is fixed for SOAP (1.1), the names of the
tags, placement of whitespaces, and serialization order ofdata
members of an object are not fixed. Apart from SOAP pay-
load specific parameters, the TCP packet size and the size of
each chunk can be fine tuned if the same toolkit is used by a
sender-receiver pair.

End-to-End Performance Benchmark: This benchmark
combines the tests for serialization and deserialization.The
driver measures toolkit scalability for all primitive datatypes,
and for arrays of primitives. A different benchmark measures
complex data types, discussed later. This benchmark’s exam-
ple users include those who download WSRF [15] and use the
default implementation, based on AxisJava, for both the client
and service endpoints.

Results in [23] show that Base64 parameter encoding can
significantly reduce overhead, compared to standard XML en-
coding. To quantify this advantage, for all types and sizes,we
have included it in the benchmark suite for serialization, de-
serialization, and end-to-end performance measurement. The
end-to-end benchmark driver sends trace data for serialized
SOAP messages (of various types and sizes) to the SOAP
toolkit being tested. The toolkit is required to deserialize
this message and again serialize it as the return value for the
method invocation. The driver repeats this process over sev-
eral iterations for each data type and size.

2.2 Candidate Features for Optimizations

In this section we isolate the optimizations and related
benchmarks for specific SOAP implementation features. The
measurement methodology for the benchmark driver is the
same as described in the subsection above.

2.2.1 Streaming vs Non-Streaming

As discussed earlier, calculation of HTTP 1.0 content length
of the SOAP payload can hinder serialization performance.
We showed in [16] that the size of SOAP’s on-the-wire repre-
sentation is a factor of four to ten times greater than the corre-
sponding binary representation. SOAP processing is affected
by both extra memory invocation for calculating the length,
and cache misses due to large buffers. HTTP 1.1’s chunking
and streaming feature can help address this problem.

HTTP 1.1 explicitly supports overlapping the serialization
process with the network transmission of buffers [31].Per-
sistent connections(keep-alive) reuse the same TCP/IP con-
nection for multiple calls between two endpoints. The SOAP

payload can be sent in chunks, with each chunk preceded by
its length. Small chunk sizes can ensure cache hits but result
in many system calls. Large chunk sizes can reduce the num-
ber of system calls, but may not always lead to cache hits.
Thus, chunk size should be a configurable parameter, set ac-
cording to the native system characteristics.

Streaming Benchmark: The streaming benchmark mea-
sures the performance of serialization, deserialization,and
end-to-end performance when chunking and streaming is used
with a persistent TCP/IP connection, compared to the case
when it is turned off. For small messages, the cost of repeat-
edly establishing network connections can significantly im-
pact performance. This benchmark quantifies the exact per-
formance benefit of using streaming. The driver sends stream-
ing data from trace data for primitives, arrays and complex
types. It can be configured to vary the size of each chunk in
the SOAP payload.

2.2.2 Namespaces

XML namespaces are extensively used in SOAP messages.
Namespaces are used to uniquely identify and distinguish be-
tween identical names of tags, elements and attributes. Each
namespace is associated with a defining namespace name
(URI). Each tag has a prefix that points to a fully qualified
name via a special attribute namedxmlns. XML parsers typi-
cally use a stack to store namespace prefixes and correspond-
ing URIs. The number of definingxmlnsnamespace bindings
in an XML message is typically much smaller than the num-
ber of uses of this namespace prefix. As a result, maintaining
the stack can result in several comparison operations, and can
hurt the overall performance of the deserialization module.

Processing ofxmlnsattributes can be optimized by using
just one table lookup to determine a corresponding internal
namespace prefix. The table should be populated with pre-
fixes obtained from the XML schemas of the SOAP messages.
The namespace stack can simply record the translated prefixes
to provide efficient matching of qualified tags and avoid stor-
age and expensive comparison of namespace URIs.

Namespace benchmark: Our benchmark consists of
SOAP payloads with varying level of nested data structures
(linked lists). Several of the tag names and attribute names
in each level are identical, forcing toolkits to correctly re-
solve them according to the namespace qualifications. The
payloads also have a varying number of namespace qualified
attributes. The synthetic data for these benchmark is basedon
the various attributes and nested elements required for emerg-
ing security standards for grid Web services, such as WS-
Security [18]. The WS-Security standard enhances the SOAP
messaging protocol to provide message integrity and confi-
dentiality by associating tokens (included as namespace qual-
ified elements and attributes) with each message.



2.2.3 Multi-ref

Each co-referenced object is assigned a unique identifier, rep-
resented by an attribute value, when it is serialized the first
time. If the same object appears again in a data structure, it
can be serialized with a multi-ref accessor,id-ref, that points
to the identifier of the original object. Multi-ref is essential
to efficiently serialize cyclic data-structures. This design is
analogous to the use of pointers and references in many pro-
gramming languages to refer to one instance of an object from
multiple locations. The serialization of co-referenced objects
require serialized objects to be stored in a table. Before an
object can be serialized, the table needs to be searched to de-
termine if the object has already been serialized, in which case
the id-ref attribute must be used. A naive implementation can
hurt the scalability of the serialization process. For example,
if the equals()method has to be invoked on each object, as is
often done in Java, serialization ofn objects will lead to an
O(n2) serialization algorithm. For toolkits based in Java, we
recommend the use ofIdentityHashMap, which is optimized
for use with with Java references.

Multi-ref Benchmark Our benchmark consists of an ar-
ray of strings, wherein many of the strings are identical. A
multi-ref compliant toolkit must check for co-references for
every string. This is usually done via lookups in a hash-table.
However, due to hash table’s overflow chains, it may not al-
ways perform a lookup in constant time. As the array size
increases, the overhead of maintaining the logical coherence
of graph structures negatively affects performance.

2.3 Latency

We definelatencyas the overhead incurred by a toolkit in
an end-to-end call when no parameters are sent or received.
It quantifies the minimum response time of a toolkit. How-
ever, the latency measurement does not include costs asso-
ciated withcold startor warmup, such as initialization costs
due to loading of the necessary dynamic libraries or Java class
files. Measurements are taken after the first few iterations.

Latency Benchmark: The benchmark is void
echoVoid() operations to test theoverhead imposed
by a toolkit. Even though no parameters are sent, the call still
traverses all the layers of the serialization and deserialization
stack, and effectively measures the overhead that will be
inherent to every call.

2.3.1 Application Specific Benchmarks

We describe some benchmarks that are based on well known
services and widely used communication patterns used in dis-
tributed applications.

2.3.2 Events

An event can be broadly defined as a time-stamped message
with typed data that is delivered from a source to a set of sub-

scribed listeners. Events provide a de-coupled communica-
tion medium for grid applications. Typical uses of events in-
clude monitoring, debugging, and reporting occurrences such
as a successful creation of a remote file. Event services (also
callednotificationservices) should be extensible, language-
independent, platform independent and provide ready integra-
tion with applications. The SOAP protocol is perfectly suited
to meet these requirements. Notification services were recog-
nized as a common port type in the OGSI [12] specification.

Events Benchmark: We have defined the event data struc-
ture as a complex type with three data members: an integer
(sequence number), a double (time stamp) and a string to store
the event message. This definition provides both simplicity
and flexibility. The string can be used to store small values
such as aurl for GridFTP transfer, or a long string requesting
resource properties from a WSRF service.

Our benchmark driver measures the performance of a
toolkit for sending and receiving events ranging from tens to
thousands of events. The driver can be configured to choose
a string size that accurately reflects the needs of events in the
application of interest.

2.3.3 Mesh Interface Objects

Scientific components on the grid frequently exchangemesh
interface objects(MIO) structures of the form (int, int, dou-
ble). The two integers represent a mesh coordinate and the
double represents the field value. A typical use of MIOs is
in communication between two partial differential equation
(PDE) solvers on different domains. Example applications
include a climate model that ties together an atmospheric sim-
ulator with an ocean circulation simulator [10] and fluid sim-
ulation that is coupled with a solids structure code [19].

MIO Benchmark : The performance tests for MIOs record
the scalability of a SOAP toolkit as the number of MIOs is
varied from ten to 25,000.

2.3.4 MCS Benchmark

The Metadata Catalog Service (MCS) [24] is a well known
grid service that provides a framework for efficiently manag-
ing the storage and retrieval of metadata associated with large
collections of files generated by data-intensive applications.
Clients of MCS interact with the MCS Web service via the
Axis [28] SOAP implementation. A scalability study in [24]
shows that the Web service overhead causes an average per-
formance drop by a factor of 4.8. We contacted the authors
of [24] to obtain the synthetic data (for the names, types and
values of the attributes) used for their tests, and used it tode-
fine this benchmark. Each attribute is a tuple consisting of
a name, type, and value. Our tests can be used to determine
which is the best available toolkit for MCS.



2.3.5 Google Web Service

The Web service interface for the Google search engine [2]
and Amazon.com [1] portal, are the two most widely used in-
dustrial Web services. Though they are not grid services, they
are representative of the growing interest in using Web ser-
vices based protocols. Both Google and Amazon.com sites
receive a large volume of requests daily, and serving these
requests via SOAP can be expensive. Our benchmark mea-
sures the performance of processing the response from the
doGoogleSearch query of the Google Web service API.

2.4 Binary Attachments via DIME and MIME

Two important protocols for sending binary large objects
(BLOBs) as attachments are Direct Internet Message Encap-
sulation (DIME) [33] and Multipurpose Internet Mail Exten-
sions (MIME) via SOAP with Attachments (SwA) specifica-
tion [33]. The motivation for sending binary data as attach-
ments is to avoid the overhead of serialization and deseri-
alization for binary data. Moreover, for digitally signed at-
tachments, it may not be possible to use standard serialization
techniques without affecting the integrity of the data. MIME
messages are sent as a series of records, with each record sep-
arated from the other via a unique marker string. DIME and
MIME have many similarities. The important difference is
that in DIME, the header for each record contains the exact
size of the record. If multiple attachments have been sent, the
receiver can directly access a particular record.

Our benchmark sends multiple attachments, one to fifty,
varying the size of the attachment from 1KB to 100KB. The
aim of the benchmark is to determine the threshold point when
it is better to use DIME instead of MIME (or vice versa).

2.5 Dynamic vs Static Code Generation

The Java Dynamic Proxy Class [27], introduced in Java
1.3, is an elegant and flexible feature that allows a class to
implement a list of interfaces specified at runtime. This de-
sign is in stark contrast to the use of classicstubs and
skeletons. Stubs and skeletons shield run-time specific
details from a user, and are generated by a specialized code
generator. The dynamic proxy feature obviates the need for
a code generator in Java based SOAP toolkits, and provides a
type-safe reflective dispatch of invocation on dynamicallycre-
ated proxies. The dynamic proxy, however, imposes a severe
performance penalty. Even though the generation of static
stubs and skeletons for every server interface is cumbersome,
it offers attractive performance benefits. Our benchmark is
designed to illustrate the exact performance penalty of using
dynamic proxies. For this test, the toolkit must provide sup-
port for switching between the two designs.

Linux toolkit gSOAP XSUL AxisJava
Latency (seconds) 0.00052 0.00107 0.01200

Windows toolkit .NET XSUL AxisJava
Latency (seconds) 0.0035 0.0038 0.0047

Table 1. Latency is measured by the time in sec-
onds for the client to receive the full response from an
echoVoid call. On Linux, XSUL’s overhead is two
times greater than gSOAP’s. However, AxisJava’s over-
head is 10 times greater than XSUL’s. On Windows,
.NET and XSUL have comparable overheads, while Ax-
isJava’s overhead is 33% higher than .NET’s.

3 Performance

This section describes the performance of a representative
set of five toolkits when run against our benchmarks. We used
two sets of drivers. A heavy-weight driver verifies the accu-
racy of every response from the tested toolkits. A light-weight
driver reads trace data from files into a local buffer, then sends
it to the different toolkits for several iterations, but there-
sponses are not checked for accuracy. This approach ensures
toolkit accuracy, but keeps verification cost out of the reported
performance data. The light-weight driver was configured to
run each benchmark for multiple iterations and calculate the
average time taken for each iteration.

The versions of the tested toolkits are: gSOAP 2.7e, Ax-
isJava 1.2RC2, .NET 1.1.4322, XSUL 1.99RC2 and bSOAP
0.5alpha. gSOAP is implemented in C/C++, bSOAP in C++,
and XSUL and AxisJava are developed in Java. Some perfor-
mance variations are due to the inherent efficiency of C and
C++ implementations over Java. However, since the SOAP
wire-protocol is independent of any programming language
and interoperability is an important feature of SOAP, compar-
ing implementations in different languages is useful.

Since the .NET implementation is available only on a Win-
dows platform, we compared its performance with the Java
implementations of Axis and XSUL deployed on a Windows
box. We also deployed gSOAP, AxisJava, XSUL and bSOAP
on Linux machines and tested the performance separately.
The results on Windows and Linux need to be viewed sep-
arately, as the hardware configurations of the Windows and
Linux machines were not identical.

The Linux test environment consisted of two dual proces-
sor machines, each configured with 2.0 GHz Pentium 4 Xeon
with 1GB DDR Ram and a 15K RPM 18GB Ultra-160 SCSI
drive running Debian Linux 3.1 (“sarge”) with the 2.4.26
kernel. The machines were connected by Gigabit Ethernet.
gSOAP and bSOAP were compiled with gcc/g++ version
3.3.4. XSUL and AxisJava were compiled with Java 1.4.2.
Relevant socket options, for both gSOAP and bSOAP, include
SO KEEPALIVE, TCP NODELAY, SO SNDBUF = 32768,



and SORCVBUF = 32768. For fairness, when bSOAP is
compared with the other toolkits, it is set to re-serialize all
data (BSOAP100 means bSOAP is serializing 100% of its
data).

For the tests on Windows (.NET, XSUL and AxisJava) we
used a Dell Dimension 4500 with Intel Pentium 4 2.26GHz
processor, 1GB of DDR SDRAM and 80GB Ultra ATA/100
hard drive running Windows XP.

The performance graphs show the measured time in sec-
onds on the y-axis and the size of the application level data
on the x-axis. The effective throughput (bandwidth obtained
by a given SOAP implementation) can be calculated directly
from the data points on each plot.

3.1 Summary of Performance Results

• Latency: Table 1 shows the overhead imposed by
each toolkit, for both Windows and Linux platforms.
gSOAP’s overhead is less than XSUL by a factor of 2.
XSUL outperforms AxisJava by a factor of ten. On Win-
dows, AxisJava is also slower than .NET and XSUL.
The overhead of gSOAP is lower than that of the Java-
based toolkits (XSUL and AxisJava) as it does not incur
the cost of using reflection and dynamic proxy classes.
gSOAP uses statically generated stubs and skeletons for
each remote call, which are known to be faster than dy-
namically generated code (proxies).

• Serialization: Figures 1 and 2 compare the serialization
performance of doubles and integers respectively. XSUL
and AxisJava perform similarly for all array sizes. The
cost of the toolkit overhead is higher for AxisJava (as
can be seen in the results for latency), but it gets amor-
tized with increase in the size of data being sent. The
cost of serialization for large array sizes (especially for
floating point data) is dominated by the conversion of
data from floating point representation to the ASCII for-
mat [9]. AxisJava and XSUL use the same conversion
routines, and hence have similar performance character-
istics for serialization.
bSOAP is more efficient than gSOAP for all array sizes.
For 25,000 elements bSOAP and gSOAP take 4% and
17% respectively, of the time it takes AxisJava to com-
plete the benchmark. gSOAP uses a two-iteration se-
rialization algorithm (described in 2.1.1), while bSOAP
directly allocates buffers during the serialization process.

• Deserialization: We ran the deserialization benchmark
for doubles and strings. The tested version of bSOAP did
not have support for deserialization, and hence bSOAP
is not included in the graphs. Figures 3 and 4 show that
AxisJava does not scale well. For 10,000 elements, Ax-
isJava takes 5 times more time than XSUL, and 35 times
more than gSOAP to execute the benchmark. On Win-
dows (see Figure 5), XSUL and .NET have similar per-
formance. AxisJava’s execution time exceeds .NET by a
factor of 6. The choice of an XML parser plays a signif-

icant role in deserialization of SOAP payloads. XSUL
uses an efficient pull parser (XPP) that has a low mem-
ory footprint and is specifically designed to access ele-
ments in a SOAP payload. AxisJava uses Xerces, which
is modular and flexible but inefficient for large payloads.
gSOAP also uses a custom pull parser during the deseri-
alization phase.

• Events and MIOs: XSUL dynamically re-allocates
memory as it retrieves new XML nodes while deserial-
izing the XML graphs. This hurts its performance for
events and MIOs (Figures 6 and 7). XSUL’s perfor-
mance exceeds AxisJava for less than 10,000 MIOs and
15,000 events. gSOAP outperforms both AxisJava and
XSUL for all sizes of MIOs and events. Figure 8 shows
a similar pattern for Windows-based toolkits; .NET out-
performs AxisJava by 50% for large array sizes.

• Base64 Encoding: Figures 9 and 10 compare end-
to-end and serialization performance respectively for
Base64 encoding. Results show that gSOAP and XSUL
outperform AxisJava. For end-to-end performance, Ax-
isJava is slower than XSUL by a factor of 2.3, while
XSUL is slower than gSOAP by a factor of 1.6. For se-
rialization, XSUL takes 49% more time than gSOAP to
complete the benchmark for 25,000 array elements.

• End-to-End Performance: When compared in isola-
tion, XSUL outperforms AxisJava for deserialization
but has similar performance for serialization. However,
when the two modules are combined in Figures 11 and
12, XSUL outperforms AxisJava.

• Chunking and Streaming: We study the effect of
chunking and streaming for deserialization of events
(Figure 13) and serialization of doubles (Figure 14). For
deserialization, the performance improvement is 22%.
However, for serialization, AxisJava has no performance
improvement, suggesting an inefficient buffering algo-
rithm. gSOAP gains up to 42% with streaming for seri-
alization of doubles.

• Differential Serialization : Figure 15 shows the per-
formance improvement in bSOAP when differential se-
rialization is used with different percentage of values
changed from the previous run. The best case, when all
the values are the same, is 6.7 times faster than the worst
case, when all values need to be re-serialized. bSOAP
serializes only those array elements that have changed
since the previous send. So, for test cases where subse-
quent sends are similar, the performance of other toolkits
will not change, while that of bSOAP will improve.
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Comparing Serialization Performance for Arrays of Ints
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Figure 1. This graph shows the effect on serial-
ization when the size of an integer array is scaled. The
performance of AxisJava and XSUL is similar. bSOAP
and gSOAP complete the benchmark in 4% and 17% re-
spectively of the time it takes for AxisJava for the largest
size (25,000 integers).
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Figure 2. Here we compare the serialization perfor-
mance of four toolkits on arrays of doubles. As with the
integer case in Figure 1, the Java-based toolkits (Axis-
Java and XSUL) perform similarly. bSOAP and gSOAP
send the largest size (25,000 doubles) arrays in 13%
and 30%, respectively, of the time it takes for AxisJava
to do the same.
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Figure 3. Here we compare the deserialization per-
formance of AxisJava, gSOAP and XSUL. Each toolkit
is sent a SOAP payload for double arrays of various
sizes, asked to deserialize it and return it’s size to the
driver. For arrays of 10,000 doubles, AxisJava takes 5.1
times as long to respond as XSUL, which in turn takes
7.8 times as long to respond as gSOAP.
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Comparing Deserialization Performance for Arrays of Strings
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Figure 4. This graph compares the deserialization
performance for strings. Again, XSUL performs signif-
icantly better than AxisJava for deserialization. For an
array size of 25,000, it takes AxisJava 7.4 times longer
to respond than XSUL, and XSUL takes 3.6 times as
long to respond as gSOAP.
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Figure 5. This graph compares deserialization perfor-
mance of Axis, XSUL and .NET for an array of doubles
on Windows. XSUL and .NET are comparable, while
AxisJava does not scale well for large array sizes. For
an array of 10,000 doubles, AxisJava’s deserialization
time is 6 times greater than those of XSUL and .NET.

 0

 2

 4

 6

 8

 10

 12

 14

 0  5  10  15  20  25

T
im

e 
in

 S
ec

on
ds

Number of Elements in the Array (* 10^3)
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Figure 6. We compare the end-to-end performance
for arrays of MeshInterface Objects (2 integers and a
double). The plots show that for sizes greater than
10,000 objects, XSUL’s performance considerably de-
grades compared to AxisJava. For 10,000 elements,
XSUL and AxisJava respectively take 11.7 and 12.3
times more time to execute the benchmark compared to
gSOAP.
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Figure 7. This graph compares the performance
for the deserialization benchmark for events. Each
event object contains an integer, a double and a string.
XSUL’s performance degrades considerably when it de-
serializes more than 15,000 elements, but for lesser
number of events, it outperforms AxisJava. gSOAP is
orders of magnitude faster in handling complex types
compared to the Java toolkits.
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Figure 8. We compare end-to-end (serialization and
deserialization) for .NET, AxisJava, and XSUL on Win-
dows. XSUL’s performance drops for handling more
than 10,000 events. For sizes greater than 12,000, Ax-
isJava takes an average of 50% more time than .NET to
respond.
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Figure 9. This graph shows the performance re-
sults for end-to-end performance of binary data that has
been base64 encoded (a feature provided by each of the
toolkits). XSUL outperforms AxisJava, while gSOAP
is consistently better than XSUL. For an array of size
10,000, XSUL is slower than gSOAP by a factor of 1.6,
while AxisJava is slower than XSUL by a factor of 2.3.

4 Observations on Current Toolkits based on
Benchmark Results

We briefly describe the conclusions that can be drawn from
our performance study of the current versions of five toolk-
its. The benchmarks and the associated drivers facilitate in
repeating these tests for newer toolkits and to study the effect
of improvements that are added to existing SOAP implemen-
tations.

• If low latency is critical, gSOAP is the ideal choice. On
Windows, XSUL or .NET have comparable latency. Ax-
isJava is not optimized for low latency requirements on
either Windows or Linux.

• MCS [24] should use gSOAP or the .NET environment
as these two toolkits scale well with increase in the size
of complex data types. These toolkits can minimize the
Web service overhead, which was identified as the pri-
mary bottleneck in the use of Web services with MCS.
AxisJava, which is currently used, can severely hurt the
scalability of the system.

• On Java-based Linux environments, XSUL should be
used if arrays of primitives need to be sent or received.
However, while XSUL can be used to send complex
types, its performance does not scale well for receiving
a sequence of complex data structures.

• For grid applications that repeatedly exchange data with
similar structure, such as exchange ofClassAdsbe-
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Figure 10. This graphs shows the performance
of AxisJava, gSOAP and XSUL for serializing data in
Base64 format. AxisJava performs poorly compared to
XSUL and gSOAP. XSUL takes 49% more time to com-
plete than gSOAP for arrays of 25,000 elements.
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Figure 11. In this graph we show the end-to-end
performance for array of integers for AxisJava, XSUL
and gSOAP toolkits. This requires each toolkit to dese-
rialize, then re-serialize the input array. For an array of
size 10,000 elements, AxisJava’s time is a factor of 3.4
greater than XSUL’s. For the same size, XSUL’s time is
a factor of 6.2 greater than that of gSOAP.
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Figure 12. Similar to Figure 11, but using doubles in-
stead of integers, we compare end-to-end performance.
For an array of size 10,000 elements, the time taken by
AxisJava is a factor of 3.0 more than XSUL. For the
same size, XSUL takes a factor of 3.9 times more than
gSOAP.
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Figure 13. We studied the effect of streaming by
making AxisJava and gSOAP deserialize a large num-
ber of events with and without streaming enabled. Ax-
isJava consistently performs better when streaming is
used, taking 22% less time to complete for the 10,000
element array. gSOAP also trims its time with chunking
on this test by 22%.
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Figure 14. We studied the effect of streaming by
making AxisJava and gSOAP serialize arrays of doubles
with and without streaming enabled. Unlike in the case
of deserialization of events (see Figure 13), streaming
does not improve AxisJava’s serialization performance.
Streaming helps improve gSOAP’s performance for all
sizes up to 25,000 elements, the maximum we tested for
this benchmark. By enabling streaming, gSOAP’s aver-
age response time for 10,000 elements was reduced by
42%.

tween cluster managers in Flock of Condors [8], bSOAP
performs extremely well. It also has impressive per-
formance gains when only a small percentage of data
changes during subsequent sends. bSOAP’s caching
mechanism is targeted towards such applications.

• bSOAP is comparable to gSOAP for sending arrays of
doubles, integers and strings. However, for receiving
data or end-to-end communication, gSOAP should be
used.

• The use of streaming and chunking greatly improves
the performance of gSOAP. With AxisJava, however, it
makes minimal difference for serialization in AxisJava,
though deserialization is helped. Whenever possible,
persistent socket connections should be used for SOAP
calls.

• On Windows, .NET is highly optimized for all the bench-
marks. Its performance is comparable or better than
XSUL for all data types. If available, .NET should be
used instead of XSUL or AxisJava.

• The WSRF-Java implementation [13] uses the AxisJava
toolkit. Our performance results show that XSUL, .NET
or gSOAP based toolkits will be more efficient.

Axis Java is a widely-used toolkit under active develop-
ment. While it performed poorly compared to the others in
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Figure 15. Differential serialization is optimized
for use-cases when subsequent sends are similar. In
this benchmark. we measured the performance of
bSOAP when 0% (bSOAP0), 25% (bSOAP25), 50%
(bSOAP50), 75% (bSOAP75), and 100% (bSOAP100)
of the values need to be re-serialized, rather than
copied, for each message from the previous message.
As expected, bSOAP’s optimizations reduce the serial-
ization time as the percentage of values that need to be
re-serialized is reduced. For 100,000 doubles, the best
case bSOAP0 is faster than the worst case bSOAP100
by a factor of 6.7.

our benchmark tests, we expect to see improvements in the
future.

5 Related Work

The SOAP community currently uses a set of well-known
SOAP payloads and interfaces to test theinteroperabilityof
various toolkits [34]. Our work complements these efforts
in that it aims to provide a standard set of workloads to test
the variousfeaturesandperformance characteristicsof SOAP
implementations, rather than their interoperability.

The XMark project [3] has designed an XML bench-
mark suite to examine the performance of XML repositories,
such as relational databases, for a wide range of queries that
are typical of real-world application scenarios. This bench-
mark effectively compares different implementations of XML
databases with queries that test specific primitives of the query
processor and storage attributes.

In [22], the performance of SOAP is compared with
CORBA and the Financial eXchange Protocol (FIX) [29],
which is an established domain-specific protocol for capital
markets. The motivation of this project is to study the appli-
cability of SOAP for realistic business computing scenarios

and the authors used real data from the Australian Stock Ex-
change for this purpose.

The performance of three different SOAP implementations
(not named) are compared in [7]. Tests are conducted for
business-oriented data such as account records and invoices.
The authors conclude that the main bottleneck is the serializa-
tion and deserialization of messages, and that deserialization
is generally more expensive than serialization for SOAP.

Karre and Elbaum [21] compare five Java-based XML
parsers for well-formedness, validity and speed of parsing
XML documents. They have developed a metric to deter-
mine the acceptance-accuracy and rejection-accuracy of each
toolkit. For the performance study, they test the performance
of parsing XML documents with varying number of tags. Our
performance benchmark, in addition to including this test,
also includes workloads that vary the nesting level for each
document and the number of namespace qualified attributes
in each element.

Our work complements the related work in performance
evaluation and comparison of SOAP toolkits for business
data, relational databases and interoperability tests.

6 Conclusions and Future Work

We motivated a strong need for SOAP benchmarks and
described our benchmark suite, which effectively serves asa
testbed for application programmers and Web services library
developers to experiment, evaluate, and compare the perfor-
mance of their toolkits. We demonstrated the benchmark
suite’s efficacy by providing a current performance snapshot
for widely used toolkits. The description and use of the bench-
mark suite provide insights into relative strengths and weak-
nesses of various SOAP implementations.

Planned additions to the benchmarks include studying the
performance for emerging security standards, once they stabi-
lize. We will evaluate the performance results of AxisC++ and
SOAP implementations in languages such as Perl and Python.
We will also include benchmarks and automated tests to mea-
sure toolkit memory footprints, which will be important for
embedded and hand-held devices.
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