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Abstract This paper describes an approach to building large-scale, distributed applications
based on a software component composition model that allows web services to
be used as the basic units. The approach extends the Common Component Ar-
chitecture used in many parallel supercomputer applications, from static com-
position of directly coupled processes to a system that incorporates mediated
workflow between remote services. The system also allows legacy applications
to be easily wrapped as a component and executed from a service factory. We
motivate the work in terms of a large, distributed application for modeling se-
vere storms. The entire system is based on a three-level architecture with a portal
providing the user interface, a set of security and factory service utilities in the
middle and the application services and components in the back-end.
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�� Introduction

The goal of building software from pluggable components is not new. Unix
pipes allowed simple linear composition of programs based on composing an
output stream with an input stream. In the area of computer visualization sys-
tems like AVS [1]allowed users to put together complex graphics applications
by composing graphs of simple filter and rendering components. The Com-
mon Component Architecture (CCA) [8]is a modern component system that
is used to build large supercomputer simulations by coupling together compo-
nents such as linear solvers and boundary condition evaluators. Many other
component systems exist they differ primarily in the way individual compo-
nents are required to behave and in the semantics of the method of composi-
tion. Most use a variation of the ”inversion of control” pattern which is based
on extracting the control of the overall application and placing it in surrounding
framework.

Grid systems are distributed frameworks for sharing resources among the
membership of a virtual organization. Currently Grids are designed as a col-
lection of common services which provide security, data management, appli-
cation execution scheduling, notification and logging, policy expression and
system monitoring. These services are often implemented as web services and
many Grid applications can be constructed by composing collections of basic
services and ”atomic” application components.

For example, the LEAD project [12]is trying to build a distributed cyber in-
frastructure powerful enough to enable the ”better than real-time” prediction of
mesoscale weather events such as tornadoes. One of the goals of LEAD is to
allow a scientist to compose applications that are advanced Grid measurement
and prediction scenarios of various types. For example, an application may al-
low a user to select a region of land such as a state or a few counties, and a data
query, such as current radar data. From this information, the application begins
a data mining monitoring process which searches the radar data in that region
for anomalous behavior. When strange conditions are detected, compute re-
sources are allocated and a series of simulations are launched. The simulations
are monitored to see how they align with the real weather and those that are
not consistently tracking reality are terminated. Addition resources may be
applied to those that are accurate. For example, the radar array be asked to
provide more detail so the resolution of the simulation can be increased. This
type of application is a good example of a dynamic workflow that requires an
extensive distributed framework of services to be composed. Specifically, the
services include

Metadata catalog services for extracting information about past storm
histories and available instrument data streams for a given geographic
region.
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A data mining service that can be configured to mine the instrument data.

Resource allocators for both space and computation

Simulation instance factories that can be used to launch version of a
simulation with different parameters.

Visualization services that can convert the output of simulations into
movies and other display data the user wants.

Logging services so the user can keep track of what is going on.

In the sections that follow we will outline a service composition model that
allows these service components to be composed by scientists to enact spe-
cific experimental prediction scenarios. The system is based on a three level
architecture. The user interacts with the system by means of a Grid portal that
forms the first level. In the second level we have the security framework and
application factories. At the third level are the specific service instances that
participate in computation.

�� The Portal

The Grid portal is based on the Open Grid Computing Environment (OGCE)
[16]framework. But it could also use any JSR-168 compliant portal such as the
GridSphere [22]The OGCE portal allows the user to interact Grid applications
and services from a standard web browser. The portal provides each user with
a context of resources including a proxy identity certificate to allow the por-
tal to authenticate with remote grid services on behalf of the user. The portal
provides tools for defining geographic regions, querying and searching meta-
data catalogs, checking job execution logs, cataloging experimental results and
defining workflows with simple graphical tools.

The portal represents the top layer of the grid stack. The bottom layer of the
stack is a set of shared resources. These may be real (computers, databases, in-
struments) or virtual (documents, name spaces, ontoloties). Above the resource
layer we have OGSI [23]or WSRF [3]which is a set of basic web service ab-
stractions designed to provide a standard mechanism for describing resources.

From our perspective, a set of services that provide a mechanism for com-
municating ”events”, such as WS-Notification, is critical. We will return to
this issue below.

Built upon these foundations we have the Open Grid Service Architecture
which is the federation of services that define the core grid platform. Finally, as
shown in Figure 1, the portal build upon these services to create the application
level services it needs.

While the portal provides several other workflow composition tools, such
as an interface to upload Dagman Condor scripts, the graphical component
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Figure �� The layered organization of a Grid. The portal is the user’s access point.

composition tool is the primary mechanism for building applications based on
web services and CCA components. The user interface 2 is a simple ”drop and
drag” composer that is similar to the standard CCA composer or the Scirun II
composer. (Scirun [24], from the University of Utah, is also based on CCA.) It
is also similar to the Triana [25]and Kepler [26]interfaces.

The primary difference between our composer and others lies in the back
end. The OGCE composer allows both web service and CCA components to
be integrated into a single application. While this work is still in progress
and not yet released, it is based on a compiler that translates the graphical
specification of the application into a standard workflow language. We will
return to this topic later in this paper.

There is one more important point to make about the composer: it is an
example of how a Grid services provides an interface to the user through the
portal. Our model for doing this is similar to the WSRP specification [20],
but it takes advantage of the structure of a Grid service. For Grid services
that have user interfaces, we have defined a ”standard” service data element
(in OGSI terms) or resource (in WSRF) terms that provides the URL to load
the GUI for that service. This GUI may be an applet (as in the case of the
composer) or it may be an xhtml document with imbedded java script.

There are two difficult problems that must be solved when you want a user
to interact with a service through a remote client interface. What do you do
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Figure �� Component Composer Interface. This is the standard way most component sys-
tems use to assemble small workflows. This version is an applet that will be distributed as part
of OGCE.

when the Grid service is behind a firewall? What do you when the Grid service
requires the user to use WS-Security when it talks to the service? The user
may have the interface, but not their own X.509 identity certificate. The so-
lution to both of these problems is to filter all transaction between the service
and the user through the portal, which we assume is a gateway through the
firewall and also has access to the user’s proxy certificiate. The protocol is as
follows. When the user discovers the Grid service in the portal directory, a spe-
cial servlet in the portal fetches the interface and passes it to the user. The user
interact with the GUI which sends user commands back though the browser
HTTPS connection to the portal. The portal then forwards those commands
back to the Grid service using the user’s credentials for the XML digital sig-
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nature in the WS-Security-based communication with the service (see Figure
3).

Figure �� Protocol for loading a remote user interface for a Grid service.

�� Wrapping Legacy Applications as
Components

One of the most frequently asked questions about this system is, ”I have a
Fortran application that i cannot modify. Can i use it in this system?” In other
words, in what way can we turn a legacy application into a service component?
By legacy application, we mean a program that can be submitted through a
batch queue. For example, a script that that inserts some text into a program,
compiles it and then runs it while consuming some input files and producing
some output files. (We do not consider the case of interactive applications,
though, in some cases, it is possible to threat them in the same way we describe
here.)

Our approach is to use the factory pattern. We will build a service which is
capable of starting an instance of the application on behalf of the service client.
The input to the factory is either through a direct web service call, or through
a user interface as described in the previous section. The input consists of any
configuration parameters that the factory needs to start the job running.

There are two problems that must be solved. First, it is not hard for a web-
service programming professional to write a web service to build an application
factory. But it is often the case that the person who wishes to build such a
service is the scientific programmer who is responsible for the deployment
and testing of the application. This person is not a web-services programming
expert. So can we automatically generate the factory for an application from a
specification provided by the application provider?

The second problem involves security. One problem with sharing legacy ap-
plications is deployment. An application may run in one user’s environment,
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but it may take a substantial effort to deploy it in another user ’s environment.
Furthermore once an application leaves the developers control, that developer
now has a version control problem. This is one motivation for provide the ap-
plication as a service rather than as a program. But if an application provider
creates an application factory that can instantiate a running instance of the ap-
plication for somebody else, then how do we provide the authorization control
mechanism that determines exactly who is allowed to run the app?

Taking the first question, we note that we have built an Factory Service
Generator into the portal server. This allows the application provider to auto-
matically generate a factory service from a relatively simple xml specification.
The user need only provide

a script that can execute the application. Any needed input files should
appear as filename parameters to the script. In addition we assume that
the script take a ”jobname” parameter so that it can create a private work-
ing directory for each run of the program. (The factory service assumes
it can run multiple instances of the application concurrently so care must
be taken that intermediate and final files are not overwritten.)

an XML file that describes the application and the input parameters and
other annotations to be placed on the user interface to the factory.

Given these two items, the portal can automatically generate a factory and
start it running on behalf of the application providing user. When invoked the
factory simply executes the script. There are no restrictions on this script other
than the those described above. In many cases, we have the script run another
web service which is a transient instance of a service that is dedicated to one
user. In other cases, we have the script execute a complete workflow. In any
case it is very useful if the script has the capability of sending event notifi-
cations such as “job complete”, “output file is at URL ../jobname/filename”
or “job failed because ..”. Python, GridAnt [27]and other high level scripting
tools have this capability. We will describe how this is used later.

Once the factory is running, the provider must decide who is allowed to in-
voke it. The solution we use is based on capabilities. Each application provider
supplies a list of individuals or groups that he or she will allow to run his or
her application factory. The portal capability manager will then, for each user
and group, create a signed XML capability document that says this individual
or group has permission to execute the application factories ”create instance”
methods. When one of these users logs into the portal, the portal server loads
the proxy cert for the user, which is then used to load that user’s capabilities
(see Figure 4.) If the user invokes the factory service, the appropriate capabil-
ity is added to the SOAP header for the service request. The factory service
verifies that the request is authentic and that the capability is authentic and that
the requestor is the same person as the capability certificate.
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Figure �� capability-based authorization protocol for access to factory services.

�� XCAT� � Integrating CCA Components and
Grid Services

We briefly introduce the Common Component Architecture (CCA) [8]and
the Open Grid Services Architecture Infrastructure (OGSI) before presenting
the architecture of the XCAT3 [15]framework in the following subsections.

��� Common Component Architecture

The Common Component Architecture is defined by a set of framework
services, and the definitions of the components that use them. Each compo-
nent communicates with other components by a system of ports. Ports are
defined by a type system that is expressed in the Scientific Interface Definition
Language (SIDL) [2]. SIDL is similar in nature to WSDL, but differs in the
support it provides to data structures common to scientific computing. There
are two types of CCA ports:

Provides Ports are the services offered by the component. Each pro-
vides port implements an interfaced defined in SIDL.
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Uses Ports are the hooks that enable a component to use a service pro-
vided by another component. Uses ports are stubs that a component
uses to invoke the services provided by another component. Uses ports
are also defined in SIDL.

A uses port of one component can be connected to a provides port of another
component as long as they implement the same SIDL interface. Connections
between uses and provides ports are made at runtime. A component needs to
execute a getPort statement to grab the most recent reference to provider,
and a releasePortwhen it has finished using it. The get/release semantics
of component connections enable the framework to infer if any port calls are
being made at any point in time, and also enable the connections to be changed
dynamically.

Apart from uses and provides ports, a component also implements a Com-
ponentID interface that has methods that uniquely indentify the component,
and provide metadata about it. CCA also defines a Builder service for creation
and composition of these components.

��� Grid Services

The Open Grid Services Infrastructure extends the Web services model by
defining a special set of service properties and behaviors for stateful Grid ser-
vices. Some of the key features of OGSI that separate Grid services from
simple Web services are:

Multiple level naming: OGSI separates a logical service name from a
service reference. A Grid Service Handle (GSH) provides an immutable
name for a service, while a Grid Service Reference (GSR) provides a
precise description of how to reach a service instance on a network, e.g
a WSDL reference. A GSH can be bound to different GSRs over time.

Dynamic Service Introspection: Grid services can expose metadata
to the outside world through the use of Service Data Elements (SDE),
which are XML fragments that are described by a Service Data Descrip-
tor (SDD). SDEs can be queried by name or type, and can be used to
notify state changes to clients.

Standardized ports: Every Grid service implements a GridService port,
which provides operations to query for SDEs, and manage lifetime of the
Grid service. OGSI also specifies standard ports for creation, discovery,
and handle resolution.

Recently, OGSI has been superceded by the WS-Resource Framework (WSRF)
[3]proposal. WSRF also addresses the above issues for stateful Grid services,
but tries to integrate them better with the current Web service standards.
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��� XCAT� Architecture

Currently, the XCAT3 framework is implemented in Java, and we plan to
implement a C++ version that is interoperable with the former. In XCAT3, we
implement the CCA specification in the context of Grid services. To that end,
some of the key features of XCAT3 are:

Ports as Grid services: As per the CCA specification, one component
can have more than one provides port of the same type. Simple Grid and
Web services allow multiple ports of the same portType; however,
multiple bindings of the same port are semantically equivalent. Hence,
the same operation on different ports of the same type affect the service
in exactly the same way. However, unlike Web service ports, ports in
CCA are designed to be stateful. Hence, every provides port in XCAT3
is implemented as a separate Grid service 5. The consequence of this is
that every provides port inherits multiple level naming from the OGSI
specification, and this enables the ports to be location independent. Ad-
ditionally, any Grid service that is compliant with the OGSI specification
can serve as a provides port.

ComponentID as a Grid service: The ComponentID, as specified by
the CCA specification, is also implemented as a Grid service. It exposes
handles and references of all the provides ports that a component con-
tains, and thus acts as a manager for the component. Users can query a
component for the types of services provided via the ComponentID, and
connect to them directly.

Some of the other useful services in the XCAT3 framework are:

Builder Service: As mentioned before, the Builder service defines
methods for component creation and composition. We allow remote in-
stantiation of components via ssh or Globus GRAM provided by the
Java CoG [4]kit. For composition purposes, the Builder service provides
connect and disconnect methods for connecting and disconnect-
ing a uses port to a provides port respectively. Once the ports have been
connected, all communication between them is via Web service invoca-
tions provided by the XSOAP [5]toolkit.

Handle Resolver: Since we employ multiple level naming for our ports
and ComponentIDs, we need to use a handle resolution mechanism that
translates a GSH to a GSR. This is provided by the Handle Resolver
service. The Handle Resolver, as other Grid services in the XCAT3
framework, is implemented using the GSX [6]toolkit, which provides
a lightweight implementation of the OGSI specification.
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Figure �� Every XCAT3 component port is a Grid service. It contains SDEs with locators
for all provides ports, which are also Grid services themselves

�� An Example

As an example that integrates most of these ideas together, we consider
an application that is part of a much larger LEAD scenario. Much of LEAD
requires large simulations based on weather data input. The output of these
simulations consists of data fields that represent severe thunder storms and tor-
nadoes. It is useful to have a tool that can generate visualizations from these
simulation outputs. We have an application factory that launches a OGRE
script [17]for which sets up the LAM MPI on a cluster and runs a parallel ren-
dering program on the output from the WRF job. Once the parallel rendering
is complete, it launches a conversion program which translates the rendered
output to a GIF movie that can be viewed from the browser. OGRE scripts are
capable of publishing events into the notification system (which is currently
being converted to work with WS-Notification). An event listener, listens for
all events published under the topic defined by the name of this OGRE execu-
tion. These events are logged into a special directory service visible from the
portal. The entire workflow is depicted in Figure 6. (Note that the workflow
for this example predates the composer tool described earlier. The workflow
was hand crafted and not generated from the picture.)

The user can discover the status of each execution of this workflow by going
to the portal ”Grid Context” directory service. There entry for each execution
looks like a directory which contains a list of all parameters used to launch the
workflow, the log of execution events and a reference to the output GIF movie.
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Figure 	� Complete distributed WRF output animation application. The output from the wrf
simulation is used as input to the OGRE animation script. All components log events to the
event channel. The event listener captures them and pushes them to the directory service.

As shown in Figure 7, selecting ”status” displays the log of events received.
In Figure 8, we see that selecting ”results” will run the GIF movie in the right
hand window.

Figure �� A Directory service record for this execution of the workflow. Selecting ”Status”
shows the even log.
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Figure 
� Selecting ”Results” shows the output movie on the right.

�� Conclusion

This paper has illustrated a three level architecture for distribute Grid appli-
cations. At the top level we have a Grid portal which contains a suite of tools
for creating grid services and composing application from them. This portal
provides the secure interface to the back end Grid which may run behind a
firewall. The middle tier is a set of services that support our Grid applications.
These include security services, such as a proxy certificate repository, an autho-
rization system based on capability tokens, directory services and a notification
system. One important tools is a factory service generator that allows users to
describe a legacy application and the portal will generate a factory service to
access and launch instances of that application. The back end is composed of
the application resources and services.

We also describe how we transformed the Common Component Architec-
ture into a Grid service-based framework. This allow CCA components to
be used as Grid services and composed into service-based workflows. It also
allows regular web services to be integrated into CCA distributed applications.

In the year ahead we will on building applications from services and CCA
components. While much has been done, we feel there is much more to be
learned and the most important discoveries will come from applying this tech-
nology to real problems.
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