
Web Services Security and Load Balancing in Grid Environment

Liang Fang, Aleksander Slominski, and Dennis Gannon

Computer Science Dept, Indiana University
Bloomington, IN, 47403 USA

{lifang, aslom, gannon}@cs.indiana.edu

Abstract

Web services security has some crucial problems to be
solved in building Grid applications. In particular the cur-
rent implementations of message-level Web services secu-
rity are very slow and therefore extremely vulnerable to
even the simplest types of Denial of Service (DoS) attacks.
The more advanced is the security mechanisms, the worse
the performance and scalability of the whole system. On the
other hand, the marriage of Web services and Grid comput-
ing promises enormous computing resources for scientific
and commercial Grid applications. The complexity of Web
services security has come to the point that the process-
ing steps can be broken into functional components that
are distributed over the computational Grids. In this pa-
per we introduce such an infrastructure that parcels out the
message-level Web services security processing to load bal-
anced computational Grid nodes. We designed it for scal-
ability, dynamic configurability as well as DoS attack miti-
gation.

1 Introduction

Derived from the notion of electric power grid, the com-
putational grids, or in short, the Grids, comprises of a huge
amount of autonomous computational and data resource do-
mains, calledvirtual organizations(VO), distributed across
the Internet. The Grid computing technologies make the
resource sharing possible to users at each corner of the
Grids. Under the direction of Global Grid Forum (GGF),
Grid computing adopted Web services (WS) as its under-
lying implementation, because Web services’ loose cou-
pling and interoperability features perfectly meet the goals
of the Grids. The merging of Grid computing and Web ser-
vices technologies expedites the evolution on both sides.
Grid services with sophisticated Web services technologies,
such as Globus Toolkit [6] and UK eScience [7], arise to

meet requirements of scientists, businessmen and govern-
ment users.

Security is critical in both Grid computing and Web ser-
vices. Grid security infrastructure (GSI) is the answer to
the security issue in Grids. Fundamentally, GSI provides
secure communication, mutual authentication, and delega-
tion to Grid applications, by leveraging both transport level
security and Web services security, which contains a col-
lection of emerging specifications with the goals to ad-
dress general distributed system security issues including
authentication, authorization, privacy, confidentiality, in-
tegrity, non-repudiation, etc. Based on XML Signature and
XML Encryption standards, Web services security specifi-
cations consist of WS Security, WS Trust, WS SecureCon-
versation, etc. In contrast to transport level security (SSL
and TLS), Web services security provides protection mech-
anisms to provide security at message level, which is ag-
nostic to transport protocols and covers end-to-end commu-
nication routed across VO’s, instead of the point-to-point
fashion in TLS.

As Web services technologies become more sophisti-
cated, they have their growing pains, especially in the as-
pects of performance and scalability when Web services se-
curity is present. The problem stems from XML manipu-
lations. The generality and interoperability of XML-based
Web services require a series of complicated operations in
XML Signature and XML Encryption before XML mes-
sages are signed or encrypted. The breakdown results of
Shirasuna et al.’s experiments indicate that among these op-
erations, XML canonicalization in particular takes around
102 − 103 milliseconds to process a SOAP envelope. To-
gether with XML parsing and conversion efforts, message-
level security has much more overhead than TLS-based so-
lutions [10].

Web services in many cases solve computationally-
intensive problems in a distributed way. When Web services
security is applied, complex XML processing and security
related operations become a bottleneck. It is especially em-



barrassing when the Web service runs on the Grids, with
abundant computing resources idled at the same time.

Currently because of the lackluster performance, most
of message-level security solutions still meander at the pro-
totype stage. Unsurprisingly, scalability is even a trickier
problem to be addressed. No mention the Denial of Service
(DoS) attacks. With message-level security, Web services
become so vulnerable to DoS attacks that it takes the at-
tackers little effort to bring down an un-protected service.

In our Web services framework and its applications
for scientific projects, such as Linked Environments for
Atmospheric Discovery (LEAD), we encountered this
dilemma: in the long term, message-level Web services se-
curity is advantageous over transport level security; in the
short term, if no breakthrough could be made on the scal-
ability bottleneck, WS security-based applications will not
be able to meet the requirements of our applications. It is
therefore imperative for us to investigate a set of viable so-
lutions.

There are two threads of work in progress in response to
the WS security performance and scalability problems. One
thread is to optimize the workflow and implementation of
the low-level XML operations, such as streaming validation
for SOAP signatures [8]. However, while many groups are
working toward this goal, the situation cannot be changed
over night. We still foresee a long way to go before the op-
timized implementation of WS and XML security libraries
are able to closely compete with TLS in their performance
showdown.

The other thread treats the performance issue at a high
level with load balancing mechanisms used in distributed
systems. While Web services are originally designed to pro-
vide distributed solutions, the complexity of Web services
has come to the point that the processing of Web services
needs to be granulated into functional components which
are running in a distributed fashion, on the computational
Grid. This is the intuition of our work, called DEN, intro-
duced in this paper.

Backed by the abundance of computing-resource Grids,
the goal of this work is to provide a scalable message-level
security solution for practical Web service applications. The
side benefits we derived from this work include reliabil-
ity and dynamic configurability. Further development may
make DEN a provisioning solution to general Web services
and Grid services.

The rest of the paper is organized as follows: Section
2 covers the related work; Section 3 mathematically analy-
ses the proposed model in Web services processing. The
implementation work and applications are described in sec-
tion 4. In section 5, with a set of performance data collected
from the experiments, we evaluate this work in comparison
to other approaches. We make a conclusion in section 6 in
addition to some future directions.

2 Related Work

Because of the well-known performance issue of Web
services, there have been quite a few techniques adopted
during the development of real-life Web service applica-
tions. These techniques include client side and server side
caching, XML compression [3], binary XML, XML stream
processing [1, 8], etc, though most of them are only applica-
ble under some specific circumstances.

For decades, load balancing has been researched and
harnessed into different levels of distributed systems for
scalability [2]. Similarly, enormous efforts have also been
put into scalable Web servers since the prosperousness of
WWW. The server-side load balancing approaches have two
categories: hardware (or DNS-based), and software or (Web
server-based). Both categories of approaches are popular in
providing scalable Web contents.

DNS-based load balancing casts the logical server names
to an IP address chosen from a cluster of them serving the
same functions according to a specific algorithm. The most
frequently used algorithms are round robin (RR) and server-
state-based ones. Nowadays DNS-based load balancing
usually has hardware support for acceleration.

Web server-level approaches are mostly software-based.
There is a gateway that dispatches the requests to a Web
farm. Different from DNS-based ones, the gateway dis-
patcher needs to rewrite the request packets by replacing
the URL or IP addresses. Sometimes HTTP redirection is
employed as an alternative.

However, though mostly in HTTP and supported by Web
servers, Web services are not necessarily so. FTP, Simple
Mail Transfer Protocol (SMTP) and Blocks Extensible Ex-
change Protocol (BEEP) are also seen to carry Web service
traffic, which means that the existing Web server-based load
balancing techniques cannot be put into all Web services.

Besides, both existing hardware and software load bal-
ancing solutions require replicated Web resources. Replica-
tion is not a concern when Web resources are static and Web
services are stateless. After IBM and Microsoft introduced
stateful Web services with their specifications and frame-
works called Web Services Resource Framework (WSRF)
and Web Services Enhancement (WSE) respectively, repli-
cating a Web service could be very complicated with syn-
chronization and consistency problems.

In retrospect of our problem defined in the first section,
the bottleneck is in processing message-level security of
SOAP messages instead of the Web service applications. If
we could parallelize and pipeline the sophisticated process-
ing steps while keep the application logic intact, that will
address the problem with minimal efforts.

2



3 From WS-Dispatcher to DEN

3.1 WS-Dispatcher

Figure 1. A Simplified WS-Dispatcher

WS-Dispatcher (WSD) was designed originally to deal
with firewalls. Web services may choose their own port
numbers for incoming requests; however firewalls only al-
low very limited well known port numbers to be open pub-
licly. WSD serves as a gateway that listens on a well-known
open port behind a firewall, such as port 80, for incoming re-
quests, and forwards the requests to the corresponding Web
service instances according to its routing table [11].

It turns out this layer of indirection brings more bene-
fits than expected. Illustrated in Figure 1, the WSD design
is first of all a typical software-level dispatcher-based load
balancing architecture. Moreover, WSD makes Web ser-
vice naming easier. We do not necessarily wait until a Web
service is instantiated for its possibly long weird URL. In-
stead, we may first advertise a WSD-based human-friendly
URL name in Web services registries, and bind the service
instance to the name in a routing table at run time.

Figure 2. Processing Stack of a Web Service

Figure 2 shows a typical processing stack of a Web ser-
vice. Server-side processing handlers could function for
signature generation, signature verification, encryption, de-
cryption, policy validation and so on. For each requestr to
a Web service instance, there is a “processing vector”:

~h(r) = {~h1(r),~h2(r), ...,~hn(r)}, (1)

while
~hi(r) = {hi−in(r), hi−out(r)}.

hi−in means the processing direction is toward the appli-
cation logic; whilehi−out goes outward. SupposeT is the
time for a single computation node to process all the steps
~h(r):

T0(r) =
∑

~h(r) (2)

Annotate the constantw the overhead time for each request,
during which WSD makes a routing decision and forwards
the request. It also includes the packet transferring time.
For Figure 1, the total cost of processing a request is

T (r) =
∑

~h(r) + w. (3)

Combine the equations 2 and 3. The average cost of re-
quests for a load balancing tree withm branches is

T̂ =
T0

m
+ w (4)

Apparently, when there are more than one nodes,T̂ beats
T0 as long as

w <
m− 1

m
T0,m > 1,m ∈ N.

It is not hard as currentlyT0 is at least 100 milliseconds;
while w is usually atms to 10ms level. However,w should
never cost more thanT0, sincelimm→∞

m−1
m T0 = T0; oth-

erwiseT will be even worse, though it may still scale.

3.2 DEN

Figure 3. DEN: WS Processing in Grids

Similar to DNS-based or other software-level load
balancing methods, with WS-Dispatcher, Web service
providers have to maintain the replicas of their Web ser-
vices, which have serious challenges in consistency and
synchronization for the stateful ones.

3



DEN addresses the performance and scalability bottle-
neck directly by targeting at the Web services security
processing steps without touching the application logic at
all. It first granulates the processing vector and makes them
each a separate processing node which is distributed across
the Grids. The processing nodes with the same function are
grouped as a functional processing farm. For instance, in
DEN, we dedicate a cluster of Grid nodes to signature ver-
ification as a processing farm. In Figure 3, the processing
workflow is pipelined. The ideal total cost of processing
one request in a traditional sequential approach is:

T̂ ′ =
∑

(ĥ + ~∆) + w. (5)

while

ĥi =
hi

ui
, and~∆ = {~∆1, ~∆2, ..., ~∆n}.

ui is the number of assigned processing nodes for the
processing farmi; ∆ is the overhead cost of a request for
both inbound and outbound directions. In order to makeT̂ ′

be less than̂T , ∆ has to satisfy the following conditions:∑
∆ < T0(

1
m
−

∑ 1
ui

) (6)

It is impossible whenm =
∑

ui, and only makes sense
when we have a much large computation pool to keep1

m −∑
1
ui

> 0.
Furthermore, in a fully pipelined processing stack, be-

cause the bottleneck ismax(ĥ(r)), the actual cost is:

Ta =
∑

(max(~h) + ~∆) + w. (7)

To avoid any processing step to be the bottleneck:

ĥi = ĥj , i 6= j, i, j ∈ N (8)

The equation 8 means the right proportional amount of
nodes should be assigned to the farm against its computa-
tional cost. For example, if signature verification takes dou-
ble the time of decryption, we should assign double nodes
to signature verification to avoid it being the bottleneck.

However, pipelining is required only if there are de-
pendencies between processing steps. Fortunately, many
processing steps are not related to each other. For exam-
ple, signature verification nodes do not rely on decryption
nodes’ results and vice versa. In these cases, their jobs can
be executed in a parallel fashion. Given a parallelization
ratioαi of a specific processing farmi, we have:

T̂ ′p =
∑

(αĥ + ~∆) + w (9)

Theα makes the following condition much easier to be sat-
isfied: ∑

∆ < T0(
1
m
−

∑ αi

ui
) (10)

Therefore, from the angle of performance, DEN is bet-
ter than WS-Dispatcher, only when at least some of the
processing jobs could be executed parallel.

Furthermore, with such a flexible architecture, the ser-
vice provider could choose different WS security policies
for different users under different circumstances, all on the
fly. Correspondingly, different requests will have different
routes through processing farms.

4 The Implementation

4.1 DEN and XSUL2

Evolving from SoapRMI and XSoap [12], XSUL is a
lightweight Web services framework. The latest version of
XSUL, XSUL2, leverages the design pattern namedChain
of Responsibility, which decouples senders and receivers
and allows a request go through a chain of handlers until
it reaches the destination.

Based on XSUL2, DEN does one step further to tear
off handlers from Web services by wrapping up these han-
dlers as separate handler service nodes, which are dedicated
for one processing task each. After the job is done, the
processing service node forwards the request as well as the
processed results to a node in the next farm or the ultimate
service node through a routing handler.

From the model analysis in section 3, we understand that
it is the parallelism that boosts the performance and scal-
ability. Pipelining, however, scales in the sense of pro-
gramming and development by decoupling the processing
steps from the Web services’ application logic. Consider-
ing many of these processing nodes are for general pur-
poses like signature verification and message encryption,
the developer may focus on the application logic first and
integrate the corresponding processing farms seamlessly
through configuring routing tables.

Between the processing farms are passed the message
contexts, which store intermediate processing results for ex-
change. For instance, a policy validation handler may get
the information in the message context on whether the cur-
rent request has been verified by a signature handler and
what the requester’s principal is. The context is inserted in
the SOAP message header section.

In the Grid environment, communication among the
whole processing farms is secured through SSL/TLS chan-
nels. The routing handler applies Grid proxy certificates for
secure communication. A proxy certificate is a short-lived
certificate extension derived from a Grid user’s Grid iden-
tity – an X.509 certificate. For secured environments like a
cluster behind firewall, non-secured communication can be
applied to save the extra cost.

The design is not limited to SOAP style Web services. It
also supports generic HTTP commands like GET. XSUL2

4



Figure 4. DEN: The Workflow

allows a client to “GET” a service’s Web Services Defini-
tion Language (WSDL) document at runtime. We also plan
to support WS-MetadataExchange as an HTTP independent
way to discover service’s WSDL. A WSDL document de-
scribes detailed information of a specific Web service in-
stance such as the interface (also known as PortType) and
the policy requirements including security. Previously, the
WSDL content was fixed before the service was instanti-
ated. With DEN, the corresponding handlers can rewrite
WSDL documents by adding their specific requirements
when WSDL documents are routed on the way being trans-
ferred to clients.

4.2 Scheduling and Routing Table

DEN has scheduling algorithms that make decisions
when there are more than one choice in the routing table. A
routing table is a hash table with registered service names as
keys and endpoint vectors as values. Each endpoint vector
contains at least one endpoint reference (EPR) bound to a
specific service instance, either a processing node or a final
Web service. Figure 4 shows how a request passes through
the processing farms.

For the time being, there are two schedulers imple-
mented – a round robin scheduler and a random scheduler.
Taking the advantage of the Grids and Globus, a scheduler
can instantiate a remote processing node by launching a
GRAM job. GRAM stands for Globus Resource Allocation
Manager, which is a running daemon that allows authorized
jobs to be executed remotely on the Grids. More compli-
cated scheduling algorithms will take the processing nodes’
states into consideration. Adding or removing a processing
node to or from a farm depends on the running nodes’ sta-
tuses. When a processing node is launched, it automatically
loads the routing table into memory. After that, every spe-
cific period of time the scheduler reloads the routing table
file, which can be modified at run time and the change will
be reflected as soon as the file is reloaded.

4.3 RPC vs. Asynchronous Mode

In WS-Dispatcher, both SOAP Remote Procedure Call
(RPC) and asynchronous messaging styles are supported.
Unlike RPC calls, asynchronous messaging calls do not
wait for the processed results; therefore asynchronous Web
services can accept more requests at peak time than the
RPC implementations. Without blocking calls, system re-
sources, such as network connections, open file handles,
threads and processes, can be recycled faster. For long
term jobs, say those that take more than one hour or even
more than one month, the asynchronous style might be the
only choice because usually client-server connections ex-
pire within minutes in RPC. Sometimes designers simulate
one asynchronous call with multiple RPC calls as alterna-
tives.

However, asynchronous messaging style takes more ef-
forts in handling the messages with queues and the handling
work can be more complicated with consistency problems
to be taken care of. It does not change the system through-
put but rather the response time by accepting the requests
immediately, with the assumption that there will eventually
be some off-peak time for the system to digest the queued
requests. The length of queue should be estimated against
the system load.

Despite that it is harder to program with, the messaging
style is preferable to RPC nowadays in large Web service
applications, due to its advantages explained. We too are
heading in this direction in our system design: depending
on the machine loads, after a thresholdγ, the Web services
will not return computing results immediately to the clients;
instead, a receipt with a unique ID will be issued. Some-
time later, the clients will be informed with notifications
and pull the results from a specified message mailbox with
that ID. We are even considering to apply the asynchronous
style into DEN processing nodes, so that a pending request
will not block a chain of processing nodes. The processing
nodes can be reused sooner to accept more requests.

4.4 Cooperation with Other Load Balancing Op-
tions

DEN is a fine-grained Web services level load balanc-
ing solution. It also works with the other levels of so-
lutions from DNS-level solutions, Web server-level solu-
tions, to application level solutions. The WSD gateway
can be replaced with other Web server-level solutions since
their functions are similar. DNS-level load balancing may
be necessary only if the WSD gateway is also overloaded,
which infers to very heavy traffic, because WSD was de-
signed to be very lightweight solely for routing purpose.

5



5 Use Cases and Experiment Evaluation

5.1 Use Cases

Linked Environments for Atmospheric Discovery
(LEAD) project is a large meteorological effort that utilizes
the Grids. A spectrum of Web services technologies are
applied to LEAD, as well as WS security. Supported by
TeraGrid, the largest scientific Grid in the world, LEAD is
expected to accommodate thousands of users, which raises
a high demand on the scalability requirement.

Powered by XSUL2 with the Apache XML security li-
brary [9] integrated, a secure Web service needs more than
100ms to return a processed result to each SOAP request.
A single node can serve no more than a few hundreds of
concurrent synchronous requests with the mainstream hard-
ware. As the number of requests increases, the overloaded
Web service becomes so slow that it will be incapable of
responding before connections time out.

XPOLA, a fine-grained capability-based authorization
framework for Web services [5], makes the situation even
worse. Represented in Security Assertion Markup Lan-
guage (SAML), each XPOLA capability is a set of access
policies protected with the issuer’s signature. Multiple sig-
natures are required when a capability involves more than
one parties. In addition to the signature for the whole mes-
sage, an XPOLA-enabled Web service has to handle at least
two signatures for each request. XPOLA’s complexity was
the last straw and thus motivated this load balancing work.

DEN distributes the signature verification and generation
as well as the capability validation work to signature farms
and capability farms in the Grids. Asynchronous messaging
WSD further boosts the scalability by breaking the limita-
tion of connection timeout. This make it possible to have a
Web service with message-level security that scales well.

5.2 Evaluation

In our experiments, we deliberately choose slow ma-
chines to reflect the scalability results better in performance
showdowns. Each processing node is deployed on one of
the dedicated 16 SUN Ultra-5’s with a 300MHz SPARC
CPU and 256MB memory, connected with other nodes
through GB networks. The codes are all in Java and run-
ning with SUN JRE1.4.2 Java virtual machine (JVM).

In order for the clients to make as many requests as pos-
sible to create the traffic for the server side, a client does
nothing more than sending previously prepared SOAP mes-
sages in HTTP to the gateway node in either a concurrent
or sequential way or both. All SOAP messages are 8363
bytes with a 7885-byte header containing a SAML asser-
tion and a signature section. The clients reside on SUN Fire
280R machines with dual 1.2GHz SPARC CPU’s and 4GB

memory. Powerful clients and GB networks guarantee they
affect the experiment results minimally. Actually since the
experiments are under the same conditions, the amount of
time the client side takes is constant.

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9
x 10

4

Clients
R

e
s
p

o
n

s
e

 t
im

e
 (

m
s
)

0. Single node
1. DEN Parallel (3+3)
2. DEN Pipeline (3+3)
3. DEN w/ SSL (3+3)
4. WSD (6 nodes)
5. WSD MSG

Figure 5. Performance Showdown (Full)

0 5 10 15 20 25 30
0

2000

4000

6000

8000

10000

12000

14000

Clients

R
es

po
ns

e 
tim

e 
(m

s)

0. Single node
1. DEN Parallel (3+3)
2. DEN Pipeline (3+3)
3. DEN w/ SSL (3+3)
4. WSD (6 nodes)
5. WSD MSG

Figure 6. Zoom-in (1-30 clients)

At the server side, the traditional Web service processes
the XPOLA-enabled SOAP messages in two steps with sig-
nature handlers and capability handlers. Signature han-
dler verifies the signature against the whole SOAP message.
Then capability handler checks the SAML assertion includ-
ing the authorization policy and its own signature against
the policy. Finally the signature handler signs the response
messages and returns them to the clients. DEN wraps up

6



the handlers as processing nodes. Signature processing
nodes are clustered as a signature farm; capability process-
ing nodes form another farm similarly. Each processing
node is started through GRAM and after that it acts as a
daemon running solely on a host.

Note that usually the performance result of the first re-
quest could be bad and unstable. It is mainly because of the
internal mechanisms of JVM itself, such as class loading
and JIT. Therefore in our experiments, each client repeats
the request a specific number of times ranging from at least
2 to 30. The displayed final results are the average values
of all the requests made. Even though, the results still can-
not be theoretically smooth, as another unpredictable factor
during the tests is the garbage collection of JVM, which
could happen at any time.

In Figure 5 and 6, the response time of the single node
RPC (No.0) is compared with 5 other load balancing op-
tions. Except the last one (No.5) in WSD messaging, the
rest are done in RPC style, in which response time is iden-
tical to turnaround time. No.1 shows the performance of
a parallel DEN, with a 3-node signature farm and a capa-
bility farm with the same number of nodes. According to
Equation 8, the1 : 1 ratio is coincidental simply because
capability handler also spend most of the time on signature,
and thus needs almost the same amount of processing time
as the signature handler. No.2 works with the same process-
ing farms but in a pipelined way; No.3 is a pipelined DEN
with SSL to secure the communication between the signa-
ture farm and the capability farm. For No.1–3 experiments
on DEN, we do not need to redeploy or reboot any run-
ning nodes. No matter if they are processing nodes, gateway
nodes, or the Web service, the change of DEN topology is
done through changing hot-pluggable routing tables. The
scheduling algorithm among all DEN-based experiments is
round robin. The results from the basic WSD with 6 nodes
is drawn as No.4, in which each node is a full Web service
replica with all necessary security handlers, but the service
state is not shared between replicas.

Theoretically, all RPC versions should be like the sin-
gle node one that scales till the HTTP connection expires in
about 1-2 minutes before returning results; in reality, they
stop working earlier at about 300 connections due to vari-
ous reasons including implementation issues and the limi-
tation of operating systems and JVM. For example, there is
usually a limit on the number of open file descriptors that
correspond to the network connections. In spite, the figures
still prove what we have proposed in the paper.

No.5, WSD messaging, has the best response time, as
asynchronous messaging WSD simply acknowledges the
acceptance of requests immediately as long as the process-
ing queue is not full. Asynchronous communication thus
achieves much better peak-time scalability than synchro-
nous RPC. As expected, No.4 WSD has better turnaround

time than pipelined DEN. The latter pays extra cost for
routing and transferring packets over the wire. This ex-
tra cost is significant in No.3 with SSL. As shown in Fig-
ure 6, when the thread number is very small (< 5), No.3 is
even slower than the single node. However, it scales along
with the amount of requests. When No.0 crashes at about
120 clients, No.3 goes well beyond that point till about 360
clients. It is promising as the processing farms may require
secure channels through SSL across virtual organizations
in Grids. Another encouraging result is that parallel DEN
scales better than pure WSD, which rewards the routing ef-
forts of DEN. The non-secure DEN is ideal in a cluster en-
vironment behind firewall.

0 50 100 150 200 250 300
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Clients

T
hr

ou
gh

pu
t [

re
qu

es
ts

/m
in

]

0. Single node
1. DEN Parallel (3+3)
2. DEN Pipeline (3+3)
3. DEN w/ SSL (3+3)
4. WSD (6 nodes)

Figure 7. Throughput Showdown

The throughput experiments count how many requests
could be made in a given period of timeT . For every spe-
cific period of timet, a specific number,n, of concurrent
requests are launched to the service. Figure 7 displays the
throughput of each case except WSD messaging, because at
the processing steps, it still needs to adopt any one of the 5
approaches. The figure shows the throughput is almost con-
stant for all cases, and the most important of all, DEN and
WSD scale.

6 Conclusions And Future Work

In this paper, DEN is shown to be able to address the
WS security scalability issue, with the idea derived from
pipelining and parallel computer hardware architecture and
load balancing mechanisms in distributed systems. It is very
natural approach to leverage the Grids as a virtual computer
with immense computing power. More than that, it also pro-
vides desirable flexibility for developers building and de-

7



ploying these Web services.
We are planning the future work of DEN in several direc-

tions. The first one is to integrate asynchronous messaging
mechanisms into DEN farms. We believe that it should be
able to utilize the resources better. Some version of a dis-
tributed shared memory may be used to serve as the messag-
ing bus among processing nodes. A more promising way to
improve performance is to change processing nodes to com-
municate in binary streams instead of XML text messages,
because efficiency is much more important than interoper-
ability in DEN farms.

Because Web services security requires so much com-
puting resources, it becomes a weak link that attracts DoS
attacks. At the network level, DoS attacks and counter-
measures have been discussed quite well. Being scalable is
one of the passive countermeasures to DoS attacks. Backed
with powerful Grids, DEN demands the attackers to acquire
more resources to be influential, and massive attacks can be
detected more easily by network level intrusion detection
tools and the administrators. Other active countermeasures
such as client puzzles [13, 4] are also applicable to Web
services. They could be integrated into DEN as functional
nodes in the future.

On the other hand, providing more adaptable routing al-
gorithms is another potential direction. The ideal service
will be able to automatically use to WS-Policy-compliant
security policies by choosing processing routes on the fly.
The requests to the same service from different users with
different policies are to be routed through different process-
ing nodes accordingly.

7 Acknowledgments

The authors would like to thank Wei Lu, Kenneth Chiu
for their discussions and collaboration.

References

[1] I. Avila-Campillo, T. J. Green, A. K. Gupta,
M. Onizuka, D. Raven, and D. Suciu. XMLTK: An
XML Toolkit for Scalable XML Stream Processing.
In PLANX, 2002.

[2] V. Cardellini, M. Colajanni, and P.S. Yu. Dynamic
Load Balancing on Web-Server Systems.IEEE Inter-
net Computing, 1999.

[3] James Cheney. Compressing XML with multiplexed
hierarchical models. Inthe Proceedings of IEEE Data
Compression Conference, pages 163–172, Snowbird,
Utah, 2001.

[4] Drew Dean and Adam Stubblefield. Using Client Puz-
zles to Protect TLS. In10th Annual USENIX Security,
2001.

[5] Liang Fang, Dennis Gannon, and Frank Siebenlist.
XPOLA – An Extensible Capability-based Authoriza-
tion Infrastructure for Grids. Inthe 4th PKI R&D
Workshop, Gaithersburg, MD, April 2005.

[6] Ian Foster and Carl Kesselman. Globus: A Metacom-
puting Infrastructure Toolkit.The International Jour-
nal of Supercomputer Applications and High Perfor-
mance Computing, 11(2):115–128, Summer 1997.

[7] T. Hey and A. E. Trefethen. The UK e-Science Core
Programme and the Grid.Future Generation Comput-
ing Systems, 18:1017, 2002.

[8] W. Lu, K. Chiu, A. Slominski, and D. Gannon. A
Streaming Validation Model for SOAP Digital Signa-
ture. InHPDC-14, 2005.

[9] The Apache XML Security Project.
http://xml.apache.org/security.

[10] S. Shirasuna, A. Slominski, L. Fang, and D. Gan-
non. Performance Comparison of Security Mecha-
nisms for Grid Services. Inthe 5th IEEE/ACM In-
ternational Workshop on Grid Computing, Pittsburgh,
Nov. 8 2004.

[11] A. Slominski, A. di Costanzo, D. Gannon, and D. Car-
omel. Asynchronous Peer-to-Peer Web Services and
Firewalls. Inthe 7th International Workshop on Java
for Parallel and Distributed Programming (IPDPS
2005), April 2005.

[12] A. Slominski, M. Govindaraju, D. Gannon, and
R. Bramley. Design of an XML based interoperable
RMI system: SoapRMI C++/Java 1.1. Inthe 2001
International Conference on Parallel and Distributed
Processing Techniques and Applications, Las Vegas,
NV, June 2001.

[13] X. Wang and M. K. Reiter. Mitigating bandwidth-
exhaustion attacks using congestion puzzles. InCCS
’04: Proceedings of the 11th ACM conference on
Computer and communications security, pages 257–
267, New York, NY, USA, 2004. ACM Press.

8


	Introduction
	Related Work
	From WS-Dispatcher to DEN
	WS-Dispatcher
	DEN

	The Implementation
	DEN and XSUL2
	Scheduling and Routing Table
	RPC vs. Asynchronous Mode
	Cooperation with Other Load Balancing Options

	Use Cases and Experiment Evaluation
	Use Cases
	Evaluation

	Conclusions And Future Work
	Acknowledgments

