

UCGE Reports
Number 20153

Department of Geomatics Engineering

A Java Implementation for Open
GIS Simple Feature Specification

(URL: http://www.geomatics.ucalgary.ca/links/GradTheses.html)

by

Chuanyun Fei

October 2001

THE UNIVERSITY OF CALGARY

A JAVA IMPLEMENTATION FOR OPEN GIS SIMPLE FEATURE SPECIFICATION

by

CHUANYUN FEI

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF GEOMATICS ENGINEERING

CALGARY, ALBERTA

October, 2001

 Chuanyun Fei 2001

ABSTRACT

Distributed GIS is the trend in the current GIS community. It has been recognized that

interoperability is one of major issues in the distributed geocomputing environment. To respond

to non-interoperability problem, OGC creates a series of specifications to form an open

framework as GIS standards. These standards are increasingly accepted by GIS software

vendors, geodata and geoprocessing providers, and users. This research focuses on an

implementation of OpenGIS Simple Features Specification in the Java computing platform,

which is an important family member of OGC’s specifications.

A Java version Implementation Specification for OpenGIS Simple Features is designed in this

research based on the review and analysis of the OGC Abstract Specification, OGC

implementation specifications for SQL, OLE/COM and CORBA, and other related works done

by other organizations. The Geometry Data Model, the spatial component of OpenGIS Simple

Features, was designed and implemented following the new Implementation Specification. The

Template Union Model for buffer operation was introduced, and some new algorithms were

developed. The reasonable geometry object classification logic made the designed model more

extendable and implementable. The UML technology and Java standards applied in the design

and implementation procedures made the model more maintainable and distributable. An easy-

to-use Conformance Testing Suite was also developed to check whether or not each

implementation is strictly compatible with the requirements of the new Simple Features

Implementation Specification. The application example demonstrated that the design and

implementation of the designed specification in this thesis are successful.

 iii

ACKNOWLEDGEMENTS

I wish to express my deep gratitude to my supervisor, Dr. C. Vincent Tao, for his advice,

guidance, encouragement, and support throughout my graduate studies. I am also grateful to Dr.

Marina Gavrilova, Department of Computer Science, U of C, for her valuable suggestions about

the algorithms of computational geometry during my thesis research. My appreciation also goes

to Mr. Shuxin Yuan for his contribution in GeoEyeTM 1.0, and postdoctoral fellows, Mr.

Chaowei Yang and Mr. Quanke Wang, for their cooperation, discussions and suggestions in the

development and improvement of the thesis related software, and Mr. Andrew Hunter, Mr.

David Alton and Mr. Suen Lee for the proofreading of the draft of this thesis. I am also grateful

to the secretaries, technicians and computer specialists and graduate students in the Remote

Sensing and GIS Lab of the Department of Geomatics Engineering, who, in one way or other,

helped me during my graduate studies. Finally my appreciation and thanks go to my family, my

dearest wife, Xinxin Zhang for their endless love, understanding, devotion and support, which

make this thesis possible.

 iv

TABLE OF CONTENTS

APPROVAL PAGE .. ii

ABSTRACT.. iii

ACKNOWLEDGEMENTS .. iv

TABLE OF CONTENTS .. iv

LIST OF FIGURES ... viii

LIST OF TABLES .. x

CHAPTER 1 INTRODUCTION .. 1

1.1 Research Background.. 1

1.2 Objectives and Limitations.. 8

1.3 Outline ... 10

CHAPTER 2 INTEROPERABILITY.. 12

2.1 Background.. 12

 2.1.1 GIS Trend.. 12

 2.1.2 Overview of Interoperability... 15

2.2 Interoperability Levels... 19

2.3 Interoperability Approaches .. 23

2.3.1 Overview... 23

2.3.2 OGC’s Approach .. 25

2.4 Summary.. 31

CHAPTER 3 RESEARCH METHODOLOGY.. 32

3.1 Existing Work Review... 32

3.2 Design And Implementation.. 33

3.3 Testing Suite .. 235

3.4 Case Study ... 35

CHAPTER 4 EXISTING WORK REVIEW... 37

4.1 OGC's Implementation Specifications .. 37

4.2 Other Existing References ... 39

CHAPTER 5 JAVA IMPLEMENTATION .. 46

 v

5.1 General Logical Model Design.. 46

 5.1.1 Design Criteria .. 46

 5.1.2 Geometry Entity Design.. 47

 5.1.3 Geometry Entity Classification Criteria.. 52

5.2 Geometry Data Model Design... 53

 5.2.1 Abstract Geometry Data Model Design .. 54

 5.2.2 Geometry Data Model... 55

 5.2.3 Factory Design .. 57

5.3 Geometry Implementation... 57

 5.3.1 Functions ... 58

 5.3.2 Geodata Storage .. 79

5.4 Characteristics Analysis .. 83

CHAPTER 6 TESTING SUITE ... 85

6.1 Objectives .. 85

6.2 Testing Suite Design.. 86

6.2.1 Testing Suite Generation... 86

6.2.2 Testing Procedure ... 86

6.2.3 Design Considerations .. 86

6.2.4 Components of Testing Suite.. 87

6.3 Implementation.. 88

6.4 Issues ... 91

 6.4.1 Dataset... 91

 6.4.2 Distribution.. 94

CHAPTER 7 CASE STUDY... 97

7.1 Background.. 97

7.2 System Design ... 97

7.2.1 Architecture... 98

7.2.2 Data Model.. 100

7.3 Implementation.. 103

7.3.1 Database Implementation.. 103

 vi

7.3.2 GIS Prototype Implementation ... 104

7.4 Case Conclusions... 109

CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS 110

8.1 Conclusions ... 110

8.2 Recommendations ... 114

REFERENCES.. 116

APPENDIX DATA MODEL NOTATION.. 125

 vii

LIST OF FIGURES

Figure 1.1 The Relationship between Geodata, Geoprocessing and Geocomputing…… 1

Figure 1.2 Abstract Specification Topic Dependencies (OGC, 1999) ………………… 5

Figure 1.3 The Structure of OGC Feature (Gardels, 1996) …………………… ……… 6

Figure 2.1 The Evolution of GIS Architecture ………………………………………… 12

Figure 2.2 Interoperability Levels……………………………………………………… 20

Figure 2.3 Interoperability Approach Categories ……………………………………… 24

Figure 2.4 The Relationships in Open Geoprocessing ………………………………… 25

Figure 4.1 The Difference in the Geometry Model of SQL, OLE/COM and CORBA

Implementation Specifications ……………………………………………

38

Figure 4.2 Geometry Hierarchy in OpenGIS Implementation Specification of

OLE/COM and SQL…………………………………………………………

38

Figure 4.3 Geometry Hierarchy in OpenGIS Implementation Specification of CORBA 39

Figure 4.4 Comparison of the Classification under Different Rules…………………… 42

Figure 4.5 Geometry Interface Hierarchy in the Proposed Data Model from Oracle and

MapInfo………………………………………………………………………

43

Figure 4.6 Geometry Interfaces and Objects Hierarchy in Cadcorp’s Data Model … … 44

Figure 4.7 Geometry Interfaces and Methods Hierarchy in Bonn’s Data Model ……… 45

Figure 5.1 Inheritance Relationship of Interface and Class in Java (D not permitted)… 49

Figure 5.2 Possible Roles of Geometry in Conceptual Model………………………… 54

Figure 5.3 Abstract Geometry Data Model in Interfaces ……………………………… 54

Figure 5.4 Geometry Data Model……………………………………………………… 56

Figure 5.5 Factory Hierarchy in Data Model …………………………… …………… 57

Figure 5.6 Example Instance of DE-9IM ……………………………………………… 62

Figure 5.7 Examples of the Touches Relationship…………… ………………… …… 63

Figure 5.8 Examples of the Crosses Relationship……………………………………… 64

Figure 5.9 Examples of the Within Relationship ……………………………………… 65

Figure 5.10 Examples of the Overlaps Relationship …………………………………… 65

Figure 5.11 Relationships among the Eight Relational Operations …… ……… ……… 67

 viii

Figure 5.12 Two Intersected Polygons ………………… ……………………………… 69

Figure 5.13 Intersections of the Two Polygons ………………………………………… 70

Figure 5.14 Connectivity List of Point x………………………………………………… 70

Figure 5.15 Labeled Polygons…………………………………………………………… 73

Figure 5.16 Union Results………………………… ………………………… ………… 76

Figure 5.17 Line Object’s Buffer ……… ……………… ……………………………… 76

Figure 5.18 Original Buffer Templates ………………………………………………… 79

Figure 5.19 Example of UTM …………………………………………………………… 79

Figure 5.20 Polygon Object Structure in Pure Object Method ………………………… 81

Figure 5.21 Polygon Object Structure in Data Object Method ………………………… 81

Figure 5.22 Data Objects Used in the Design…………………………………………… 82

Figure 6.1 Interface after Loaded Data in the Prototype System ……………………… 90

Figure 6.2 Buffer Testing in the Prototype System …………………………………… 91

Figure 6.3 Test Data Concept (OGC, 1999c) ………………………… ……………… 92

Figure 6.4 Points in the Blue Lake Dataset (OGC, 1999c) …………………………… 92

Figure 6.5 Unzipped File Structure of the Testing Suite …… ………………………… 94

Figure 7.1 Architecture of the Geotechnical Data and Analysis Sharing System …… 99

Figure 7.2 Borehole Profile Diagram … ……………………………………………… 100

Figure 7.3 A Conceptual Geotechnical Data Model in Oracle ………………………… 101

Figure 7.4 Geospatial Data Model ……………………………………………………… 103

Figure 7.5 Object Communication between Client and Server ………………………… 106

Figure 7.6 New GeoEyeTM User Interface ……………………………………………… 107

Figure 7.7 Interface of Profile Analysis………………………………………………… 107

Figure 7.8 Data Registration Interfaces in GeoServNet Server ………………………… 108

 ix

LIST OF TABLES

Table 2.1 An Overview of Three Generation of Interoperability in R&D (Sheth, 1999)........... 17

Table 2.2 OGC Released Implementation Specifications... 29

Table 2.3 OGC Conforming Products .. 30

Table 5.1 Java's Naming Convertion (Sun, 1999) .. 50

Table 5.2 Basic Functions in Geometry Data Model.. 60

Table 5.3 Examples of Template .. 78

Table 5.4 Memory Expense of the Three Methods... 83

Table 6.1 Implementation Status of the Functionality in the Testing Suite................................ 89

Table 6.2 Comparison of the Implementable Objects in the Data Model and Dataset............... 94

Table 7.1 View Schemes in Geotechnical Database... 104

Table 7.2 GeoEye 1.0 Functions (Yuan, 2000)... 106

 x

CHAPTER 1 INTRODUCTION

1.1 Research Background

Essentially, the purpose of a GIS application is in applying geoprocessing to the geospatial

dataset from six aspects (Figure 1.1) for explaining events, predicting outcomes, planning

strategies and making decisions.

…

Geocomputing

Geodata

si

ana
lys

ieva
l

r
ret

acquisition
Geoprocessing

p r

m a n ag em en
t

e s e n
tat i o n distribution

Figure 1.1 The Relationship between Geodata, Geoprocessing and Geocomputing

Geodata describes phenomena directly or indirectly associated with a location (and time, and

orientation) relative to the surface of the Earth. The overall rate of geodata collection has

increased rapidly and the data formats tend to be complex (OGC 1996). Sharing data is a

 1

cumbersome, daunting, frustrating, error-prone, sometimes totally impractical task. The obstacles

of geodata sharing are broadly referred as “non-interoperability.”

Geoprocessing can be any kind of digital computing that uses geodata. This means the use of a

series of special methods to process the geodata in a software and hardware environment. During

the passed 30 years, many different methods for acquiring, storing, processing, analyzing, and

viewing geodata have been developed, mostly independently from one another (OGC 1996). The

software that uses and produces geodata is itself varied and complex. That’s why the non-

interoperability problem exists in geoprocessing and the question “How can we enable software

from different vendors, which use very different data structures, to communicate, process and

share data with each other” has often been asked in the GIS community.

Non-interoperability is a big issue of data and functionality sharing in GIS. Interoperability has

been the common concern of GIS software vendors, geographic information providers and GIS

users. Although there is no common definition of interoperability, the term “interoperability”

suggests an ideal world in which the geodata, geoprocessing and geocomputing can be easily

divided and reassembled to achieve reuse in data, application and system levels.

 2

The solution for achieving interoperability is creating common standards. Like automobile

manufacturing, the standardized parts provided by different manufacturers can be assembled to

produce a car, GIS geoprocessing should be based on standards. The GIS community has

invested much effort to establish standards, such as the geodata format standards, but those

efforts are not done with the whole of the GIS industry in mind. The lack of industry-wide well-

defined standards in GIS makes it impossible to achieve interoperability.

In response to the problem of non-interoperability and its many negative ramifications for

industry, government, and academia, the Open GIS Consortium, Inc. (OGC) was formed in

1994. The OGC is a not-for-profit trade association dedicated to promoting new technical and

commercial approaches to interoperable geoprocessing. The members of OGC share a positive

vision of a national and global information infrastructure in which geodata and geoprocessing

resources move freely, fully integrated with the latest distributed computing technologies,

accessible to everyone, “geo-enabling” a wide variety of activities that are currently outside the

domain of geoprocessing, opening new markets and giving rise to new kinds of businesses and

offering new benefits to the public. Geoprocessing software vendors, database software vendors,

visualization software vendors, system integrators, computer vendors, telecommunications

companies, universities, information providers, and federal agencies have joined the Consortium

to participate in creating a software specification and new business strategies that will help solve

these problems and fulfill these lofty goals.

Defining OpenGIS Specifications for the GIS community is the approach for OGC to fulfill its

goal. The specifications, widely accepted and understood in GIS, define (OGC, 1996):

• The Open Geodata Model: A general and common set of basic geographic information types

that can be used to model the geodata needs of more specific application domains, using

object-based and/or conventional programming methods.

• OpenGIS Services: The set of services needed to 1) access and process the geographic types

defined in the Open Geodata Model and 2) provide capabilities to share geodata within

communities of users who use a common set of geographic feature definitions and translate

 3

between different communities of users that use different sets of geographic feature

definitions.

• An Information Communities Model that employs the Open Geodata Model and OpenGIS

Services in a scheme that establishes:

1. A way for a community of geodata producers and users who already share a common set

of geographic feature definitions to efficiently and effectively maintain these definitions

and to catalog and share datasets conforming to these definitions.

2. An efficient and optimally accurate way for different communities of geodata users and

producers to share geodata despite their dissimilar sets of geographic feature definitions.

For example, civil engineers, geologists, and agronomists may seek to share soils data

despite the fact that they characterize soil types differently according to their different

professional objectives. The Information Communities Model defines a scheme for

automated translation between different geographic feature lexicons.

OGC has two kinds of specifications: Abstract Specification and Implementation Specification.

The Abstract Specification is organized into separate topic volumes in order to manage the

complexity of the subject matter and to assist parallel development of work items by different

Working Groups of the OGC membership. The 16 topics (see Figure 1.2) are organized into two

Central Themes: Sharing Information and Providing Services. Topics 12, 13, 15 and 16 are

concerned with providing geospatial services. The remainders are centered on sharing geospatial

information. Topic 5, 6 and 7 are fundamentally concerned with the handling and exposing of

geospatial information from three different perspectives: Features with Geometry, Coverages and

Imagery. It is clear that Topic 6 is an extension of Topic 5, and Topic 7 is an extension of Topic

 4

6. Topic 1, Feature Geometry, provides the geometry structure for Topic 5. The other topics in

Sharing Information are supporting topics for Topic 5, 6 and 7. From an architecture’s

perspective, Topic 5 is the key topic in the Sharing Information theme.

Topic 16
Image Coord.

Transf Services

Topic 15
Image Expl.

Services

Topic 3
Locational
Geometry

Topic 2
Spatial Ref.

Systems

Topic 1
Feature

Geometry

Topic 11
Metadata

Topic 8
Relations

Bet’s Features

Topic 10
Feature

Collections

Topic 7
Earth Imagery

Topic 6
Coverage Type

Topic 5
The Open

GIS Feature

Topic 4
Stored Functions
and Interpolation

Topic 14
Semantics and
Info Com’t’s

Topic 13
Catalog
Services

Topic 12
Open GIS

Service Arch.

Topic 9
Accuracy

Figure 1.2 Abstract Specification Topic Dependencies (OGC, 1999)

The Feature Geometry in Topic 5 has three components (see Figure 1.3) in OGC specifications.

For the metadata component, the standardization work has been done by other organizations,

such as ISO, FGDC. It is not necessary for OGC to define other metadata standards. The

semantic component is too complex and is a huge challenge for OGC to standardize it at this

moment. To get the focus, OGC currently puts its efforts on the spatial component in the

Feature Object. In OGC’s released specifications: OpenGIS Simple Features Implementation

Specification for CORBA, for OLE/COM, and for SQL, only the Simple Features are defined.

 5

Here the “simple” is something of a misnomer and merely recognizes that the specification does

not include access to all aspects of a feature (Cuthbert, 1999). Only the Geometry in spatial

components of the Feature Object is addressed in this thesis. That is why the thesis title is an

implementation for Simple Features.

Feature
Dict’ry

Attribute
Model

Geometry Spatial
Reference

Metadata Spatial
Components

Semantic
Components

OGIS
Feature

Figure 1.3 The Structure of OGC Feature (Gardels, 1996)

OGC’s Implementation Specifications for Abstract Implementation focus on different

Distributed Computing Platforms (DCPs). OGC began with an assumption that there were a

small number of DCPs that could be exploited. There are, therefore, three Implementation

Specifications of OpenGIS Simple Features in SQL, CORBA and OLE/COM for the Abstract

Specification. Changes to the technology are ongoing. Java is not only a popular programming

language, but is also becoming a major DCP in current network environment. It is necessary to

review OGC’s fundamental assumption and develop an Implementation Specification for the

Java DCP. The following characteristics of Java show that it is an ideal tool to implement a new

version of OpenGIS Simple Features in Java computing platform.

 6

Object-oriented. Object-oriented design is the mechanism for defining how modules “plug and

play”. The object-oriented facilities of Java are essentially those of C++, with extensions from

Objective C for more dynamic method resolution. Most members of the OGC Technical

Committee believe that an object approach is the ideal way to realize the goals and objectives

(OGC, 1998).

Architecture Neutral. Java was designed to support applications on the network. The compiler

generates an architecture neutral object file format - the compiled code is executable on many

processors anywhere on the network, given the presence of the Java runtime system. There are

no platform-dependent aspects of the Java language including primitive data types, libraries. It

gives Java the capability to cross different hardware and software platforms.

Ubiquity. Java is embedded in many Web browsers. The Application Programming Interfaces,

the Advanced Windowing Toolkit, the Java Foundation Classes (JFC), and JDBC, are leading

toward even more deployment of Java. Java provides ways to call already compiled (legacy)

code (native methods) to integrate the legacy software, which presents the idea: “Code once, run

anywhere.”

Flexibility. The mechanism of dynamic class loading allows the virtual machine to load and

define classes at runtime. The class-loading mechanism is extensible and enables classes to be

loaded via the network. Combined with other features of Java, such as generating bytecode and

architecture neutrality, the Java application can be dynamically changed, updated and controlled

at runtime via network with little effort (Cornell and Horstmann, 1997).

 7

Introspection. Java code can discover information about the variables, methods, and

constructors of loaded classes, and can use reflected variables, methods, and constructors to

operate on their underlying counterparts in objects, all within the security restrictions. The ability

of introspection is to discover and dynamically load new class definitions and, as a consequence,

improve the ability of an object to serialize and distribute itself (Cornell and Horstmann, 1997).

Java’s Interface-Class mechanism maps OGC’s Abstract Specification-Implementation

Specification strategy. The Java’s Interface technology can take on the role to draw out OGC’s

framework in a Java environment. Class technology can efficiently code the framework into Java

by using Java’s rules. As OGC’s implementation specifications evolved, Java implementation

can conform to OGC’s updates with few coding.

1.2 Objectives and Limitations

The major objective of this research is to design and propose a specification of OpenGIS Simple

Features for Java. The focus of the research is on the simple features’ design, implementation

and testing. The objectives of this thesis research:

• Design a Java version Specification of OpenGIS Simple Features. This design is made with

reference to the specifications, SQL, OLE/COM and CORBA, and the characteristics of the

Java computing platform.

 8

• Develop a Conformance Testing Package to test the conformance of the claimed products

with the OpenGIS Simple Feature Specification for Java. The testing software and

documents are developed.

• Implement a prototype Geometry Data Model based on the designed OpenGIS Simple

Features Specification for Java. All the mandatory requirements and most of the optional

requirements are implemented.

• Develop an application example to demonstrate and test the Geometry Data Model.

The design of a specification is a technologically complex task. Adding to the challenge is that

many issues have not reached a common consensus in GIS at present. However, due to the time

limitations, many of the following listed issues are not included in this research.

• This research focuses on the technological issues. The scientific and societal issues involved

in GIS systems are ignored.

• This research does not intend to implement all the designs although a simple feature

specification has been proposed. The Spatial Reference System has not been implemented in

the research prototype system.

• This research focuses on the simple features. The other elements of the feature, such as

metadata and semantics are not addressed in this research.

• This research focuses on the Java computing platform. The issues of interoperability between

the Java version specification and other platform’s specifications are not discussed in the

thesis.

 9

1.3 Outline

Eight chapters, including this introductory chapter, are organized as follows.

Chapter Two addresses interoperability, one of major issues in the GIS community.

Interoperability attracts more and more researcher’s attention. The background of this problem,

the levels of interoperability and the approaches to address this problem are detailed. The OGC’s

approach, the effective means, is analyzed clearly from several aspects in this chapter.

Chapter Three introduces the research methodology applied in this research. The research

methods and developing tools used in this thesis are presented in this chapter.

Chapter Four reviews some works related to this research. The Geometry Data Model in OGC’s

Implementation Specifications for SQL, OLE/COM and CORBA is presented. The weakness of

other works done by other organizations is analyzed respectively. This review provides the

reference and a start point for this research.

Chapter Five designs the Implementation Specification of OpenGIS Simple Features for Java.

The design considerations, criteria of the geometry object classification, and characteristics of

this design are discussed clearly in this chapter, includes the details of the logical model design

and geometry data model design. The implementation of the prototype Geometry Data Model is

detailed here. A new buffer model, Template Union Model, is introduced.

 10

Chapter Six proposes the conformance Testing Suite for the OpenGIS Simple Feature

Implementation Specification for Java. The suite design consideration and implementation are

detailed in this chapter. The testing dataset and suite distribution issues are discussed.

Chapter Seven examples a case study based on the designed OpenGIS Simple Feature

Implementation Specification for Java. The prototype Geometry Data Model is embedded into

the client and server sides in the client/server architecture to build up an application system. This

prototype system tests and demonstrates the design in Chapter Five.

Chapter Eight concludes the research. Conclusions are drawn based on the research. Also

recommendations for the future research are given.

 11

CHAPTER 2 INTEROPERABILITY

2.1 Background

2.1.1 GIS Trend

Advances in computing and communications technology are constantly breaking new ground in

processing speed, storage capacity and miniaturization, diversity and complexity of input and

output devices, and transmission capabilities of networks. With the growth and popularity of the

computer network, more and more computing is moving towards a networked computing

environment. In this same way, GIS computing architecture has evolved (a) from mainframe GIS

to desktop GIS, (b) from desktop GIS to network-based (Internet/Intranet) client/server GIS, and

(c) from client/server GIS to ubiquitous distributed GIS (Tao 2000). Distributed GIS (DGIS)

systems, including the client/server GIS and ubiquitous GIS, are becoming the mainstream of

GIS and has attracted more and more researchers and industries to invest into this next

generation of GIS.

(d) Ubiquitous GIS (c) Client/Server GIS

Mainframe

(b) Desktop GIS (a) Mainframe GIS

PC

GIS
MODULE Internet

Figure 2.1 The Evolution of GIS Architecture
12

Generally, an ideal DGIS system distributes its components: hardware, software, data, user and

management into the networked computing environment: LAN, Enterprise, WAN, Intranet and

Internet. The components can be dynamically integrated together to finish specific tasks. The

hardware, operation system and user are inherently dispersed in the environment. Most of

researches, therefore, are done on the GIS software, geodata and DGIS system management and

maintenance at current stage. From a software engineering viewpoint, these research topics can

be divided into following categories:

Geodata Sharing

The Internet provides a convenient way to share the geospatial datasets dispersed across different

agencies (consultants, government agencies, universities, colleges, etc.). Much research was

diverted to this topic at the beginning stages of DGIS. The data providers create metadata

database, catalog and clearinghouse, and put them onto the Internet for interested users to find

their required dataset. Desired data can be delivered by simply downloading from the data

provider’s site or with a more traditional mail system in the original or required data format.

Metadata is the key issue among the obstacles of geodata sharing systems in this typical geodata

sharing scenario. The research on the metadata standard, metadata semantics, metadata auto-

generation and management, and metadata simplification is very hot.

GIS Service Accessing

Current commercial Web GIS, such as ArcIMS and MapGuide, results from the evolution of

the traditional stand-alone GIS by separating the graphical user interface (GUI) from the system

and moving it onto the Internet. The GIS Service Accessing addresses is how the distributed

 13

clients access the centrally controlled GIS services hosted on the server machine. There are two

approaches to transfer geodata from server side to client’s browser: image/picture and vector

data (Yun, 1999). At present, in order to improve the speed of system response, some server side

functions are moved to the client side, such as display, zoom, and pan. GIS service involves

many related technologies: server and client technology, data transfer, protocol and

communication. The system developer pursues how to improve the system’s performance. How

to design the client side to use the open API according to standard specification such as OpenGIS

and W3C recommendations for interoperability in distributed computing environment is

attracting much attention.

Distributed Geoprocessing

Distributed geoprocessing is at a high implementation level of DGIS. At the GIS service stage,

only the client side is distributed on the Internet, and the server is often centralized. However, the

client and server are distributed on the networked environment at the distributed geoprocessing

stage. It allows the dynamic configuration of the system during the running time. It is a new

research direction for DGIS.

Distributed computing offers advantages in its potential for improving availability and reliability

through replication; performance through parallelism; sharing and interoperability through

interconnection, and flexibility, incremental expansion and scalability through modularity and

componentization (Kramer, 1994). DGIS, a branch of distributed computing, supports

“geocomputing at anytime and anywhere in any devices", no matter where the distributed

geodata and geoprocessing are, at a client site or at a server site. Many important issues are

 14

involved in the development and deployment of DGIS, such as security, integrability, system

dynamic configuration, and so forth. However, it has been recognized that the top challenge is

interoperability of both geodata and geoprocessing (Buehler and McKee, 1998).

2.1.2 Overview of Interoperability

Interoperability is not entirely new. It has been discussed within the broader information system

communities and certain aspects have been implemented outside of GIS for years.

Interoperability in GIS has received a significant research attention in recent years.

In the 1970s and 1980s, GIS projects typically collected their datasets from analog sources

(maps, field measurements and surveys), making the data collection and maintenance the main

cost factor in a project. This has been replaced in many cases by exchanging, selling, and

purchasing existing datasets, leading to the demands for open and interoperable systems.

 15

Systems are designed according to what needs to be done, not what can be done. Those system

does not live in splendid isolation but are typically embedded into large information technology

infrastructures with a growing need to exchange information and services. The goal of

interoperating GISs is to achieve an automated process that will allow us to use data and

software services across the boundaries that their collectors and designers envisioned. An ad hoc

integration may work in a few specialized cases, but it is often difficult or impossible to

generalize such an approach. The deficiencies of ad hoc interoperability become apparent when

interoperating subparts, which are supposed to be extended by integrating new components or

adding functionality or replacing subparts with new software pieces. The difficulties are

primarily in the semantics of the diverse implementations. Compatible semantics of geospatial

information are a key characteristic of interoperating GISs and powerful methods to capture and

describe geospatial semantics are critical.

There are three periods of interoperability evolution (Sheth, 1999). During the second half of the

1970s, we saw the ability to deal with hardware, operating systems, and communications

heterogeneity; although with evolution in each of these, new issues have to be continuously

addressed.

During the 1980s, we saw significant progress in managing heterogeneity and support

interoperability or integration in environments with structured databases and traditional database

management systems (DBMSs). There is a large body of work during the first generation in

dealing with heterogeneity associated with data models or schematic issues, DBMSs including

query languages, concurrency control, commit and recovery, etc.

During the 1990s, the emersion of distributed computing, middleware technology, and standards

has allowed us to increase the focus on the heterogeneity. This has particularly supported

syntactic and structural interoperability, and allowed us to address issues at the information level.

As the future information system addresses the information and knowledge level issues, it will

increasingly require semantic interoperability. Semantic interoperability requires that the

information system understand the semantics of the user’s information request and those of

information sources, and uses mediation or brokering to satisfy the information request as well as

it can. Table 2.1 provides an overview of the three generations of systems in interoperability.

 16

Table 2.1. An Overview of Three Generation of Interoperability in R&D (Sheth, 1999)

 Generation I Generation II Generation III

Interoperability

concerns

System, data System, data,

information

system, data, information,

knowledge

Interoperability

scope

Handful of interconne-

cted computers and

databases

Tens of systems on a

LAN, databases and

text repositories

Enterprise-wide and global

scope

System

architecture

Terminal access, point-

to-point; remoter

access, mainframes &

minicomputers, client-

server(two tier)

Client-server (three

tier)

Network, distributed, and

mobile

Communication

protocol

Proprietary (IBM

domain), TCP/IP

TCP/IP, HTTP,

CORBA

Internet/Web/Java,

distributed object, multi-

agent mobile, component

System model Relational and E-R Object-oriented Component-based, multi-

modal

Interoperability

dominant

Multi-databases or

federated databases

Federated informati-

on systems, mediator

Mediator, information

brokering

Interoperability

types

System (computer and

communication); limi-

ted aspects of syntax

Syntax (data types

and formats),

structure (schematic,

Semantic (increasingly

domain-specific)

 17

and structure (data

model); transparency of

location, distribution,

replications

query languages and

interfaces)

Interoperability

approaches

Structural and data

representation

Understanding of a

variety of metadata,

comprehensive und-

erstanding of schem-

atic heterogeneity

Comprehensive use of

metadata, increasing

emphasis on semantics and

ontology supported

approaches

Types of data Structured databases

and files

Structured

databases, text

repositories, semi-

structured and

structured and data

in generic and

domain specific

formats

All forms of digital media

with increasing support for

visual/spatiotemporal/scien

tific/engineering data

A few

representative

applications

Integration of business

databases or public

databases

Digital library,

integrated access to

heterogeneous data

for a software team

Digital earth,

environmental phenomena,

multi-step and multi-modal

intelligence analysis

In short, the characteristics of GIS interoperability can be summarized as follows:

 18

• Openness and Transparency. For the GIS software designers and developers, they should

provide open models, open systems to support direct communications among GISs; for

system builders and integrators, the details behind the common interfaces are hidden.

• Exchange and Extensibility. For the GIS service providers, the data and functionality can be

easily exchanged among GISs. The open data model can easily integrate or be integrated

with other domain data models.

• Simplity and Similarity. For GIS users, they can easily migrate from one system to another

for the common user interfaces. Their experience and knowledge are still useful in the new

system environment.

2.2 Interoperability Levels

Table 2.1 presents interoperability in several aspects, but it is difficult to identify a number of

different ways in which interoperability might be realized. In general, interoperability can be

classified into five levels between two or more geographically distributed independent GISs

illustrated in Figure 2.2.

Hardware and Network interoperability lies at the lowest level. A computer network consists of

hardware, network protocols and other software. The hardware includes network interface cards

and cables those link them together. The network protocols are rules and procedures used to

communicate among the connected system. TELNET is a good example of this kind of

interoperability - the user logs into a remote system without any knowledge of the network

protocol it supports. International Standard Organization (ISO) has issued some standards to

 19

achieve this level’s interoperability, such as the well defined seven layers in its reference model,

and the successful TCP/IP protocol. At this level, the hardware and network only provides links

in the whole system, users usually communicate without any direct service from the remote GIS.

I
N
T
E
R
O
P
E
R
A
B
I
L
I
T
Y

Semantics

Service & Function

Data

OS & DCP

Hardware & Network

System B System A

Semantics

Service & Function

Data

OS & DCP

Hardware & Network

Figure 2.2 Interoperability Levels

Interoperability located at the Operation System (OS) and Distributed Computing Platform

(DCP) level ensures that users can connect to a host and interact seamlessly, regardless of the

operating system, and merely transfer data file between systems. A good example of this level’s

interoperability is FTP. The major problem of this method is that users have to possess

knowledge of the operation system that runs at the remote machine in order to interact with it.

The third level of interoperability is the Data, which is composed of spatial data files and spatial

databases. Users can download data file in a standard format and the system automatically

identifies, and consequently converts the format to that of the user. Or the spatial database users
 20

query and access the datasets by standard language - SQL. The response is formatted and the

spatial datasets can be distributed. At the lower interoperability – Hardware & Network or OS &

DCP, the peers can communicate to each other, but it doesn’t mean that the applications or data

files hosted on one peer can be run and opened at the other side. Many metadata standards

(ISO/TC 211, FGDC), spatial data formats (such as FIPS and SDTS) and data syntax and

structures are developed in GIS to achieve data sharing and exchanging. But this level’s

interoperability is not just a matter of file transfer or access; it includes files and directories

naming, access control, access methods, and file management (Bishr, et al. 1999). For the spatial

DBMS users, they can query the remote systems using their own, local query language, and it is

also possible to analyze and display the remote datasets. However, The main weakness of this

level’s interoperability is that, users have to have prior knowledge of what data exist at the

source, and have to search its contents using its user interface and query language. The prior

knowledge includes the data’s semantics and underlying data model in DBMS. Interoperability

only achieves at the data level, and no interoperability for the information and knowledge

(business rules) hiding in the data.

Interoperability of Functions and Services is at the fourth level. It includes the interoperability

between the software components, modules or methods. Users are provided with a single open

data model, that is the basis of all the upper spatial analysis functions and GIS services. For the

multi-database’s integration practice, the system provides a “virtual” global data model for the

modules of geoprocessing. This virtual data model is only reflecting the data’s relationships and

structures stored in the spatial databases. The mission of this kind of data model is supporting the

upper level’s application logic and business logic. OGC’s efforts try to address this level’s

 21

interoperability by providing a framework consisting of Open Geodata Model, Services Model

and Information Community Model (Buehler & McKee, 1998). OGC’s model serves the easy

system integration and interoperability from the software side. Although users can access and use

those functions and services seamlessly at this level, a proper knowledge on their semantics is

still required. Two GISs with two different thematic views can have the same data model, but

they vary in their assumption and semantics. OGC tries to provide the formal and rigorous

definition of the Geometry objects and features, and one single well-defined wide-accepted

framework to remove the ambiguity of the definitions of the data objects and data model, and to

achieve a common semantics in different geospatial information communities. OGC’s

framework can make the interoperable GIS users transparently access and share distributed data

and services regardless of the underlying GIS platform.

An interoperable GIS can be built on the lower four levels of interoperability mentioned above.

The intention of interoperability at the fifth level is to provide seamless communication in

data/information/rules/knowledge between GISs without having prior knowledge of their

underlying semantics and spatial theories. The different applications may have different

semantics, which stems from the fact that each application may have its own worldview and

representation of the real world. An important consideration for research is that interoperating

GISs need to go beyond providing interoperability for different geometries. Geometry is an

integral part of GIS interoperability; however, the formation of particular geometries through

shapes, orientations, and connectivities is driven in the first instance by different ways to

conceptualize the world. If one considers the differences in spatial datasets that users want to

integrate, one quickly realizes that they stem from different conceptualizations more often than

 22

from the choice of different geometric data models. These conceptual issues are a significant part

of the semantics of spatial information. The differentiation of semantics is a key issue in this

level’s interoperability (McKee, 2000). This kind of interoperability is the toughest, and there are

only a few touches at current research progress in this field.

The efforts from IT (Information Technology) are involved in five interoperability levels

addressed above, but they focus more on the bottom two levels. GIS researchers provide their

special contributions to the upper three levels, which are application domain related. Generally,

interoperability discussed in GIS context is referred to the upper three interoperability levels, we

call it GIS interoperability. Interoperability mentioned in this thesis stands for the GIS

interoperability.

2.3 Interoperability Approaches

2.3.1 Overview

All the approaches to achieve the GIS interoperability need to address a methodological and a

thematic question (Vckovski, 1999):

• How is the mapping formulated? That is, using graphical symbols, mathematical formalisms,

computer languages, natural language, and drawings.

• What is the content of the mapping? That is, the story written in the selected language.

 23

Table 2.1 gave out some general interoperability approaches in the three generation systems.

From the technology and engineering viewpoint, the approaches to GIS interoperability can be

divided into three categories (Figure 2.3): open geodata, open geoprocessing and open

geocomputing. For example, to increase the geodata interoperability, the XML and GML

technology has been used for encoding geodata, and SVG technology has been used to display

geodata; for geoprocessing and geocomputing interoperability, the software component

technology is used to implement interoperability.

Open Geodata

• Data Formats
• Data Format Translators
• Data Exchange Standards

Open Geodata Model

Open Geoprocessing

• Process Models
• Service Models
• Application Logic Models

Open Geocomputing

Figure 2.3 Interoperability Approach Categories

“Open Geodata Model” belongs to those three categories. In the Open Geodata category, it opens

the data model in spatial databases to support the upper systems; on the other hand, in the Open

Geoprocessing category, it opens the inside data model of the GIS software to the upper

applications. The Open Geocomputing covers the Open Geodata and Open Geoprocessing to

provide a neutral, open geocomputing environment.

In the Open Geoprocessing category, the opened Process Models allow users to access the

functions in the internals of the application and organize them in desired ways. The opened

Service Models make any application become a service provider, and allow other participating

applications to invoke desired functions within it. The opened Application Logic Models make it
 24

possible that one application can become a network service provider that can be invoked by users

or applications distributed on the network, without taking care of the underlying data flows and

process flows. Their relationships can be simplified into Figure 2.4.

Open Application Logic

Networked Systems

Open Service

External System

Open Process

Internal System

Figure 2.4 The Relationships in Open Geoprocessing

2.3.2 OGC’s Approach

Strategy

"Interoperability by means of specification"

OGC’s approach to interoperability is defining specifications for the mapping from real world

things to abstract entities and providing implementation specifications giving concrete

implementations on a specific computing infrastructure. A series of OGC’s specifications form a

framework to provide standards for overcoming the barriers of interoperability. The framework

includes:

• A common means for digitally representing the Earth and Earth phenomena, mathematically

and conceptually; and

 25

• A common model for implementing services for access, management, manipulation,

representation, and sharing of geodata between Information Communities.

The development and deployment of successful interoperability strategies requires

standardization that covers many application areas, many different views and conceptualizations

of the world (OGC, 1996). Standardization processes are often driven by market forces and

vendors trying to position their particular technology and product as a common concept. OGC’s

strategy to achieve interoperability is pushing its specifications as the standards to present a

common concept for the GIS community via the practices of its industrial, academic and

governmental members.

Method

There are many perspectives on space, which can be identified in the GIS literature, but the

entity-field view and scientific-cognitive view are the two common perspectives (Leung et al.,

1999). The entity view sees the space in the real world as a collection of discrete entities (vector

view). Entities are identifiable constructs or units that have relatively well defined boundaries

and unambiguous descriptions, such as wells, rivers, or city areas. On the other hand, the field

view sees the space as a continuous world (raster view) and their description is meaningful only

at a particular point, for example topography, air quality or soil types. The entity-field view is the

mapping mechanism between the real world and GIS world adopted by OGC to present two

geographic types:

• Features – represent atomic, uni-valued geographic entities, whose location is a function of

their definition, i.e. “where is what” representation; and

 26

• Coverages – describe complex geographic phenomena in terms of maps, images, and fields,

and are a function of the spatial/temporal domain, i.e. “what is where”.

In OGC specifications, each geodata object of the two geographic types is designed of a

complexity, which includes three major components (Figure 1.3):

• Spatial components composed of geometries, such as points, lines, polygons, grids, and

spatiotemporal referencing, defined by projections, coordinate systems, and allowable

transformations;

• Semantic components defining the meaning of an object’s elements in terms of a “real-

world” model, using a catalog or data dictionary; and

• Metadata components describing any additional information required interpreting an object

correctly in the context of an information community.

Interoperability, in the context of the OpenGIS Specification, is software components operating

reciprocally (working with each other) to overcome tedious batch conversion tasks,

import/export obstacles, and distributed resource access barriers imposed by heterogeneous

processing environments and heterogeneous data. OGC’s mapping mechanism is presented into

the following hierarchical model to transparently support the use of multiple data and processing

resources within a single workflow and session:

• The Essential (Abstract) Model – a model of the "facts" consisting of "real" objects (entities,

attributes and relations) and instantaneous events. This is the codable structure of the real

world as it is perceived by the specification writers.

 27

• The Specification Model – a generic model of the software, what states it can be in and the

way it responds to stimuli (events or messages) by changing state and generating responses

(also events). That is, the model consists of "ideal" software objects and "ideal" events.

• The Implementation Models – Models of the software objects in specific executing software

environments, and how the software objects communicate in those software environments.

The models are of actual software objects, which have types, states, and properties, and

communicate by sending messages. Each implementation model is hosted on a specific

Distributed Computing Platform (DCP). The major identified DCPs include the Component

Object Model (COM) from Microsoft, Common Object Request Broker Architecture

(CORBA) from the Object Management Group, Distributed Computing Environment (DCE)

from the Open Software Foundation, and Java from Sun.

Promotion

The Testing Program (TP) and Interoperability Program (IP) are launched by OGC to keep all

the activities following OGC’s direction. The purpose of the TP is to keep the candidate products

following the OpenGIS Implementation Specifications. The program provides a process for

testing conformance of products to OpenGIS Implementation Specifications, and, eventually, for

testing interoperability between conformant products. Once conformance testing occurs and is

successfully completed, OGC will license vendors of such systems to use OGC’s marks

(trademarks or certification marks) that will identify to users the capability of products with

respect to OpenGIS Implementation Specifications. The conforming products are listed in Table

2.3. This program composed of two phases:

 28

• Conformance Testing determination that a product implementation of a particular

Implementation Specification fulfills all mandatory elements as specified and that these

elements are operable;

• Interoperability Testing determination that a product implementation of an Implementation

Specification interoperates with other product implementations of the same Implementation

Specification, different but related Implementation Specification(s), or within a particular

computing environment.

The IP is responsible for testing the specifications’ feasibility, reliability and other technical

issues to improve its framework’s interoperability. IP began with the Web Mapping Testbed

(WMT1), in which key standards were developed that enable much easier overlay and use of

maps on the World Wide Web. WMT1 set a precedent for testbeds in which competing vendors

work together in rapid-prototyping projects to achieve interoperability goals set by testbed

sponsors. The IP enables users and providers of geospatial technologies to cause and direct rapid

and revolutionary changes in "spatial services," the broad set of Web-based information services

that involve geospatial information.

Current Status

OGC has released its Abstract Specifications and Implementation Specifications in Table 2.2.

Table 2.2 OGC Released Implementation Specifications

Specification Name Version

Simple Features Implementation Specification for OLE/COM 1.1

 29

Simple Features Implementation Specification for CORBA 1.0

Simple Features Implementation Specification for SQL 1.1

Catalog Interface Implementation Specification 1.0

Grid Coverages Implementation Specification 1.0

Coordinate Transformation Services Implementation Specification 1.0

Web Map Server Interfaces Implementation Specification 1.0

Geography Markup Language (GML) Implementation Specification 2.0

Table 2.3 OGC Conforming Products

Vendor Product Name Version Level*

ESRI Spatial Database Engine for Informix 3.0.2 SFS TF

ESRI Spatial Database Engine for DB2 Data joiner 3.0.2 SFS TF

ESRI Spatial Database Engine for Oracle 3.0.2 SFS NG

Oracle Corporation Oracle8 Spatial Cartridge 8.0.5 SFS NG

Oracle Corporation Oracle8i Spatial 8.1.5 SFS NG

Oracle Corporation Oracle8i Spatial 8.1.6 SFS NG

Oracle Corporation Oracle8i Spatial 8.1.7 SFS NG

Cadcorp Cadcorp Simple Features for COM

component, used in Cadcorp SIS

 5.1 SFO

Cadcorp Cadcorp Simple Features for COM

component, used in Cadcorp PowerMap

 1.0 SFO

Hitachi Software
Engineering Co., Ltd.

HiRDB Spatial Search Plug-in 01-01 SFS

BG Hitachi Software
Engineering Co., Ltd.

GeoMation GeoAdapter/J for HiRDB 01-00 SFC

Cadcorp COM Object Library Used in Cadcorp SIS

V6.0and Cadcorp PowerMap V1.0

SIS

V6.0

CT OLE/

COM

*: SFS: Open GIS Simple Features Specification for SQL, SFO: OpenGIS Simple Features Specification
for OLE/COM, SFC: OpenGIS Simple Features Specification for CORBA, SFS NG: Normalized
Geometry, SFS BG: Binary Geometry, SFS TF: Types and Functions
Source: OGC web site at http://www.opengis.org/

 30

2.4 Summary

Initiated in 1960's (Coppock and Rhind, 1995), GIS software experienced several development

phases and gradually evolved into the mainstream of Information Technology. The world of

computing is moving towards network-centric computing. DGIS is the trend in GIS. It has been

recognized that interoperability among the involved components of a DGIS system makes it

possible to achieve this progress (Yuan, 2000). Interoperability has been the common concern of

GIS software vendors, geodata providers and users.

The background and research progress of interoperability is overviewed in this chapter.

Interoperability can be achieved in five levels. The general approaches to solve interoperability

issues are summarized. OGC proposed its own solutions for interoperability issues. OGC’s

approach, including the strategy, method and promotion program, is introduced.

A series of OGC’s specifications build up a framework for interoperability. OGC’s framework is

becoming standard, and is recognized and understood in GIS. The OpenGIS Simple Features

define a common Geometry Data Model for OGC’s framework. The results of this thesis

research, implementation of OpenGIS Simple Features in Java computing platform, provide the

Open Geodata Model discussed in OGC’s models (see page 3) and in the Figure 2.3 (see page

24) to support the upper models or services, such as Open Geoprocessing, OpenGIS Services

Model. Before reaching the design and implementation of OpenGIS Simple Feature’s Java

version, the research methodology in this thesis will be addressed in the following chapter firstly.

 31

CHAPTER 3 RESEARCH METHODOLOGY

The implementation of OpenGIS Simple Features consists of two components: design of the

Implementation Specification of OpenGIS Simple Features and a real implementation based on

the designed Implementation Specification. A Testing Suite, accompanied with this

Implementation Specification, is developed to ensure that the real implementation follows the

specification and meets the requirements defined in the specification. A Case Study, which

contained the implementation, is used to demonstrate the reasonableness of the design and the

performance of the implementation. Four steps are performed to reach the objectives of this

thesis research.

3.1 Exiting Work Review

Some related works done by OGC and other bodies are reviewed firstly, which provides a

background and start point for this research. The analysis of existing works points out the

direction for this research.

This research is only a part of OGC’s framework. It must be considered in the context of OGC’s

specifications. OGC’s Abstract Specification is the root of all Implementation Specifications,

which was referenced by this research. The OpenGIS Simple Features Implementation

Specifications for SQL, OLE/COM and CORBA are reviewed, which is the start point of this

research. The Conformance Testing Suites for SQL and OLE/COM released by OGC are the

templates for the developing of Java version’s Conformance Testing Suite.

 32

There is an Internet forum discussing Java based Simple Feature Implementation Specification

issues (http://groups.yahoo.com/group/sf4java/, last check on May 25, 2001). Some ideas from

this discussing forum are referenced in the design.

Some bodies from industry and academy have done some efforts on the implementation of

OpenGIS Simple Features in Java computing platform. The works from the alliance of Oracle

and MapInfo, Computer Aided Development Corporation Ltd. (Cadcorp), and the University of

Bonn are analyzed in this research. Some weakness in their design has been pointed out and

overcome in our design.

3.2 Design And Implementation

This section is divided into two parts: the design of the Implementation Specification for Java

and the implementation of the design. The Implementation Specification is the guideline for GIS

software developing activities. The quality of the Implementation Specification is very important

for the implementation. To keep the design at high quality, two kinds of criteria are created as

follows:

• Design Criteria. All the design procedures follow the requirements of the design criteria.

• Classification Criteria. The classification method of geometry objects is the key point in the

design of the implementation specification. A more reasonable classification criteria are

created to organize different kinds of geometry objects into the new geometry data model.

 33

http://groups.yahoo.com/group/sf4java/

Unified Modeling Language (UML) is the communication standard of visual modeling. The

UML provides a smooth transition between the business domain and the computer domain. The

UML makes it possible for all members of a design team to work with a common vocabulary,

minimizing miscommunication and increasing efficiency. Visualizing the components and

relationships of a complex system make it far easier to understand than describing it in words.

 The system design tool Rational Rose 2000, built on UML technology, is used in all the design

procedures to improve the productivity and standardize the efforts. It uses static and dynamic

views of a logical model and a physical model to capture the in-process products of object-

oriented analysis and design. The embedded notation creates and refines these views, and

represents each kind of model element and relationship in graphical icons. It visualizes and

manipulates the model’s elements and properties by diagrams and specifications. Two tasks were

done in Rational Rose environment:

• The Implementation Specification of OpenGIS Simple Features for Java is designed in

diagrams. The Implementation Specification’s input/output interfaces, and the definitions,

relationships and properties of elements, such as use cases, objects, classes and components

are translated into a code framework for implementation by this tool.

• Some existing works, such as Oracle/MapInfo, Cadcorp and Bonn, are converted into

diagrammatic models by the Reverse Engineering tool. The diagrams facilitate the

comparison and analysis of the referred models.

Borland’s Jbuilder 4 is a comprehensive group of highly productive tools for creating scalable,

high-performance, platform-independent applications using the Java programming language.

 34

Jbuilder 4 is a 100% Pure Java integrated development environment (IDE), which supports the

JDK 1.3 technologies. Any program written in Java can be run, debugged, and worked within

Jbuilder 4 environment. The prototype Geometry Data Model, Testing Suite and Case Study in

this thesis are developed and tested in this software developing tool.

3.3 Testing Suite

The Conformance Testing Suite ensures that each implementation follows the requirements of

the Implementation Specification it based on. OGC has released two Conformance Testing

Suites for SQL and OLE/COM. This Java version Conformance Testing Suite refers to the two

released suites. The mandatory and optional methods defined in the Geometry Data Model are

organized into two categories and tested separately in this suite. The OGC’s standard testing

dataset is embedded into this suite to keep the consistent in testing data with OGC’s released

suites.

This testing suite is designed in Rational Rose 2000 and is implemented in Jbuilder 4. This

testing suite is implemented in a Java Applet to facilitate distribution. This testing suite can be

easily initiated in general Java enabled browser, and the testing results are inherently distributed

with the testing suite.

3.4 Case Study

 35

A GIS-based Geotechnical Data Sharing and Analysis system is developed in the Case Study

section. This system’s client viewer is changed from the Java GIS software GeoEyeTM 1.0

(Yuan, 2000). The old data model in GeoEyeTM 1.0 is replaced by the prototype Geometry Data

Model implemented from the Java version Implementation Specification of OpenGIS Simple

Features. Some new functions, such as the Profile Analysis, are developed in the system. This

system’s server, GeoServNet, adopts the same Geometry Data Model as that of the client.

GeoServNet is designed in Rational Rose 2000 and implemented in Jbuilder 4. The design and

implementation in this thesis is tested in this system.

 36

CHAPTER 4 EXISTING WORK REVIEW

4.1 OGC’s Implementation Specifications

The OGC has released three Implementation Specifications on different DCPs titled: The

OpenGIS Simple Features Specification for

– OLE /COM

– CORBA

– SQL

The first version for the three implementation specifications was released in 1996. Many

companies implemented the SQL or OLE/COM specification within their products (see Table

2.3). The OLE/COM and SQL specifications were revised in 1999 to respond to improvements

in technology, and their conformance testing suites were redeveloped and made freely available.

Due to the fact that the implementation of CORBA is complicated, compared to the SQL or

OLE/COM versions, there are fewer companies trying to implement this specification. The

released CORBA specification is still the first version so far, and the testing suite for CORBA

specification continues to undergo developing.

OGC’s Implementation Specifications are valuable references for this thesis’s work. There are a

few differences in the underlying Geometry Data Model between the three released versions

illustrated in Figures 4.1, 4.2 and 4.3. The entities Ring, LinearPolygon, MultiLinearPolygon,

Line, and the relationship between the LinearRing, LineString and Ring are not consistent in the

models.

 37

CORBA OLE/COM
SQL

Line MultiLinearPolygon

LinearPolygon

Ring

Figure 4.1 The Difference in the Geometry Model of SQL, OLE/COM and
CORBA Implementation Specifications

1+

1+ 2+

MultiLineString MultiPolygon

1+

LinearRing
1+

Line

MultiPointMultiCurve MultiSurfacePolygonLineString

GeometryCollection Surface Curve Point

SpatialReferenceSystem Geometry

Figure 4.2 Geometry Hierarchy in OpenGIS Implementation Specification of

OLE/COM and SQL

(See Appendix for Data Model Notation)

 38

1+
1+

1+

MultiLinearPolygon

LinearPolygon

Ring

1+
1+

1+ 2+

LinearRing MultiPolygon MultiLineString

MultiPointMultiCurve MultiSurfacePolygonLineString

GeometryCollection Surface Curve Point

SpatialReferenceSystem Geometry

Figure 4.3 Geometry Hierarchy in OpenGIS Implementation Specification of CORBA

(See Appendix for Data Model Notation)

4.2 Other Existing References

The Oracle/MapInfo alliance, Computer Aided Development Corporation Ltd. (Cadorp), and the

University of Bonn have done some efforts on the Java implementation of OpenGIS Simple

Features from academic and industrial perspectives.

Oracle/MapInfo

Oracle made many efforts to extend its database’s capability to manage spatial datasets in

RDBMS and ORDBMS by providing a spatial extension (Spatial Cartridge in Oracle 8,

Spatial in Oracle 8i and Oracle 9i). Oracle has integrated the implementation of OpenGIS
 39

Simple Features Specification for SQL at Normalized Geometry level (SFS NG, see Table 2.3)

into the products Oracle 8, 8i and 9i. MapInfo and Oracle entered into a relationship to develop a

Java based version of OpenGIS SF Implementation Specification (see Figure 4.5 for Geometry

Data Model). Unfortunately, the relationship has since dissolved.

The Geometry Data Model contained in Oracle and MapInfo’s efforts followed the specification

for SQL. The entities CurveString, CurvePolygon, MultiCurveString and MultiCurvePolygon

were added into OGC’s SQL model to represent the non-linearly interpolated entities in the real

world. Currently, most of the commercial GISs only have the ability to process linearly

interpolated entities. In fact, many entities are non-linear or compounds of linear and non-linear

entities in the real world. It is reasonable that the linear entities are simplified and specialized

from non-linear entities in the hierarchy of the proposed model.

Unfortunately, the presentation, algorithms and processing for linear and non-linear entities are

quite different in software development. The presentation of objects Arc and Line, as an instance,

is different: Line objects only record the (x, y) value of the start point and end point, but for the

Arc object, the parameter, curvature, needs to be recorded. In addition, the complexity is quite

different: the non-linear entities are expressed by high order equations, and the linear entities are

expressed by first order equations. From a software engineering viewpoint, the relationships

between the CurveXXX entities and their sub-entities are not suitable for software development.

Cadcorp

 40

Cadcorp, one of the principal members of OGC, has undertaken many efforts in the

implementation of OpenGIS Simple Features Implementation Specification for OLE/COM (see

Table 2.3). Cadcorp utilizes the component technology to implement SF, which is a different

approach when compared with other organizations whose products have passed OGC’s

Conformance Testing.

In Cadcorp’s Java based SF implementation (see Figure 4.6), the MultiGeometry is unnecessary

in the hierarchy of the geometry data model. The existing entity GeometryCollection can contain

all the other kinds of geometry types. Its sub-entities are restricted to specific kinds of entities,

such as MultiPoint, which only contain Point entities.

Some names of entities in this model are not consistent with OGC’s released Implementation

Specifications. For example, MultiCurve and MultiSurface are replaced by CurveCollection and

SurfaceCollection, respectively. The entity LinearCurve is added in this model to narrow the

underlying entities to linear curve objects. It makes sense.

University of Bonn

The GIS & Remote Sensing Research Unit at the Department of Geography in the University of

Bonn has implemented a Java implementation of OpenGIS Simple Features. They developed a

slightly modified Java implementation of the OGC Simple Features for CORBA Specification

(see Figure 4.7). Information and source code of the software can be found at

http://katla.giub.uni-bonn.de/sfjava/.

 41

There are two changes in Bonn’s model compared with CORBA Implementation Specification

(OGC, 1998): (1) The CORBA Implementation Specification defines the client and server side

implementation for each entity, but Bonn’s model only defines the entity itself; (2) The

LinearRing entity is a child of LineString and Ring, but it can only inherit from LineString during

the model implementation because Java language has the single inheritance restricting at Class

level. That means, LinearRing can not inherit any characteristics from object Ring.

In Bonn’s model, the naming system of the methods followed the CORBA Implementation

Specification. For a Java version, paralleled with the other three versions, it should follow Java’s

conventions during naming the methods. The big issue in this model is the logical problem

among LineString, Ring and LinearRing. If the classification rule applied on Curve’s sub-

entities, linear and non-linear, the LinearRing can only be a sub-entity of Ring; If the

classification rule applied on Curve’s sub-entities closed and non-closed, the LinearRing can

only be a sub-entity of LineString (see Figure 4.4).

LinearRing

Ring LineString

Curve

LinearRing

Ring LineString

Curve

Figure 4.4 Comparison of the Classification under Different Rules

(left: linear and non-linear classification rule; right: closed and non-closed classification rule)

 42

Point C

Cur

Lin

GeometryFactoryGeometry

urve Surface GeometryCollection

veString CurvePolygon

CoordPoint

Envelope

LinearSegment

eString MultiCurvePolygon MultiCurveString

MultiLineString

MultiPoint

MultiPolygon

Polygon

MultiCurveMultiSurface

Segment

CircularArc Spline

Figure 4.5 Geometry Interface Hierarchy in the Proposed Data Model from Oracle and MapInfo

(See Appendix for Data Model Notation)

43

Curve
(from sf)

CurveCollection
(from sf)

Geometry
(from sf)

GeometryCollection
(from sf)

LinearCurve
(from sf)

LinearRing

(from sf)

LineString

(from sf)

MultiGeometry

(from sf)

MultiLineString

(from sf)

MultiPoint

(from sf)

MultiPolygon

(from sf)

Point
(from sf)

Polygon
(from sf)

Surface
(from sf)

SurfaceCollection
(from sf)

WKB
(from sf)

WKMultiGeometry
(from sf) WKGeometry

(from sf)

WKLineString
(from sf)

WKMultiLineString
(from sf)

WKLinearCurve
(from sf)

WKPoint
(from sf)

WKMultiPoint
(from sf)

WKMultiPolygon
(from sf)

WKLinearRing
(from sf)

WKPolygon
(from sf)

WKT
(from sf)GeometryFactory

(from sf)

 44

Figure 4.6 Geometry Interfaces and Objects Hierarchy in Cadcorp’s Data Model

(See Appendix for Data Model Notation)

Geo

Curve

R

Point

LineString

LinearRing

metry

Surface

ing Polygon

PointFactory

MultiSurface

MultiPolygon

MultiPointFactoryMultiPoint

MultiLineStringFactory
MultiLineString

MultiLinearPolygonFactoryMultiCurve

LineStringFactory

LinearPolygonFactory

LinearPolygon

GeometryFactory

GeometryCollection

MultiLinearPolygon GeometryIterator

Figure 4.7 Geometry Interfaces and Methods Hierarchy in Bonn’s Data Model

(See Appendix for Data Model Notation)

45

CHAPTER 5 JAVA IMPLEMENTATION

Some weakness and limitations of the existing works analyzed above. The purpose of the

new design of the Geometry Data Model is overcome those weakness. The details of the

design and implementation of the new model will be addressed in this chapter.

5.1 General Logical Model Design

The logical model design defines a Java standard for OpenGIS Simple Features

Implementation Specification. This design is based on, but not limited to the CORBA

Implementation Specification, it also refers to OLE/COM and SQL specifications and

other existing Java practices, especially Bonn’s efforts. The following section will

discuss the design from two aspects: Design Criteria and Geometry Entity Design.

5.1.1 Design Criteria

Three rules have been applied in this logical model design: Extensibility, Effectivity and

Implementability, and Java Standard.

Extensibility means this data model can be easily expanded. That is, it supports adding of

new objects, which are not yet recognized, mentioned or implemented. Extensibility

makes the data model active as time elapse.

 46

Implementability ensures that the designed data model is an efficient software

development guideline. Implementability is a pre-required criterion in the model design.

Effectivity is a higher criterion than implementability. The data model can improve the

algorithms’ executable efficiency, and speed the code’s transfer in the network

environment from one site to another. The data storage strategy, for example, needs to be

considered during the design stage. Generally, the volume of geodata is very large. If the

data and their operation methods are strictly encapsulated together in one class, the size

of higher level classes, which are composed of the lower classes, could be very large,

because everything contained in the lower classes, including the data and methods, are

encapsulated into the higher level classes.

Java Standard refers to Java as a widely accepted programming language and DCP in

the IT community. Java has its own convention and rules, and therefore forms its own

style. As a Java implementation, the new data model must follow existing Java standards.

The name of a method, for example, is composed of a verb plus a noun. The Interface and

Class structure can improve the system’s extensibility.

The other criteria, such as expressivity and simplicity, and unambiguity and

completeness, have been applied at the definition level of the data model in OpenGIS’

Implementation Specification.

5.1.2 Geometry Entity Design

 47

Geometry Entity Design is the essential part in this logical model. The geometry model is

built up from the ground: geometry entities. The major geometry entities in GIS have

been well defined and discussed in OGC’s documents and specifications. Our design

focuses on how to organize geometry entities and their relationships.

Structure Elements

The concepts of Package, Interface and Class are applied to organize and structure

geometry entities into the design and implementation in this thesis. Interface and Class

are used to represent the abstract and solid geometry entities. The Package is used to

organize the interfaces and classes in this model.

Interfaces map the OpenGIS SF specification, and Classes implement the Interfaces

(specification). One interface abstractly defines one geometry entity and its capability.

The structure of interfaces represents the Geometry Data Model in a neutral manner.

Each class refers to its interface, and implementation of the geometry entity’s capability.

The relationship between interface and class is one to one or many, that means, one

interface can have several different implementations (classes), and different developers

can implement the same interface into different classes. This approach is an effective

solution for OGC’s goal: providing a standard and unifying view of the real world.

In a Java environment, one interface can inherit many other interfaces to overcome the

limitation that one Java class is only permitted to inherit one other class (see Figure 5.1).

 48

However, the interface’s multi-inheritance only transfers the variables from several super

interfaces into their sub-interface, that means, some features of the geometry entity are

transferred and the activities of the geometry entity are left. Java’s multiple inheritance is

different with other object-oriented languages, such as C++. Java’s multiple inheritance

can not keep the consistency between the super-objects and the sub-objects in activities.

The multiple inheritance rule has lost its meaning in this geometry data model and can be

discarded during the geometry entity design.

Class C

Class BClass A

Class B

Class A

Interface C

Interface BInterface A

Interface B

Interface A

A B C D

Figure 5.1 Inheritance relationship of Interface and Class in Java (D not permitted)

 (See Appendix for Data Model Notation)

The closed interfaces or classes in relationships can be grouped together to form a

package, which is like the class library in other OO languages. Packages make the

structure clear and easily manageable. Following Java’s convention, there are two

packages org.opengis.sf.geometry and com.uc.geoservnet.geometry used in this design.

Package org.opengis.sf.geometry contains all the geometry interfaces defined by OGC.

The implementation (classes) of the geometry interfaces are organized within

com.uc.geoservnet.geometry, which stands for one implementation coming from the

GeoServNet system (geoservnet) at the University of Calgary (uc).
 49

Naming System

Java is a free-form programming language, but the code conventions are important to

programmers for a number of reasons (Sun, 1999):

• 80% of the lifetime cost of a piece of software goes to maintenance.

• Hardly any software is maintained for its whole life by the original author.

• Code conventions improve the readability of the software, allowing engineers to

understand new code more quickly and thoroughly.

• If you ship your source code as a product, you need to make sure it is as well

packaged and clean as any other product you create.

Naming systems are composed of a series of naming rules, which applied on the package

name, interface name, class name, variable name and method name. These rules are

borrowed from the Java environment to facilitate coding for programmers, especially for

the programmer in a team environment. The following style (see Table 5.1) is used by

Sun itself in virtually all of the code, and seems to be supported by most Java

development environments. The Java conversion naming system is used in the design and

implementation in this thesis.

Table 5.1 Java’s Naming Conventions (Sun, 1999)

Type Rules for Naming Examples

Packages The prefix of a unique package name is always

written in all-lowercase ASCII letters and should

be one of the top-level domain names, currently

com.sun.eng

com.apple.quicktime.v2

cdu.cmu.cs.bovik.chees

 50

com, edu, gov, mil, net, org, or one of the English

two-letter codes identifying countries as specified

in ISO Standard 3166, 1981. Subsequent compon-

ents of the package name vary according to an or-

ganization’s own internal naming conventions.

Classes Class names should be nouns, in mixed case with

the first letter of each internal word capitalized.

Try to keep your class names simple and

descriptive. Use whole words and abbreviations

(unless the abbreviation is much more widely

used than the long form, such as URL or HTML).

class Raster;

class ImageSprite;

Interfaces Interface names should be capitalized like class

names.

interface RasterDelega;

interface Storing;

Methods Methods should be verbs, in mixed case with the

first letter lowercase, with the first letter of each

internal word capitalized.

run();

runFast();

getBackground();

Variables Variable names should not start with underscore _

or dollar sign $ characters, even though both are

allowed. Variable names should be short yet mea-

ningful. The choice of a variable name should be

mnemonic - that is, designed to indicate to the

casual observer the intent of its use. Common

names for temporary variables are i, j, k, m, and n

for integers; c, d, and e for characters.

int i;

char c;

float myWidth;

Constants The names of variables declared class constants

and of ANSI constants should be all uppercase

with words separated by under-scores (“_”).

(ANSI constants should be avoided, for ease of

debugging.)

static final int

MIN_WIDTH = 4;

static final int

MAX_WIDTH = 999;

 51

To help a programmer easily distinguish if the Java file in this design is an interface or a

class, all the name of interfaces is prefixed with “I” as in Sun’s Interface naming

convention. The remainder files without the prefix “I” are classes. For example, IPoint

stands for an interface, which defines the features and activities of a point object. Point is

a class, which defines and implements the features and activities of a point object. If

Point class implements the interface IPoint, it inherits the features and empty activities

from interface IPoint, and the activities are implemented.

In fact, there exists mixed geometry entities. The ArcString, for example, is composed of

linear strings and non-linear arcs. The name of a mixed geometry entity is composed of

each kind of element’s name regardless of how many kinds of elements it contains. The

name of the mixed geometry entity is a sequence of names of all contained elements

started from the main part.

Paul Daisey noticed that there are some differences in naming the methods in OGC

released Implementation Specifications, and posted a list of the difference to the

discussing forum (http://groups.yahoo.com/group/sf4java/message/23) in Apr 12, 1999.

The Java’s code conventions for naming methods were adopted in this design.

5.1.3 Geometry Entity Classification Criteria

 52

The purpose of the Geometry Data Model design is to assemble the geometry entities

defined in OpenGIS’ specifications. It is very difficult to enumerate all the geometry

entities in GIS and other relative information bodies, like CAD, and there exists semantic

differences in some geometry entities. In this case, OGC only provides a framework of

the 2D open geodata model and leave the model’s extensibility to users and future

improvements. In this thesis, the defined geometry entities match OGC’s framework and

the primary geometry entities are listed. The following criteria are used to map data types

into the framework by order:

Rule 1: Classifying by spatial extension dimension: zero dimension, one dimension, two

 dimension and collection entity;

Rule 2: Classifying by linear, non-linear and complex entity; and

Rule 3: Classifying by close and open property.

5.2 Geometry Data Model Design

The Geometry Data Model is the kernel part or basic part for GIS software or geospatial

related information systems. The real-world entities and phenomena are mapped into the

computer system by this Geometry Data Model. The quality of a Geometry Data Model

defines the fate of its upper software. At the conceptual level, the Geometry Data Model

plays the roles described in Figure 5.2.

 53

UI
Component

Geometry
Component

Data Access
Component

Geometry
Data Model

Layer/Theme

Map

Figure 5.2 The Possible Roles of Geometry in Conceptual Model

(left: GIS software; right: as “Plug-and-Play” component in Information System)

5.2.1 Abstract Geometry Data Model Design

Based on the design criteria and referred to the existing works discussed above, the

designed Abstract Geometry Data Model is shown in Figure 5.3.

IPoint ICurve ISurface
IGeometryCollection

ILineString

IArc

IComplexCurve IPolygon

ILinearPolygon

IArcPolygon

IComplexPolygon ILine ILinearRing

IMultiPoint

IGeometry

IArcCurve

IArcRing

IMultiCurve IMultiSurface

IMultiLineString IMultiPolygon

IMultiLinearPolygon

ISpatialReferenceSystem

EgenhorferElement EgenhorferOperator Envelope

Figure 5.3 Abstract Geometry Data Model in Interfaces
 54

IGeometry is the parent interface in this model. The IPoint, ICurve, ISurface and

IGeometryCollection follow Rule 1 of the Geometry Entity Classification and located at

the second level in the framework, which represent the zero dimension, one dimension,

two dimension and compound entity, respectively. The underlying geometry entities

inherited from them belong to those four categories classified by spatial extension.

Classification Rule 2 is applied on the geometry entities at the third level. The entities are

classified into linear, non-linear and complex categories. The Curve’s sub-types, for

example, are ordered into the LineString (linear entity), ArcCurve (non-linear entity) and

ComplexCurve (complex entity). The entity ArcString composed of Arc and LineString

elements belongs to the ComplexCurve category.

Classification Rule 3 is applied to the sub-types of the geometry entities applied Rule 2.

The ArcCurve’s sub-types, for example, are classified into close entity ArcRing and open

entity Arc. The Line and LinearRing are used the same rule.

5.2.2 Geometry Data Model

Based on the Abstract Geometry Data Model, the designed Geometry Data Model is

illustrated in Figure 5.4. The variables for each geometry entity are listed out. The

methods in this model will be analyzed in the section: Geometry Implementation.

 55

data : org.o

length :
closed

 startPo
endPoi

data : org.op
numPoints : i

Line

startPo
endPoi

id : int = 0

Point
pengis.sf.GEO.WKSPoint

Curve
 double = 0.0
: boolean = false

intAsWKS : org.opengis.sf.GEO.WKSPoint
ntAsWKS : org.opengis.sf.GEO.WKSPoint

Surface

elements : Vector = null

LineString
engis.sf.GEO.WKSLineString
nt

LinearRing

Polygon

MultiPoint

MultiCurve
length : double = 0.0

MultiSurface
area : double = 0.0

MultiLineString
MultiPolygon

MultiLinearPolygon

LinearPolygon
data : org.opengis.sf.GEO.WKSLinearPolygon

ComplexPolygon

ArcPolygon

ComplexCurve ArcCurve

ArcRing Arc

numInteriorRings : int = 0
exteriorRing : LinearRing = null
interiorRings : Vector = null

GeometryCollection
numElements : int = 0 area : double = 0.0

centroid : Point
centroidAsWKS : WKSPoint
pointOnSurface : Point
pointOnSurfaceAsWKS : WKSPoint

int : Point
nt : Point

dimension : int = 0
empty : boolean = true
simple : boolean = true
spatialreferencesystem : ISpatialReferenceSystem = null
type : int = 0
envelope : org.opengis.sf.GEO.Envelope = null

Geometry

56

Figure 5.4 Geometry Data Model

(See Appendix for Data Model Notation)

5.2.3 Factory Design

There exist many formatted geospatial datasets in GIS. Those widely used formats are called

Well-Known Structure (WKS). The constructor methods in geometry object classes can create

instances for each geometry object defined in this model from the WKS directly. But this

approach is not convenient for WKS datasets in many cases. To facilitate the users to create

instances of each geometry object from the WKS datasets, this data model provides a series of

factories, which can directly create objects from the datasets by hiding the details of creating

objects and setting their features. The factories provided in this data model are listed in Figure

5.5.

IGeometryFactory

IMultiPointFactory

ILineStringFactory

IMultiLineStringFactory

ILinearPolygonFactory

IMultiLinearPolygonFactory

IPointFactory

ILinearRingFactory

Figure 5.5 Factory Hierarchy in Data Model

5.3 Geometry Implementation

The implementation of geometry is translating the design patterns into real Java code. The

implementation is composed of two parts: implementation of the interfaces, and implementation

of the objects, which completes the methods of the inherited interfaces. In fact, the

 57

implementation of the interfaces is very simple with the help of the design tool, Rational Rose.

This tool can automatically generate the code frame for the interfaces and the classes. The

methods are empty in the generated classes. Most of this thesis’ work is designing the algorithms

and completing those methods. The following section will discuss two aspects of the

implementation: functions and data storage.

5.3.1 Functions

The functions addressed here are the system’s spatial operations. Generally, operators over more

than two operands are typically broken down into a sequence of binary operations. There is no

consensus on a canonical set of spatial operators (Egenhofer et al 1999). Different applications

use different operators, although some operators (such as intersection) are more common than

others. Spatial operators can be classified in several ways, reflecting fundamentally different

perspectives and objectives. A common distinction is based on different geometric properties of

spatial relations, leading to groups of topological, directional, and metric relations. Topological

relations are invariant under topological transformations, such as translation, rotation, and

scaling (Egenhofer & Franzosa, 1991). Direction relations refer to the location of two spatial

objects with respect to a reference frame (Peuquet & Zhan 1987, Retz-Schmidt 1988, Frank

1991), yielding quantitative values (e.g. 32°12’) or qualitative values (e.g. south and north-west,

or left and right). Metric relations (Peuquet 1992, Hernandez et at 1995) capture distances, either

quantitatively (e.g. 71.4 km) or qualitatively (e.g. near or far).

 58

In the three existing Implementation Specifications (SQL, OLE/COM and CORBA), OGC has

defined the spatial operations based on the state-of-the-art research results of this topic. The

rigorous definitions for each function, including input and output arguments, can be found in the

documents at OGC’s web site http://www.opengis.org/. Those functions defined in this design

refer to the existing specifications and are divided into six categories shown in Table 5.2. The six

kinds of functions are located at the root in the Geometry Data Model (IGeometry/Geometry),

that means, all the geometry objects in the model inherit those functions. From another

perspective, those functions can be divided into two categories, mandatory functions and

optional functions, which shown in OGC’s conformance testing documents.

Most of the operations in Table 5.2 are the research interests in the discipline of Computational

Geometry. There are many effective algorithms for those operations in the computational

geometry literature (Berg et al 1997, Goodman and O’Rourke 1997). Listing all the

implementation details of the spatial operations in this thesis will confuse you and make you lost

your focus. We, therefore, only discuss the main implementations for relational operators, set

operators and constructive operators described in Table 5.2 (the XXX stands for all the

implementable geometry objects: Point, LineString, Polygon, GeometryCollection, MultiPoint,

MultiLineString and MultiPolygon).

 59

Table 5.2 Basic Functions in Geometry Data Model

Kind Function Category

Geometry

creation

XXX createFromXXX(xxx);

XXX createFromWKSXXX(wksxxx, srs);

XXX createFromWKBXXX(srs, byte[]);

Mandatory

Geometric

characteristics

Boolean isEmpty();

boolean isSimple();

boolean isClosed();

Mandatory

WKS operators WKSGeometry export(); Mandatory

Constructive

operators

Geometry copy();

Geometry boundary();

Geometry buffer (double distance);

Geometry convexHull();

Optional

(except

Copy())

Metric

operators

Double distance (Geometry other); Optional

Set operators Geometry intersection (Geometry other);

Geometry union (Geometry other);

Geometry difference (Geometry other);

Geometry symmetricDifference (Geometry other);

Optional

Relational

operators

Boolean equals (Geometry other);

boolean touches (Geometry other);

boolean contains (Geometry other);

boolean within (Geometry other);

boolean disjoint (Geometry other);

boolean crosses (Geometry other);

boolean overlaps (Geometry other);

boolean intersects (Geometry other);

boolean relate (Geometry other, EgenhoferOperator

operator);

Optional

 60

Relational Operations

There are nine kinds of relational operations belonging to the optional functions in the Table 4.3.

The definitions of those operations are formulized by OGC in mathematical format. Those

definitions are based on the research results of Clementini, Di Felice, Egenhofer, et al.

(Clementini, 1993, 1994, 1995, 1996 and Egenhofer, 1990, 1991, 1993), who created a widely

accepted and rigorous theoretical system for spatial operations.

The relational operations deal with the topological relationships that are preserved under such

transformations as rotation, scaling, and rubber sheeting. The model for binary topological

relations used in this thesis is based on the usual concepts of point-set topology with open and

closed sets. The binary topological relation between two objects, a and b, in Euclidean space Ed

is based upon the intersection of a’s interior I(a), boundary B(a), and exterior E(a) with b’s

interior I(b), boundary B(b), and exterior E(b). The intersection of any two of interior, boundary

and exterior relations can result in a set of geometries, x, of mixed dimension. For example, the

intersection of the boundaries of two polygons may consist of a point and a line. Let dim(x)

return the maximum dimension (-1, 0, 1, or 2) of the geometries in x, with a numeric value of –1

corresponding to dim(∅). The nine intersections between the six object parts describe a

topological relation and can be concisely represented by a 3x3-matrix ℑ9, called the 9-

intersection matrix (DE-9IM).

 I(a) ∩ I(b) I(a) ∩ B(b) I(a) ∩ E(b)

 ℑ9 (a, b) = B(a) ∩ I(b) B(a) ∩ B(b) B(a) ∩ E(b) (1)

 E(a) ∩ I(b) E(a) ∩ B(b) E(a) ∩ E(b)
 61

Figure 5.6 shows an example DE-9IM for the case where a and b are two polygons that overlap.

2 1 2

1 0 1

2 1 2 (b) (a)

Figure 5.6 Example Instance of DE-9IM

A pattern matrix, stands for the DE-9IM, consists of a set of 9 pattern-values, one for each cell in

the matrix. The possible pattern-values p are {T, F, *, 0, 1, 2} and their meanings for any cell

where x is the intersection set for the cell are as follows:

p = T => dim(x) ∈ {0, 1, 2}, i.e. x≠∅

p = F => dim(x) = -1, i.e. x = ∅

p = * => dim(x) ∈ {-1, 0, 1, 2}, i.e. Don’t Care

p = 0 => dim(x) = 0

p = 1 => dim(x) = 1

p = 2 => dim(x) = 2

The nine relational operations can be defined as following. In the definitions, the term P is used

to refer to 0 dimensional geometries (Points and MultiPoints), L is used to refer to one-

dimensional geometries (LineStrings and MultiLineStrings) and A is used to refer to two-

dimensional geometries (Polygons and MultiPolygons).

 62

Disjoint

Given two (topologically closed) geometries a and b,

a.Disjoint(b) ⇔ a ∩ b = ∅

Expressed in terms of the DE-9IM:

a.Disjoint(b) ⇔ (I(a) ∩ I(b) = ∅) ∧ (I(a) ∩ B(b) = ∅) ∧ (B(a) ∩ I(b) = ∅) ∧ (B(a) ∩ B(b) = ∅)

⇔ a.Relate(b, “FF*FF****”)

Touches

The Touches relation between two geometries a and b applies to the A/A, L/L, L/A, P/A and P/L

groups of relationships but not to the P/P group. It is defined as:

a.Touches(b) ⇔ (I(a) ∩ I(b) = ∅) ∧ (a ∩ b) ≠ ∅

Expressed in terms of the DE-9IM:

a.Touches(b) ⇔ (I(a) ∩ I(b) = ∅) ∧ ((B(a) ∩ I(b) ≠ ∅) ∧ (I(a) ∩ B(b) ≠ ∅) ∧ (B(a) ∩ B(b) ≠

∅)) ⇔ a.Relate(b, “FT*******”) ∨ a.Relate(b, “F**T*****”) ∨ a.Relate(b, “F***T****”)

Figure 5.7 shows some examples of the Touches relation.

Polygon/Polygon LineString/LineString Polygon/LineString LineString/Point

Polygon/Point

Figure 5.7 Examples of the Touches Relationship

 63

Crosses

“The Crosses relation applies to P/L, P/A, L/L and L/A situations. It is defined as:

a.Crosses(b) ⇔ (dim(I(a)∩ I(b)) < max(dim(I(a)), dim(I(b)))) ∧ (a∩ b ≠ a) ∧ (a∩ b ≠ b)

Expressed in terms of the DE-9IM:

Case a ∈ P, b ∈ L or Case a ∈ P, b ∈ A or Case a ∈ L, b ∈ A:

a.Crosses(b) ⇔ (I(a) ∩ I(b) ≠ ∅) ∧ (I(a) ∩ E(b) ≠∅) ⇔ a.Relate(b, ‘T*T******’)

Case a ∈ L, b ∈ L:

a.Crosses(b) ⇔ dim(I(a) ∩ I(b)) = 0 ⇔ a.Relate(b, ‘0********’)”

Figure 5.8 shows some examples of the Crosses relation.

Polygon/LineString LineString/LineString

Figure 5.8 Examples of the Crosses Relationship

Within

The Within relation is defined as:

a.Within(b) ⇔ (a ∩ b = a) ∧ (I(a) ∩ E(b) ≠∅)

Expressed in terms of the DE-9IM:

a.Within(b) ⇔ (I(a) ∩ I(b) ≠∅) ∧ (I(a) ∩ E(b) =∅) ∧ (B(a) ∩ E(b) =∅)) ∧ a.Relate(b,

“TF*F*****”)

Figure 5.9 shows some examples of the Within relation.

 64

Polygon/Polygon LineString/LineString Polygon/LineString

Polygon/Point

Figure 5.9 Examples of the Within Relationship

Overlaps

The Overlaps relation is defined for A/A, L/L and P/P situations:

a.Overlaps(b) ⇔ (dim(I(a)) = dim(I(b)) = dim(I(a) ∩ I(b))) ∧ (a ∩ b ≠ a) ∧ (a ∩ b ≠ b)

Expressed in terms of the DE-9IM:

Case a ∈ P, b ∈ P or Case a ∈ A, b ∈ A:

a.Overlaps(b) ⇔ (I(a) ∩ I(b) ≠∅) ∧ (I(a) ∩ E(b) ≠∅) ∧ (E(a) ∩ I(b) ≠∅) ∧ a.Relate(b,

“T*T***T**”)

Case a ∈ L, b ∈ L:

a.Overlaps(b) ⇔ (dim(I(a) ∩ I(b) = 1) ∧ (I(a) ∩ E(b) ≠∅) ∧ (E(a) ∩ I(b) ≠∅) ∧ a.Relate(b,

“1*T***T**”)

Figure 5.10 shows some examples of the Overlaps relation.

Polygon/Polygon LineString/LineString

Figure 5.10 Examples of the Overlaps Relationship

 65

Contains

a.Contains(b) ⇔ b.Within(a)

Intersects

a.Intersects(b) ⇔ ! a.Disjoint(b)

Equals

a.Equals(b) ⇔ b.Equals(a)

The relationship between the geometry objects can be any one of the eight kinds of relational

operations defined above. The relationship between the eight kinds of relational operations is

illustrated in Figure 5.11 organized by the degree of closing of the two geometry objects. The

Relates relationship generally describes the eight relationships on the DE-9IM.

Three processing steps are designed to calculate the relational operations:

– Minimum Bounding Rectangle (MBR) filter;

– Type filter; and

– Deep checking.

The MBR is a common spatial object access method. The MBR is the smallest X-Y-parallel

rectangle, which contains entirely the spatial object it represents. Each geometry object(s) in this

Geometry Data Model design has recorded its MBR as an attribute. MBR is a crude

approximation of the geometry object, as they are usually accompanied by large arcs of “dead

 66

spaces”, but it is a good filter for the relational operations. If the objects’ MBRs have the testing

relationships, the relationships maybe exist between the objects; otherwise, the objects’

relationship couldn’t exist. The MBR filter is the fist step check because the relation operations

applied on the MBRs are simpler than that of the real geometry objects.

Disjoint

Contains

Crosses

Intersects

Within

Equals

Overlaps

Touches

Figure 5.11 Relationships among the Eight Relational Operations

(Double arrow: reciprocal relationship)

Each of the eight relational operations has its usage restrictions. The Overlaps operation, for

example, can only be applied on the same two geometry objects, such as Polygon to Polygon,

LineString to LineString and Point to Point. If the two geometry objects passed the MBR filter,

the geometry Type filter will further eliminate some situations. Each of the geometries carries its

geometry type as an attribute and geometry type retrieved method.

 67

When the objects pass the first two filters, the precise calculation followed by the operation

definitions will be done to make sure the relationship exists. At this step, the reciprocal

operations, such as Disjoint/Intersects and Within/Contains, only calculate one relationship. For

the Intersects operation, if one of the six relationships (at the left side of Intersects in Figure

5.11) exist, this relationship holds.

The three optional functions, relate(), difference() and symmetricDifference(), defined in the

Implementation Specification, are not implemented in this thesis due to the limited time. The

other functions in Table 5.2 are fully implemented and have passed the testing. Some

implementation details can be found in next chapter, which discusses conformance testing.

Set Operations

The Set Operations are the fundamental problems of computational geometry. Most researches

focus on the intersection and union problems for different kinds of geometry. Many algorithms

have been introduced in computational geometry literature.

The Intersection operation, from line-segment intersection to polygons’ intersection, has been

addressed by many researchers (Prparata and Shamos 1988, Bourke1989, Min et al 1991,

Chazelle and Edelsbrummer 1992, O’Rourke 1993, Andrews 1994, Chan 1994, Balaban 1995,

Berg et al 1997, Cigale and Zalik 1999, Zalik 2000). The algorithm for the intersection of two

line segments in this thesis is the method introduced by Paul Bourke (Bourke 1989). The Set-

based Intersection Algorithm introduced by Borut Zalik (Zalik 2000) is used in this thesis to

check the intersection of two polygons.

 68

The Union operation for polygons is complex, especially when polygons contain holes. The

polygon defined in the OGC’s document is simple polygon (no self-intersection, convex, can

contain hole(s)). The intersection algorithm for polygons plays the key role in the polygon’s

union operation. The algorithm of polygon union is adapted from the closed set method

introduced by Leonov, M. V. and Nikitin, A. G (personal discussion). This algorithm consists of

four steps:

– Processing of the edge intersections;

– Edge and contour labeling;

– Collecting the resulting contours; and

– Generating result contours.

An example, Figure 5. 12, is used to illustrate the algorithm. Region A is a polygon consisting of

one outer and one inner contour, and region B is a polygon consisting of one outer self-touching

contour.

A

BA

B

 s

Figure 5.12 Two Intersected Polygon
69

Edge Intersection Processing

If the edges share a common line segment, the endpoints of the common line segment are treated

as the intersection points. All new intersection points are added as vertices to the input polygons

A and B. Vertices corresponding to intersection points are called cross-vertices (see Figure 5.13).

One geometric intersection point corresponds to at least two cross-vertices.

A cross-vertex connectivity list is introduced to record the cross-vertex. Figure 5.14 shows the

cross-vertex connectivity list of point x in Figure 5.13. The corresponding cross-vertices are a5,

B2 and B9.

A

BA

B

A2 A3 A4 A5

A6

A7

A8a2

a4

B2
a5

a7

a1

a3

A1

B3 B4 B5

B6B7

B8

B9

B11

B1

B12 B13

B14B15B16

B10

a6x

 Figure 5.13 Intersections of the Two Polygons

D − (a5)
π

B8

L(x)

D + (B9)
3π/2

D − (B9)
π

D − (B2)
π/2

D + (B2)
3π/4

D + (a5)
π/2

B10B9

a4 a6a5

B1 B3B2

 Figure 5.14 Connectivity List of Point x

 70

Edge and Contour Labeling

The labeling method (Schutte 1995) is used to label the first step’s results. Let C be a bounding

contour of a polygon A or B. Let M be a polygon, which C does not belong to. Let Е be an edge

of a contour С. Then its label has one of the following values:

• INSIDE — when Е lies inside M;

• OUTSIDE — when Е lies outside M;

• SHARED1 — when Е coincides with an edge from polygon М with the same direction; and

• SHARED2 — when Е coincides with an edge from polygon М with the opposite direction.

The label of contour С has one of the following values:

• INTERSECTED — when С contains at least one cross-vertex;

• INSIDE — when С lies inside M; and

• OUTSIDE — when С lies outside M.

Here is an algorithm for labeling C and its edges.

1 C does not contain any cross-vertices

If C lies inside M, it is labeled as INSIDE, otherwise — as OUTSIDE. The edges of C are not

labeled at all.

2 C contains at least one cross-vertex

C is labeled as INTERSECTED and all its edges are sequentially labeled. Let Ei(a, b)

(i ∈ {0…n−1}, where n is the number of edges in C) be the edge to label.

 71

2.1 Ei does not contain cross-vertices as its endpoints

1) i ≠ 0. The edge label value is copied from the edge Ei−1;

2) i = 0. If a lies inside M, then Ei is labeled as INSIDE, otherwise Ei is labeled as OUTSIDE.

2.2 Ei contains one or two cross-vertices as its endpoints

1) ∃ edge F(c, d): F ∈ M ∧ а = с ∧ b = d. Ei is labeled as SHARED1.

2) ∃ edge F(c, d): F ∈ M ∧ а = d ∧ b = c. Ei is labeled as SHARED2.

3) Cross-vertices connectivity list(s) does not contain any vertices from M

Such situation is possible if С is not intersected by М and touches itself. The edge is labeled

similarly to step 2.1.

4) Cross-vertices connectivity list(s) contain vertices from M.

 For each vertex wk the check is performed if Ei lies inside ∠(wk−1 wk wk+1). If Ei is inside one

of such “labeling” angles, then it lies inside M and therefore is labeled as INSIDE, otherwise,

Ei is labeled as OUTSIDE.

The labeled result is shown in Figure 5.15.

Result Contour Collection

In this step we sequentially consider each bounding contour of A and B. Let C be the contour

currently being considered. The label of contour or edge X is furthermore denoted as X.Flags.

Also FORWARD and BACKWARD will denote the original and the inverse directions of edges.

Here is the algorithm for collecting the resulting contours.

 72

OUTSIDE

INSIDE

SHARED2

SHARED1

A

B
s

1) If C.Flags ≠ INTERSECTE

depending on its label, the d

2) If C.Flags = INTERSECTED

Here is the algorithm for pr

bit flag E.Mark indicating if

initially the flag is set to fals

For(i = 0, i< n, i++)

{

if (EdgeRule(Ei, dir) an

{

 contour r;
if (dir = FORW

else r = Collect(

Figure 5.15 Labeled Polygon
D and C.Flags = OUTSIDE, C is added to R (result contour)

irection is set as FORWARD.

, we need to find which resulting contours can start from in C.

ocessing C (n is the number of vertices in C). Each edge E has a

 the edge has already included into one of the resulting contours,

e for all edges.

d not Ei .Mark)

ARD) r = Collect(vi, dir);

vi+1, dir);

73

Include r into a set of resulting contours;

}

}

where the functions are:

boolean EdgeRule(edge E; dir (FORWARD, BACKWARD))

 //the edge inclusion rule for union operation.

{

If (E.Flags = INSIDE) ∨ (E.Flags = SHARED) dir = FORWARD;

}

contour Collect(vertex v; dir (FORWARD, BACKWARD))

{

Create an empty contour r;

repeat

Add v to r;

if (dir = FORWARD) E = edge next to v;

else E = edge before v;

E.Mark = true;

if ((E.Flags = SHARED1) or (E.Flags = SHARED2))

for edge, shared with E, set its Mark to true;

v = vertex next to v in direction dir;

if (v is a cross-vertex) Jump(v, dir);

until (current edge is marked);

return r;

}

Jump(vertex v; dir (FORWARD, BACKWARD))

{

if (dir = FORWARD) d = prev(D(v));

 74

else d = prev(D(v));

{ prev(D) denotes descriptor nearest to D in clockwise direction }

found = FALSE;

repeat

e = edge corresponding to d;

if (not (e.Mark) and EdgeRule(e, newdir))

{

v = vertex corresponding to d;

if ((e is next to v) and (newdir = FORWARD) or

(e is previous to v) and (newdir = BACKWARD))

{

dir = newdir;

found = TRUE;

}

}

d = prev(d);

until (found);

}

Resulting Contour Generating

The result polygon for the Union operation is composed of one outer and two interior contours.

It’s very simple to arrange the bounding contours generated by previous steps into R because

they already have proper orientation. The result polygon for the example is shown in Figure 5.16.

The Difference and symmetricDifference operations have not been implemented in this thesis

due to time limitations. However, they further the Union operation by changing the resulting

contours collection rules.

 75

A

B

F s

Constructive Operations

There are some effective algori

computational geometry literature (B

operation is complex compared wit

Buffer operation are illustrated in th

A Template Union Model (TUM)

2001) is introduced in this thesis to

in the Geometry Data Model. The

introduction to the TUM model. We

Buffer operation. The Circle rolls fr

the buffer area of Line AB (right). In

spatial Union operation for all the

Union operator in Set Operators is th

A B

 Figure
igure 5.16 Union Result
thms for the Boundary and convexHull operations in

erg et al 1997, Goodman and O’Rourke 1997). The Buffer

h the Boundary and convexHull operations. The details of

is thesis.

evolved from the Unit-combined Model (Cheng & Yuan,

 calculate the buffer for any kind of linear geometry defined

following buffer example, illustrated in Figure 5.17, is an

 create a Circle with a particular radius for Line object AB’s

om the start point A to the end point B (left), and generates

 this example, the Circle is the Template in TUM model, the

Circles generates the Line AB’s buffer. In TUM model, the

e key operation.

A B

76

 5.17 Line Object’s Buffer

Template

The Buffer operation is an important function in GIS analysis. The study of propagation of

pollution or flooding with natural on artificial barriers requires the construction of a geometric

buffer. The buffer methods are different in different application domains. The common buffer

methods are generalized in Table 5.3 as the templates used in TUM model. It’s a big challenge to

list all the templates, but the software system can provide the extension capability from the

viewpoint of software engineering.

Analyzing the templates in Table 5.3, we have found that the simple LineString Template (only

has two points) is the Original Template. The Point, LineString and Polygon templates can be

generated from the Original Template. If the Original Template has only one point, it becomes

the Point Template. The LineString Template is the spatial union of all the segments’ Original

Templates. The Polygon Template is the spatial union of Original Templates of polygon’s edges.

Algorithm

As analyzed above, the Original Template is the root for all templates listed in Table 5.3. In the

TUM model, only the shape of the Original Template is really calculated. In fact, there are four

kinds of Original Templates, one is illustrated at the right of Figure 5.17, and the other three are

illustrated at the right side of Figure 5.18. The Original Templates are divided into two

categories: two-side buffer and one-side buffer. The Variable Buffer Templates are generated

from the union of the shape for each edge in the Polygon or segment in the LineString applied

different one-side Original Templates. The Multiple Buffer Templates are combined of multiple

templates with different radius.

 77

Table 5.3 Examples of Template

Circle Buffer

Circle Multiple Buffer Point

Square Buffer Square Multiple Buffer

Constant Buffer Variable Buffer LineString

One-side Buffer Multiple Buffer

Exterior Constant Buffer Exterior Variable Buffer

Exterior Multiple Buffer Interior Constant Buffer

Polygon

Interior Variable Buffer Interior Multiple Buffer

Polygon’s buffer is a little complex. If the polygon object hasn’t a hole, the two-side exterior

buffer will be calculated along the boundary of the polygon first, then the generated exterior

buffer will be combined by union with the original polygon to form the buffer object (see Figure

5.19). If the polygon has hole(s), the two-side exterior buffer and one-side interior buffer(s) are

 78

calculated respectively, then the generated exterior buffer is combined by union with the original

polygon and interior buffer zone are removed.

A B A B

A BA B

A BA B

Figure 5.18 Original Buffer Templates

A B

C

∪

∪

∪

A/B

BA

Figure 5.19 Example of TUM

5.3.2 Geodata Storage

 79

How to effectively organize large datasets in a system memory will make a difference to the

system performance. The goal of geodata storage design is to reduce system memory use while

keeping performance at a reasonable level.

Object-oriented (OO) technology is used to organize geodata. OO technology is adopted in this

design in response to the evolution of software engineering. The strategy used to deal with large

geodata sets should be migrated to Object methods via traditional Array technology, which

organizes the spatial data in a simple linear sequence. There are two object-based methods to

optimize the geodata storage strategy: pure object and data object. The Pure Object method

follows rigorously OO technology to organize the spatial data and its operations. The Data

Object method adopts the object concept, but each object’s data only contains spatial data, no

operations are applied on it (see Figures 5.20, 5.21 and 5.22 for details).

Object technology encapsulates the spatial data and its operations in an object. The complex

object is composed of simple objects. For example, a Polygon is composed of LinearRings, each

LinearRing contains many Points, each Point has a spatial data value (x, y) and some methods

which process the data. The Polygon, therefore, has all the spatial data and methods coming from

the underlying elements. Generally, the methods from the underlying elements are not all useful

at a higher level. In this case, the pure object data storage method wastes considerable memory

when the geodata set is very large. A simple test of this method has been undertaken and the

results are listed in Table 5.4.

 80

….

Point
Data (x, y)

Methods

LinearRing

Data

Methods

Point
Data (x, y)

Methods

….

Point
Data (x, y)
Methods

Data

Methods

Point
Data (x, y)
Methods

….

Data

….

Figure 5.20 Polygon Object Structure in Pure Object Method

LinearRing

LinearPolygon

Methods

….

LinearPolygon

WKSLinearRing

WKSPoint
Data

Methods

….
WKSPoint

Data WKSLinearRing

WKSPoint
Data

…. WKSPoint
Data

….

WKSLinearPolygon

 81

Figure 5.21 Polygon Object Structure in Data Object Method

WKSLinearPolygon
exteriorRing : WKSLinearRing
interiorRings : java.util.Vector

setExteriorRing()
addInteriorRing()

WKSPoint
x : double
y : double

WKSGeometry
numPoints : int

WKSLineString
elements : java.util.Vector

addWKSPoint()

WKSLinearRing

WKSGeometryCollection
elements : java.util.Vector

addElement()

WKSMultiLinearPolygon

WKSMultiLineString WKSMultiPoint

Figure 5.22 Data Objects Used in the Design

From this simple testing, we know that the Data Object method is a good solution for large

geodata sets. In this design, the data objects illustrated in Figure 5.21 are used to store spatial data

within the corresponding geodata objects. A LinearPolygon, for example, encapsulates a

WKSLinearPolygon data object, which holds all the spatial data of this LinearPolygon, and the

operations applied on the spatial data.

Retrieving the elements for one object is a problem in this storage strategy. In the pure object

method, when we retrieve a Point from a LinearPolygon object, the function will return a Point

object including its data and methods. But in the data object method, the primary elements are

WKSPoint objects, not Point objects. To avoid the problem, the element retrieval function

invokes proper Factories depicted in Figure 5.5 to create the objects on the fly.

 82

Table 5.4 Memory Expense of the Three Methods

 Pure Object Data Object Array

Total Used Memory Expense(Mb) 38.32 21.14 64.34*

Environment: Pentium II, Windows NT 4.0, RAM: 128 Mb.

Data: a shape file, roadnet.shp, contains 18,289 polylines. For the Array method, the type

is double, the capability is 500.

*: this value is under loaded, 6,000 polylines; when loaded with 12,000 polylines, the system

runs out of memory.

5.4 Characteristics Analysis

The design and implementation details of the Geometry Data Model are discussed above.

Compared with the existing references, this design has its own characteristics as following:

• Disseminativity. The software system design standard, UML, is used during the whole design

period to ensure this design is more readable and understandable. Design tool Rational Rose

integrated all popular UML annotations together to standardize this design. On the other

hand, Java’s design and coding standards are used in this Geometry Data Model design. Sun

and most of the Java software developers adopt Java’s coding conversations and naming

system, a real standard for Java software developing. These rules ensure design standards are

maintained through all software architecture and coding levels.

• Extensibility. Extensibility endows the life to a standard design. At the current design stage,

only linear 2D geometric objects are defined and implemented, but the geometry object’s

 83

logic relationship is clearly defined, and the inheritance hierarchy is embedded in the design

architecture. It’s very easy for other bodies or individuals to understand this model and

extend the existing architecture to support the non-linear objects and complex objects. The

object RectangleRing, for example, can be added into this model as a child of object

LinearRing. On the other hand, the Java interpreter can execute Java byte codes directly on

any machine to which the interpreter has been ported. Java language’s interpreting strategy

makes it possible to dynamically load the extended classes without interrupting the running

system, and seamlessly integrate them with the legacy Java system. This characteristic make

the Java software developing is more flexible, rapid and exploratory.

• Functionality. The Geometry Data Model in this design is more powerful than that of the

traditional GISs. This geometry data model supports more geometric objects. Traditional

GISs only support linear geometry objects, but this data model also supports non-linear

objects and complex objects. Polygon objects in traditional GISs must be convex, but in this

data model, concave polygons are supported. In addition, this geometry data model supports

more operations at the data model level. There are nine kinds of relationship/spatial

operations, such as intersects, cross, contains, union, buffer and so forth, defined in a data

model level, and six of those operations are implemented in this work.

• Manageability. Java’s Package technology is used to organize the model structure and code

files. Similar functionality is organized into one package. One developing body can create a

new package and contains their codes. The extended codes can easily be put into proper

package by their functions or by organization.

 84

CHAPTER 6 TESTING SUITE

Software development is often the developer’s personal creative. Given a common framework

for software development, a resulting implementation may vary from developer to developer.

How to test whether the software implementation is compatible to the Implementation

Specification? OGC provides a Conformance Testing mechanism to ensure the compatibility of

an implementation. This section will address the design and implementation of a testing suite for

the Simple Features Implementation Specification of Java version.

6.1 Objectives

OGC’s standards are public and can be downloaded from its web site. Maybe there are thousands

of implementations for one specification, but only the OGC compatible implementations are

valid. To validate implementations, OGC launched the Conformance Testing Program to make

sure that development activities follow the OGC’s direction. Conformance testing includes two

phases: Conformance Testing; and Interoperability Testing. Current testing suites only have the

conformance testing (no interoperability testing available), to check the compatibility of the

candidate software to its claimed OGC’s specification.

 85

OGC has released the testing suites for Simple Features Implementation of OLE/COM and SQL,

but there is no testing suite for Java version available. A testing suite for testing the conformance

of Java implementations, therefore, is developed in this thesis, with respect to OpenGIS Simple

Features Implementation Specification for Java. This testing suite only contains the conformance

testing; the interoperability testing is not included.

6.2 Testing Suite Design

6.2.1 Testing Suite Generation

All the proposed testing suites, including source code and documents, must be submitted to

OGC’s Technical Committee for review. The source code will be checked by the Technical

Committee. Only the passed candidate suites can be identified as OGC official testing suites. A

completed testing suite contains the testing code, testing dataset and documentation.

6.2.2 Testing Procedure

If a product is claimed to be OGC compatible, the product must pass the conformance testing. If

the product passed the owner’s own checking, the product and the testing result documents can

be submitted to OGC for confirmation. Once the conformance testing is successfully completed

again, OGC will license vendors of such systems to use OGC’s marks (trademarks or

certification marks) that will identify to users the capability of products with respect to OpenGIS

Implementation Specifications.

6.2.3 Design Considerations

This Java version testing suite is planned to be submitted to OGC’s Technical Committee. To

facilitate the testing process and the public usage, the following factors have been considered in

this design.

 86

Easy

It should allow the public users to test their products using the testing suite with no or a little

effort. The testing suite, therefore, should be easy enough for the Technical Committee and

public users. The notes and comments must be embedded in the source code to ensure the

readability. Java’s code conventions must also be followed during the suite coding.

Public

The testing suite is open source software that can be assessed via the Internet. The testing suite is

developed as a Java Applet, which can run within a general web browser, like Internet Explorer

or Netscape. This allows the testing over Internet and allows public involvement in the testing.

6.2.4 Components of Testing Suite

According to the considerations discussed above, this testing suite is designed to be composed of

three main parts: Graphic User Interface (GUI), data loading code and conformance testing code.

GUI

The GUI in testing suite is a very simple, it only provides a communication means between the

testing suite and user. The GUI will guide the user on how to do the testing step by step. The

testing dataset and the testing results will be displayed for user assessment. All testing indicators,

success or failure, will be shown on screen.

Data Loading

 87

This component of the testing suite loads the OGC’s official testing dataset into the system. In

OO technology, the data is encapsulated into its object. The data loading code will initiate the

Factories objects to create the instances of the geometry objects defined in the Simple Feature or

SF Implementation Specification. The role of data loading is to check the candidate’s capability

of creating each of the geometry objects. Future conformance testing will be applied on the

instanced objects created herein.

Conformance Testing

Conformance testing will test the candidate product with respect to three criteria: object creation,

basic methods and spatial relationship operations. The object creation is checked at the data

loading stage. The other two checks will be done at this stage. Referring to the existing testing

suites for OLE/COM and SQL, the testing of basic methods is mandatory and the testing of the

spatial relationship operations is optional (see Table 5.2).

6.3 Implementation

A Java applet is a powerful and flexible approach compared with other web solutions, such as

CGI and ASP. This testing suite is implemented as a Java applet, and the testing dataset is

embedded in the system by default. Slow downloading is a big issue for applications using Java

applets. The browser needs to download the required classes from the server each time once the

testing suite is initiated. There are two solutions to reduce the downloading time:

1. Simplifying packages and small classes by putting them into one Java compressed file;

2. Using Sun’s standard classes.

 88

In this testing suite, the class is implemented as simply as possible to meet the testing

requirements and the interface’s layout invokes only one Borland class. The standard Java

classes used in this testing suite are included in the Java Virtual Machine (JVM) embedded in the

client’s browser. This simple testing suite follows Java’s coding conventions. The annotation in

the source code can aid user navigation during configuration.

The testing suite has implemented the testing process for both mandatory and optional functions.

Table 6.1 shows the status of the suite. The prototype system of this testing suite is illustrated in

Figures 6.1 and 6.2. Using this testing suite, the candidate products can be tested by distributed

evaluators. The testing results are displayed in the Results Box after each testing operation. For

the candidate providers, they can easily adapt the testing suite to test their own products.

Table 6.1 Implementation Status of the Functionality in Testing Suite

Category Function Impl. Status

XXX createFromXXX(xxx);

XXX createFromWKSXXX(wksxxx, srs); ✓

XXX createFromWKBXXX(srs, byte[]);

boolean isEmpty(); ✓

boolean isClosed(); ✓

boolean isSimple(); ✓

WKSGeometry export();

Mandatory

Geometry copy();

Geometry boundary(); ✓

Geometry buffer (double distance); ✓

Geometry convexHull(); ✓

double distance (Geometry other); ✓

Geometry intersection (Geometry other); ✓

Optional

Geometry union (Geometry other); ✓

 89

Geometry difference (Geometry other);

Geometry symmetricDifference (Geometry other);

boolean equals (Geometry other); ✓

boolean touches (Geometry other); ✓

boolean contains (Geometry other); ✓

boolean within (Geometry other); ✓

boolean disjoint (Geometry other); ✓

boolean crosses (Geometry other); ✓

boolean overlaps (Geometry other); ✓

boolean intersects (Geometry other); ✓

boolean relate (Geometry other, EgenhoferOperator operator);

Note: XXX stands for all the implementable geometry objects: Point, LineString, Polygon,

GeometryCollection, MultiPoint, MultiLineString and MultiPolygon.

Figure 6.1 Interface after Loaded Data in the Prototype System

(: Map Area : Mandatory Operations : Optional Operations : Results Box)

 90

F

6.4 Issues

6.4.1 Dataset

OGC provides some t

use the same dataset to

OLE/COM and SQL v

The data is a synth

specification. The sem

testing suites (OGC, 1

format (indicates th

igure 6.2 the Buffer Testing in the Prototype System

esting datasets on its web site. The testing suites for OLE/COM and SQL

 test functionality. In this Java version, the same dataset as that used in the

ersions (see Figure 6.3) is embedded into the testing suite.

etic dataset, developed by hand, to exercise the functionality of the

antics and points’ coordinates of this dataset are defined in OGC released

999c). The following gives entire test data in Well Known Text (WKT)

at the subsequent line of text is a continuation):

91

Figure 6.3 Test Data Concept (OGC, 1999c)

Figure 6.4 Points in the Blue Lake Dataset (OGC, 1999c)

PROJCS['UTM_ZONE_14N', GEOGCS['World Geodetic System 72',DATUM['WGS_72', SPHEROID

['NWL_10D', 6378135, 298.26]], PRIMEM['Greenwich', 0], UNIT['Meter', 1.0]],

PROJECTION['Transverse_Mercator'], PARAMETER['False_Easting', 500000.0],

PARAMETER['False_Northing', 0.0], PARAMETER['Central_Meridian', -99.0],
 92

PARAMETER['Scale_Factor',0.9996], PARAMETER['Latitude_of_origin',0.0],UNIT['Meter',1.0]]"

101,"Blue Lake","POLYGON((52 18, 66 23, 73 9, 48 6, 52 18), (59 18, 67 18, 67 13,59 13, 59 18))"

102,"Route 5","LINESTRING(0 18, 10 21, 16 23, 28 26, 44 31)"

103,"Route 5","LINESTRING(44 31, 56 34, 70 38)"

104,"Route 5","LINESTRING(70 38, 72 48)"

105,"Main Street","LINESTRING(70 38, 84 42)"

106,"Dirt Road by Green Forest","LINESTRING(28 26, 28 0)"

109,"Green Forest","MULTIPOLYGON(((28 26, 28 0, 84 0, 84 42, 28 26),

(52 18, 66 23,73 9, 48 6, 52 18)), ((59 18, 67 18, 67 13, 59 13, 59 18)))"

110,"Cam Bridge","POINT(44 31)"

111,"Cam Stream","LINESTRING(38 48, 44 41, 41 36, 44 31, 52 18)"

112,"Cam Stream","LINESTRING(76 0, 78 4, 73 9)"

113,"123 Main Street","GEOMETRYCOLLECTION(POINT(52 30),

POLYGON((50 31, 54 31, 5429, 50 29, 50 31)))"

114,"215 Main Street","GEOMETRYCOLLECTION(POINT(64 33),

POLYGON((66 34, 62 34, 6232, 66 32, 66 34)))"

115,"Neat Line","POLYGON((0 0, 0 48, 84 48, 84 0, 0 0))"

117,"Ashton","POLYGON((62 48, 84 48, 84 30, 56 30, 56 34, 62 48))"

118,"Goose Island","POLYGON((67 13, 67 18, 59 18, 59 13, 67 13))"

119,"Route 75","MULTILINESTRING((10 48, 10 21, 10 0), (16 0, 10 23, 16 48))"

120,"Stock Pond","MULTIPOLYGON(((24 44, 22 42, 24 40, 24 44)),

((26 44, 26 40,28 42, 26 44)))"

The geometry objects in OGC standard testing dataset are listed above, but not all the

implementable geometry objects defined in OpenGIS Simple Feature Implementation

 93

Specification are represented. Table 6.2 shows the difference between the simple feature data

model and the testing dataset in the implemented geometry objects.

Table 6.2 Comparison of the Implementable Objects in the Data Model and Dataset

Implementable Objects Data Model Testing Dataset

Point X X

LineString X X

Polygon X X

GeometryCollection X X

MultiPoint X

MultiLineString X X

MultiPolygon X X

6.4.2 Distribution

All of Java’s .java files in the testing suite are zipped into one compressed file for easy

distribution. When you unzipped the testing suite, the following file structure will be created on

your system:

borland

…

sf4jConfTest.java
confTest.html

sf4jTestSuite

 Figure 6.5 Unzipped File Structure in the Testing Suite

(in Window environment; box indicated that it is a directory)

 94

The files are divided into supporting files and key files. The key files show off this testing suite’s

features by support from the supporting files. Only the following two key files need to be

adapted:

- sf4jConfTest.java

- confTest.html

The Java applet Sf4jConfTest.java is the essential part in this testing suite. The browser runs this

testing suite by opening the HTML file confTest.html, which contains the compiled file of

sf4jConfTest.java. There are three steps to adapt this testing suite:

1. import the candidate’s implemented classes;

2. adjust the location of all the classes; and

3. compile sf4jConfTest.java.

The testing suite will invoke the implementation of the candidate product to the test

conformance. First of all, we must tell sf4jConfTest.java which implementation will be tested.

The first step is to import the candidate’s implemented classes at the beginning of

sf4jConfTest.java, such as:

import com.uc.geoservnet.geometry.*;

The annotation in the file will instruct the user how to do this.

To make sure that the sf4jConfTest.java can find the imported classes, you must adjust the

location of the implemented classed in your system before compiling the main file. If the

 95

compiler can not find the implemented classes, it will give an error message instructing you of

the adjustments to be made.

The last step is compiling the amended sf4jConfTest.java file. It is assumed that the Java

compiler has been installed on your system. If not, the compiler can be downloaded from Sun’s

web site. It’s easy to compile this Java Applet following the instruction of the compiler. Make

sure the name of the generated byte code file sf4jConfTest.class is the same in the confTest.html

file before you run the testing suite.

 96

CHAPTER 7 CASE STUDY

The designed Geometry Data Model in this thesis has been applied in a research project A GIS

Based Geotechnical Data Sharing and Analysis System (Tao et al, 2001). This case is used to test

the design and demonstrate the performance of the model.

7.1 Background

The geotechnical technology is popularly used in Civil and Environmental Engineering projects

and researches. Geotechnical data is often gathered from field instrumentation, site investigation,

laboratory tests and model studies. The Geological Survey of Canada (GSC) compiled a

computerized database of geological and geotechnical data for the Calgary urban area in the

early of 1970’s. Unfortunately, as time elapsed, the database appears to have been disused and

neglected. It is realized that Calgary has about 100,000 wells on record represented by core

and/or drill cuttings (Eyles, 1997) dispersed across many different agencies. The geotechnical

data generated by and for the special projects was obtained at great expense. They are of huge

potential value for other purposes. The University of Calgary in conjunction with the Calgary

Geotechnical Society launched a project to develop a GIS based data sharing and analysis system

to distribute the geotechnical data through the Internet.

7.2 System Design

 97

7.2.1 Architecture

This geotechnical data sharing and analysis system is not only a geotechnical data distribution

system, but also it should distribute the geotechnical analysis functionality into the Internet.

There are some commercial Internet GIS software available in GIS industry, such as ESRI’s

ArcIMS, Autodesk’s MapGuide, MapInfo’s MapXtreme, and so forth. Different Internet GIS

software adopts different computer technology and spatial theories. Each software package has

its own features and limitations. The existing commercial Internet GIS software has the

capability to distribute the geospatial datasets. Most of them host the analysis functions at the

server side for client invocation, a few of them can distribute the analysis functions to the client

machine through the Internet computing environment (Limp, 2001). However, the limited

extensibility is a big issue when building this data sharing and analysis system on these

commercial Internet GIS software.

In this project, the geotechnical data of Calgary is dispersed among the different agencies, and is

documented using different formats (hardcopy, GIS and CAD). It is also a fact that the databases

and GISs used vary among the agencies. Considering the current status of the geotechnical data,

the existing GIS and database software, and the state of the art technology of the Internet GIS

and databases, the architecture of this geotechnical data sharing and analysis system has been

developed, shown in Figure 7.1.

This system consists of three components: the spatial database, the Internet GIS server, and the

front-end web interface. Oracle 8 is the central database, which manages the geospatial and

 98

attribute geotechnical data. Oracle’s SQL Plus, SQL*Loader and other tools, such as FME,

support the transforming of the geotechnical spatial data into and out of the data repository. The

Java GIS server GeoServNet Server and Agent, and client GeoEyeTM are developed in this

project. The server and client viewer share the same Geometry Data Model designed and

implemented in the previous chapters of this thesis. The spatial and attribute data retrieved from

Oracle database to generate the simple features defined in OpenGIS Simple Features

specification at the GeoServNet side on fly. The generated simple features contain the requested

spatial and attribute information, which are translated to client side GeoEyeTM to display,

operation and query. The GeoServNet Server can be installed on more than one machine. The

GeoServNet Agent middleware plays the role of balancing the visiting burden among the

GeoServNet Servers.

Web Server
GeoServNet Agent
GeoServNet Server

Application
Server

Web Browser
GeoEyeTM Viewer

Oracle

INTERNET

Client

Database Data
Server

SQL
Loader

SQL
Plus

Data Input
& Update Update

GeoServNet Agent

Other
Tools

 99

Figure 7.1 Architecture of the Geotechnical Data and Analysis Sharing System

7.2.2 Data Model

The data model in this system consists of two sub-data models: Geotechnical Data Model and

Spatial Data Model. The Geotechnical Data Model is implemented in Oracle to management the

attribute and spatial geotechnical datasets. The Spatial Data Model is implemented in the

software: GeoServNet and GeoEyeTM.

Geotechnical Data Model

The geotechnical data model in this system was designed based on the design guideline

developed by the Geological Survey of Canada. There are some published data models (Lee et

al. 1990, Oloufa et al. 1992, Adams et al. 1993, Giles 1994, Papacostas 1994, Eyles et al. 1997)

in literature. The E-R pattern analysis technique was used to integrate the spatial and attribute

data in a single data repository.

Borehole

Sample

Layer
Ground

In the real world, the relationships between the entities of

geotechnical field and laboratory test are illustrated at Figure 7.2 and

7.3. The BOREHOLE OBJECT entity extends the relational model to

support the geotechnical spatial information in the database. The

details of the geotechnical data model are discussed as following. Figure 7.2 Borehole

Profile Diagram

• PROJECT entity: The geotechnical data generated by the given projects, which are launched by

different companies. In general, a project often drills many boring holes for the specific

purposes. PROJECT entity is the root entity in the geotechnical data model.

 100

Contains

Contains

1..*

1..*

Spatial Table
Contains

Sample Table

Layer Table

Borehole TableProject Table

1

BNumbe
Borehole
Objects

BNumber
SNumber

Contains

1

1

1..*
1

1

BNumber
LNumber

PNumber
BNumber

PNumber

Figure 7.3 A Conceptual Geotechnical Data Model in Oracle

• BOREHOLE entity: Boreholes are investigation points drilled to retrieve information about

the subsurface soil. The BOREHOLE entity provides information about the boreholes in the

reference from which the subsoil information is taken. The borehole’s information is

presented in the boring log, which is contained in the project’s reports.

• LAYER entity: A layer represents a soil stratum. The collection of a vertical ordering of

layers forms a boring log. Each layer gives the information about the soil stratum.

• SAMPLE entity: A sample is an extraction of soil material from one layer of a borehole.

Samples are used in tests to determine values of soil properties and parameters. Such values

are reported in the SAMPLE entity.

• BOREHOLE OBJECT entity: A Borehole Object is a geospatial object represents a

borehole’s spatial feature in the real world. This special entity is used to organize the

geospatial data.

Each borehole belongs to one project, and each project can have one or many boreholes reported

in the corresponding project report. Therefore, the relationship between the PROJECT and

 101

BOREHOLE entities is one-to-many. Similarly, each layer belongs to one borehole and each

borehole contains one or many layers. The relationship between the BOREHOLE and the

LAYER entities, and the relationship between the BOREHOLE entity and the SAMPLE entity is

also one-to-many. Each borehole object corresponds with each borehole entity, so the

relationship between the BOREHOLE OBJECT and BOREHOLE is one-to-one.

Spatial Data Model

The spatial data model implemented in this system is shown in Figure 7.4. The root of this data

model is the Geometry, which is the Geometry Data Model designed and implemented in

previous chapters in this thesis. The Attribute Model stands for the Geotechnical Data Model

implemented in Oracle. The combination of the spatial information from Geometry and the

attribute information from Attribute generates the Simple Feature objects (the geospatial

Metadata is not implemented in this system). The Feature Collection plays the role of Layer

defined in GeoEyeTM old version 1.0 to organize the similar Simple Features into one collection.

Only the Map and GUIs in GeoEyeTM 1.0 are kept in this spatial data model.

Connection of Models

The Simple Feature object connects the two models in this system. The correspondences of

Simple Feature’s components Geometry and Attribute Model in the Spatial Data Model are the

Borehole Object and other entities in the Geotechnical Data Model. If the system request data

from Oracle, the data in the Borehole Object is transferred into the Geometry Data Model and

the other attribute data is transferred into the Attribute Model, then they are combined together to

generate the Simple Feature.

 102

Geometry

Attribute Model Simple Feature Geospatial
Metadata

Map
(Component)

Feature Collection

GUIs
Applet, Frame, Dialogs:

Display-Controls, Layer-Controls,
 Attribute-Query, ect.

Figure 7.4 Geospatial Data Model

(See Appendix for data Model Notation)

7.3 Implementation

7.3.1 Database Implementation

The dispersed geotechnical databases have diversity in hardware, software, data model, and even

the semantics. It’s a big challenge to integrate these databases at a logical level in the distributed

computing scenario. In this project, the data is transformed into one center-controlled database.

Data conversion is another issue in this case study. Many geotechnical and background datasets

are in MicroStation’s DGN or other CAD formats. However, many spatial datasets are in GIS

 103

formats, such as ESRI Shapefile. There is a gap in the definitions of the objects in CAD and GIS.

Some important information could get lost when transforming the CAD data to GIS data, such as

transforming the DGN formatted data to ESRI’s Shape data. It is more problematic that there

was no standards regarding the geotechnical reports. Borehole sampling reports collected from

various engineering companies are different in term of the diagram presentations, terminology

used, items covered. It would cause huge efforts on populating these datasets into a database.

The various formatted geotechnical datasets are translated into ESRI’s Shape File format and

loaded into Oracle database. Based on the designed database data model detailed above, the

geotechnical data generated from field tests and laboratory tests is loaded into Oracle and

organized in several database view schemes in Table 7.1.

Table 7.1 View Schemes in Geotechnical Database

View Name Contained Item Number

Field Test View 18

Shear Strength View 16

Consistency View 11

Consolidation View 11

Permeability View 6

Unit Weight View 9

7.3.2 GIS Prototype Implementation

The prototype system is composed of two coordinated components: client and server. The client

viewer GeoEyeTM is changed from the old version GeoEyeTM 1.0 developed by Mr. Shuxin Yuan

 104

(Yuan, 2000) by replacing the underlying data model to the Geometry Data Model implemented

from the design of OpenGIS Simple Features Implementation Specification for Java. Some new

functions are developed in this system.

New GeoEyeTM Implementation

GeoEyeTM 1.0 is implemented as a Java Applet and is initiated in a general Web browser. Due to

the underlying Spatial Data Model is changed and a new Geotechnical Data Model is introduced

in the new system, GeoEyeTM 1.0 has been done significant changes to keep these functions in

Table 7.2. The framework of the spatial data model architecture and some algorithms in GUI and

Map objects in the old version are used in the new GeoEyeTM.

It provides two data access scenarios: loading data from server side and client side. ESRI’s

Shape File formatted data file can be directly loaded into the system from local machine. If client

request data from server side, the server retrieves the desired data from Oracle and generates it as

geometry objects, then transfers them to the client. The Java’s ObjectSerialization mechanism is

adopted in the communication between the client and server (see Figure 7.5). The user interface

of this system is illustrated in Figure 7.6.

The general GIS functions are not enough for this prototype system, many geotechnical domain

functions, therefore, are necessary. Due to the limited time, a very simple Profile Analysis

component is developed and added into the system. When the user draws a profile line on screen,

this component will automatically select the objects crossed by the profile line, and a profile will

be drawn in the pop up window (see Figure 7.7).

 105

Table 7.2 GeoEye 1.0 Functions (Yuan, 2000)

Geodata Access − Local and Remote (Web Server) Shape File access

− Access both spatial and non-spatial data

Image layer support − Support GIF and JPEG images

− Georeference image as map background

Map display control − Repaint, Zoom (In/Out/Window/Extent), and Pan.

Map overview window − Overview window On/Off, Resize, and Relocate

− Layer On/Off in overview window

− Display and Drag current map display position, etc.

Layer control − Layer On/Off, Add/Remove Layers

− Layer Reorder, Rename, Change Layer Color, etc.

Attributes manipulation − Identify, Select by Point/Box, Attribute Table, etc.

Drawings − Draw and Save Point, Polyline, and Polygon object.

Project Management − Save and Reload project file.

Web Server

GeoServNet
Agent

Return: Feature Object

RequestFeature("Feature ID")

RequestFeatures("Feature Collection Name")

Return: Map Object

Return: Feature Collection Object (Vector)

RequestProject ("Project Name")

 Client
Applet Jdbc/Odbc

Oracle

GeoServNet
Server

 Figure 7.5 Object Communication between Client and Server

 106

Figure 7.6 New GeoEyeTM User Interface

(: Map display area : Data Access : Tool Bar : Layer Control : Attribute display

window for Identify : Status bar that displays mouse coordinates, scale and current layer)

Figure 7.7 Interface of Profile Analysis

 107

GeoServNet Implementation

GeoServNet has two components: GeoServNet Server and GeoServNet Agent. The two server

are developed as Java Servlets (Java’s server side engine and APIs) and run inside the Java

Servlet Engine and Web Server at the server side.

GeoServNet Server is in charge of data publishing. It retrieves the attribute and spatial data from

Oracle database to generate simple features based on the client’s request. To improve the data

loading performance, all the published datasets are registered in this server. Some general

information of datasets, such as boundaries and spatial indices, is recorded by the server. The

interface of the dataset registration is illustrated in Figure 7.8.

Figure 7.8 Data Registration Interfaces in GeoServNet Server

All client requests are accepted by GeoServNet Agent. The location information of the available

datasets is recorded by this agent. It passes the data request to the proper GeoServNet Server to

retrieve the desired datasets, then transfers he responses from GeoServNet Server to the client,

who launched the data query.

 108

7.4 Case Conclusions

A prototype system has been developed based on the design of the OpenGIS Simple Features

Implementation Specification for Java. The new Geotechnical Data Model and Spatial Data

Model are designed and implemented in this system. The simple feature is the primary object in

the Spatial Data Model, which is simplified from the Simple Feature defined in OGC

specifications by implementing the Geometry and Attribute Model. The Geometry is the

designed and implemented Geometry Data Model.

This case study shows that the design is implementable. The Geometry Data Model implemented

from the design of OpenGIS Simple Features Implementation Specification for Java is used in

this case study to organize the spatial data. The methods implemented in the geometry objects

are easily invoked by other objects outside of the Geometry Data Model. The integration of

Geometry Data Model with other components in the system is straightforward. The new version

of GeoEyeTM works well in this case study.

This case study shows that the design is reasonable. The definitions of the geometry objects are

complete with no ambiguity. The relationship between the geometry objects defined in the

design is clear and logical. New geometry objects not included in this design can be easily

integrated into this model. The organization of the design is simple to facilitate the developing of

a system based on this design. The developer can easily locate the desired geometry objects.

 109

CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

Geocomputing has migrated from the desktop to a networking environment. GIS software

architecture has been evolving from stand-alone systems to client/server systems, and from

client/server systems to ubiquitous computing systems. The Distributed GIS, including Web GIS,

Internet GIS and Ubiquitous GIS, is becoming the mainstream in GIS industry. The boom of the

Internet stimulates the huge demands for distributed GIS applications.

In a DGIS computing environment, interoperability is recognized as the major issue. In most

cases, it’s difficult to tell the difference between openness and interoperability in concept.

Therefore, we often treat them as the same problem. Interoperability can be achieved at several

levels. Many efforts have been made with respect to geodata interoperability; from metadata

standards, such as the metadata standards from FGDC and ISO TC/211, to spatial data coding

standards, FIPS (Federal Information Processing Standards) and SDTS (Spatial Data Transfer

Standard). Research on interoperability at the application and semantics level has gained

interests in recent years. In the application domain, existing DGIS applications are still bound by

some specific GIS software. It’s still difficult to build up interoperability between systems. The

functions, application models and code in one system can not be invoked or migrated to another

system directly.

 110

It is recognized that standards are the key to address interoperability problem, and support

component technology. It is clear that the use of software engineering standards is not enough to

ensure development of interoperable DGIS applications, application domain standards are also

important in determining their fate. The standards from OGC are a response to this problem.

OGC has tried to create widely accepted domain standards for the GIS community. The open

framework from OGC defines the blue print for GIS software, applications and services from the

whole GIS community’s viewpoint. The Geometry Data Model in OGC’s nine worlds (see

Figure 1.2) is the key component in OGC’s standards system. The first released implementation

specification of OGC is the simple feature implementation specification, which defines the

Geometry Data Model and Spatial Reference System.

The existing released simple feature implementation specifications are for OLE/COM, SQL and

CORBA. There is no OGC official specification for Java. In fact, Java is another important

distributed computing platform and is becoming more and more popular as an open source

language. The Java version Implementation Specification of OpenGIS Simple Features is an

important family member in OGC’s specifications.

This research, A Java Implementation for OpenGIS Simple Feature Specification, brings the

following benefits to the GIS community:

 111

• Defines a common data model based on OpenGIS and Java standards. A new OpenGIS

Simple Feature Implementation Specification for Java is designed in this research. The

Geometry Data Model is defined under the OGC’s standards framework in Java’s

conventions. The common data model enriches the OGC’s standard system to support the

Java distributed computing platform.

• Push the development of DGIS and component based GIS in the GIS software industry. The

DGIS and GIS components can be easily integrated and interoperable because they adopted

the same underlying Geometry Data Model designed in this thesis. GIS component can be

integrated with other non-GIS systems to provide spatial functionality. A component based

GIS uses reusable GIS components to reduce GIS software’s development cost; quicken

development cycle and increase the software’s flexibility and interoperability.

• Quicken the development of GIS systems and applications. The system integrator and

application developer build up an application system is faster based on this common data

model and other OGC’s standards, such as GML (Geography Makeup Language) and WFS

(Web Feature Service).

• Provide a basis for interoperability. A common data model supports interoperability at the

data model level, which is higher than geodata interoperability and lower than application

and semantics interoperability. The designed data model in this research can push the

realization of the geodata interoperability and help address application and semantics

interoperability.

A number of conclusions can be drawn from the work presented herein:

• An OpenGIS Simple Feature Implementation Specification for Java is designed. Compared

with related previous works reviewed in this thesis, the geometry object classification logic

in the Geometry Data Model of this implementation specification is clearer. The Geometry

Data Model has high extensibility to embrace the new geometry objects. This

implementation specification can be easily maintained, improved and distributed with the

 112

support from the UML technology. Rational Rose 2000 was used in all the design procedures

to standardize the modeling of the implementation specification.

• A conformance Testing Suite was developed. The testing suite ensures that the

implementation practices of the implementation specification strictly follow the definitions in

the particular specification. This Java Applet testing suite that accompanies this design

ensure the integrity of this work. Both of the mandatory and optional functions defined by the

implementation specification were successfully tested in this suite.

• A prototype system was developed. The prototype Geometry Data Model was developed

based on the Java version Implementation Specification of OpenGIS Simple Features. The

implemented Geometry Data Model was embedded into the case study’s system, which

demonstrated that this design is reasonable and implementable. The performance of the

system is acceptable.

• The design is standard. In this design, the GIS domain technology and standards are from

OGC’s specifications; Java’s coding standards and conventions were used to code the

implementation specification; the standard modeling technology, UML, was adopted in the

design. About 20000 lines (about 500 Kb) 100% pure Java source code developed for the

Implementation Specification, prototype Geometry Data Model, Testing Suite and Case

Study system followed the Java standards and coding conventions.

• A new buffer algorithm was introduced. The Template Union Model is flexible and

extendable to create buffer zones. Different kinds of templates can be combined freely to

perform complicated buffer operations. New templates can be easily added into the model for

specific application’s requirements.

 113

The documents for the implementation specification and conformance testing suite are compiled

and will be revised and improved. It is our intention that the document can be submitted to

OGC’s Technique Committee for review and comments.

8.2 Recommendations

The research on GIS standards is primary for GIS. This research addresses the more basic topic

in the standard’s research: Geometry Data Model. The value of the geometry data model for GIS

is comparable to the cell in relation to a human’s body. A lot of issues under this topic are worth

of further research.

(1) Topological Relationship

OGC moves away from an essential property of spatial data: Intrinsic topological relationships.

Shared co-ordinates only have to be stored once and when correctly referenced reveal spatial

relations by simple searching in stead of computer intensive relationship calculations

(Cattenstart, 1998). Two neighboring polygons have a common boundary, for example, the

boundary is stored separately for each polygon. The intrinsic topological relationship is removed.

(2) Normalized Storage

OGC has classified geometries into simple and complex features. Rules for converting complex

to simple geometries are absent. This leaves room for software developers to implement their

own concepts in dealing with certain types of geometries. This situation calls for a further

extension of geometry definitions and rules to convert from complex to simple entities in the

 114

OpenGIS Data Model architecture. Normalized storage of geometries is absent as well as

intrinsic topological relationship.

(3) Measurement Features

The Simple Features defined in this implementation are still coordinate-based, which makes it

impossible to apply traditional error analysis and estimate uncertainties in derived products

(Goodchild, 2000). Measurement-based features should be imported into this model.

(4) Professional Review

Interoperable GIS software must be open to peer review within the scientific community and

open to continuous process improvement. The software should have embedded discipline-

specific processes to provide credited functionality (Kottman 1994), and make it conform to

“professional standards” or “best accepted professional practice” in software’s internals. It

answers the question “why should we trust the output from the software”. Today’s commercial

GIS primitives are seldom open or standard. The professional review mechanism should be

imported into OGC’s standard framework.

(5) Bridges between Different DCPs

There are three released Implementation Specifications for this topic. Here we propose the fourth

for OGC. Those specifications are focusing on different Distributed Computing Platforms

(DCPs). There are no “bridges” between the different DCPs (Cuthbert, 1999). Supporting

multiple DCPs becomes increasingly untenable. The problem presents another interoperability

issue to OGC.

 115

REFERENCES

Abel, D. J. (1998). Towards integrated geographical information processing, International

Journal of Geographical Information Science, 12(4), 353-371

Adams, T. M., Tang, A. Y. S. and Wiegand, N. (1993). Spatial Data Models for Managing

Subsurface Data, Journal of Computing in Civil Engineering, 7(3) 260-277

Andrews, D. S., snoeyink, J. and Boritz, J. (1994). Further Comparison of Algorithms for

Geometric Intersections Problems, Proceedings 6th International Symposium on Spatial

Data Handling, 709-724

Autodesk, (1997). Autodesk MapGuide: State-of-the-art network-centric GIS application

architecture for publishing and accessing geodata, A White Paper Series of Autodesk

Inc., Retrieved December 1999 from the World Wide Web:

http://www.autodesk.com/solution/gis/whtpaper/index.htm

Balaban, I. J. (1995). An Optimal Algorithm for Finding Segments Intersections, Proceedings

11th Annual ACM Symposium on Computational Geometry, 211-219

Berg, M., van Kreveld, M., Overmars, M. and Schwarzkopf, O. (1997). Computational

Geometry, Algorithms and Applications, Springer-Verlag, Berlin

Bishr, Y. (1998). Overcoming the Semantic and Other Barriers to GIS Interoperability,

International Journal of Geographical Information Science, 12(4), 299-314

Bishr, Y.A., Pundt, H., Kuhn, W. & Rdwan, M. (1999). Probing the concept of information

communities – A first step toward semantic interoperability, in Goodchild, M.,

 116

Egenhofer, M., Fegeas, R. & Kottman, C. (Ed.), Interoperating Geographic Information

Systems, (pp. 55-69). Boston/Dordrecht/London: Kluwer Academic Publishers

Bourke, P. (1989). Intersection Point of Two Lines, Retrieved February 9, 2001 from the World

Wide Web: http://astronomy.swin.edu.au/pbourke/geometry/lineline2d/

Buehler, K. (1998). OpenGIS Technology Development Overview, OpenGIS Consortium

Presentations, Retrieved July 17, 2000 from the World Wide Web:

http://www.opengis.org/techno/presentations/over- view/index.htm

Buehler, K. & McKee, L. (Ed.). (1998). The OpenGIS Guide: Introduction to Interoperable

Geoprocessing and the OpenGIS Specification (3rd ed.). Massachusetts: Open GIS

Consortium.

Cattenstart, G. C. (1998). Open Boundaries in GIS: OpenGIS and the SDO and SDE

implementation. MSc dissertation at the Manchester Metropolitan University in

conjunction with the Free University of Amsterdam.

Chan, T. (1994). A simple Trapezoid Sweep Algorithm for Reporting Red/Blue Segment

Intersections, Proceedings 6th Canadian Conference on Computational Geometry, 263-

268

Charles, B., et al. (1999). Adding an Interoperable Server Interface to a Spatial Database:

Implementation Experiences with OpenMap, in A. Vckovski, K. E. Brassel & H. J. Schek

(Ed.), Interoperating Geographic Information Systems, Proceedings of Second

International Conference: INTEROP'99 (pp. RT115-128), Zurich, Switzerland

 117

Chazelle, B. and Edelsbrummer, H. (1992). An Optimal Algorithm for Intersection Line

Segments in the Plane, Journal of ACM, 39(1), 1-54

Cheng, C. Q. and Yuan, W. (2001). A New Algorithm of Buffer Based on Unit-combined

Model, Journal of Image and Graphics (Chinese) (accepted)

Cigale, B. and Zalik, B. (1999). A Simple Polygon Splitting Algorithm, Proceddings 15th Spring

Conference on Computer Graphics, Budmerice, Slovakia, 239-246

Clementini, E. and DiFelice, P. (1994) A Comparison of Methods for Representing Topological

Relationships, Information Sciences, 80, 1-34

Clementini, E. and DiFelice, P. (1996). A Model for Representing Topological Relationships

Between Complex Geometric Features in Spatial Databases, Information Sciences 90 (1-

4), 121-136

Clementini, E., DiFelice, P. and Califano, G. (1995). Composite Regions in Topological Queries,

Information Systems, 20(6), 33-48

Clementini, E., DiFelice, P. and Oostrom, P. (1993). A Small Set of Formal Topological

Relationships Suitable for End-User Interaction, in D. Abel and B. C. Ooi (Ed.),

Advances in Spatial Databases — Third International Symposium, SSD’93, LNCS 692,

277-295, Springer-Verlag, Singapore

Coppock, J. and Rhind, D. (1995). The History of GIS in Geographical Information Systems -

Principles and Applications, in D. Maguire, M. F. Goodchild and D. Rhind (Ed.), New

York, 21-43

Cornell, G. and Horstmann, C. S. (1997). Core Java (2nd Ed.), SunSoft Press

 118

Cuthbert, A. (1999). OpenGIS: Tales from a Small Market Town, in Vckovski, A. Brassel, K. E.

and Schek, J. (Ed.), Interoperating Geographic Information Systems, Second

International Conference, INTEROP’99, LNCS 1580, 17-28, Springer-Verlag, Singapore

Egenhofer, M.J., Clementini, E. and Di Felice, P. (1994). Topological relations between regions

with holes, International Journal of Geographical Information Systems, 8(2), 129-142

Egenhofer, M. J. and Franzosa, R. (1991). Point-set topological spatial relations. International

Journal of Geographical Information Systems, 5, 161-174

Egenhofer, M.J., Glasgow, J., Gunther, O., Herring, J. R. and Peuquet, D. A. (1999). Progress in

Computational Methods for Representing Geographical Comcepts, International Journal

of Geographical Information Science, 13(8), 775-796

Egenhofer, M.J. and Herring, J. (1990). A Mathematical Framework for the Definition of

Topological Relationships. Proceedings of the Fourth International Symposium on

Spatial Data Handling, Zurich, Switzerland, 803-813.

Egenhofer. M.J. and Sharma, J. (1993). Topological Relations between regions in ℜ2 and Z2, in

D. Abel and B. C. Ooi (Ed.), Advances in Spatial Databases — Third International

Symposium, SSD’93, LNCS 692, 36-52, Springer Verlag, Singapore

Elyes, N. and Doughty, M. (1997). Geoscientific Information Systems for Environmental

Geology, Environmental Geology of Urban Areas, Geological Association of Canada,

495-506

Frank, A. (1991). Aualitative Spatial Reasoning About Cardinal Directions, in D. Mark and D.

White (Ed.), A Proceedings of Autocarto 10 (pp. 148-167), Baltimore, MD

 119

Giles, D. (1994). A Geographical Information System for Geotechnical and Ground Investigation

Data Management and Analysis, Retrieved on April 18, 2001 from

 the World Wide Web: http://wwwsgi.ursus.maine.edu/gisweb/spatdb/egis/eg94087.html

Goodchild, M. F. (1999). Measurement-based GIS. In W. Shi, M. Goodchild & P. Fisher (Ed.),

Proceedings of The International Symposium on Spatial Data Quality’99 (pp. RT1-9)

Goodman, J. E. and O’Rourke, J. (1997). Handbook of Discrete and Computational Geometry,

CRC Press LLC

Hernandez, D., Clementini, E. and Di Felice, P. (1995). Qualitative Distances, in A. Frank and

W. Kuhn (Ed.), Spatial Information Theory – A Thoerical Basis for GIS, International

Conference COSIT’95, LNCS 988, 45-57, Springer Verlag, Berlin

Karimi, H. A. (1997). Components of Interoperable Geographic Information Systems. Technical

Report: Interoperating GISs, Ed. by M. F. Goodchild, M. J. Egenhofer & R. Fegeas.

Kottman, C. A. (1994). Open GIS Software: An Industry View, StandardView, 2(3), 159-162

Kramer, J. (1994). Distributed Software Engineering, 16th IEEE International Conference on

Software Engineering (ICSE-16), 253-263, Sorrento

Lee, F. H., Tan, T. S., Karunaratne, G. P. and Lee, S. L. (1990). Geotechnical Data Management

System, Journal of Computing in Civil Engineering, 4(3), 239-254

Leung, Y., Leung, K. S. and He, J. Z., 1999, A Generic Concept-based Object-oriented

Geographical Information System, International Journal of Geographical Information

Science, Vol. 13, No. 5, 1999, pp475-498
 120

Limp, W. F. (2001). User Needs Drive Web Mapping Product Selection. GeoWorld, 14(2), 8-18

McKee, L. (2000). Geo-semantics and the "New Renaissance". GEO AsiaPacific, April, 2000.

Retrieved July 11, 2000 from the World Wide Web:

http://www.opengis.org/info/gisworld/GeoAsiaPacific/GAP.htm

Min, W., Sheng, C. and Tang, Z. (1991). An Improved Plane-seep Algorithm for Line Segment

Intersections, in Staudhammer, J. and Peng, Q. (Ed.), CAD/Graphics’91, 192-197

Oloufa, A. A. and Eltahan, A. A. (1992). Geotechnical Data Management: A GIS-based

Approach, Computing in Civil Engineering, 590-597.

Open GIS Consortium Inc. (1996). The OpenGIS® Abstract Specification: An Object Model for

Interoperable Geoprocessing. (Document No. 96-015R1). Retrieved May 28, 2001 from

the World Wide Web: http://www.opengis.org/techno/

Open GIS Consortium Inc. (1998a). The OpenGIS® Guide – Introduction to Interoperable

Geoprocessing. Retrieved April 21, 2001 from the World Wide Web:

http://www.opengis.org/techno/guide.htm

Open GIS Consortium Inc. (1998b). The OpenGIS® Simple Features Specification For CORBA

Revision 1.0. Retrieved May 28, 2001 from the World Wide Web:

http://www.opengis.org/techno/

Open GIS Consortium Inc. (1999a). The OpenGIS® Simple Features Specification For SQL

Revision 1.1. (Document No. 99-049). Retrieved May 28, 2001 from the World Wide

Web: http://www.opengis.org/techno/

 121

Open GIS Consortium Inc. (1999b). The OpenGIS® Simple Features Specification For

OLE/COM Revision 1.1. (Document No. 99-050). Retrieved May 28, 2001 from the

World Wide Web: http://www.opengis.org/techno/

Open GIS Consortium Inc. (1999c). Conformance Test Guidelines for OpenGIS® Simple

Features Specification for COM. (Document No. 99-037r2). Retrieved June 12, 2001

from World Wide Web: http://www.opengis.org/techno/conformance.htm

O’Rourke, J. (1993). Computational Geometry in C, Cambridge University Press, Cambridge

Papacostas, C. S. (1994). Geotechnical Database, Journal of Construction Engineering and

Management, 120(1), 211-221

Peuquet, D.(1992). An Algorithm for Calculating Minimun Euclidean Distance Between Two

Geographic Features, Computers and Geosciences, 18, 989-1001

Peuquet, D. and Zhan, C. X. (1987). An Algorithm to Determine the Directional Relationship

between Arbitrarily-shaped Polygons in the Plane, Pattern Recognition, 20, 65-74

Preparata, F. P. and shamos, M. I. (1988). Computational Geometry: an Introduction (2nd Ed.),

Springer-Verlag, New York

Raj, G. S. (2001). A Detailed Comparison of CORBA, DCOM and Java/RMI, Retrieved January

12, 2001 from World Wide Web: http://www.execpc.com/~gopalan/misc/compare.html

Retz-Schmidt, G. (1988). Various Views on Spatial Prepositions, AI Magazine, 9, 95-105

Schutte, K. (1995). An Edge Labeling Approach to Concave Polygon Clipping, Preprint

submitted 7 July 1995 to ACM Transactions on Graphics, Retrieved Feb. 2, 2001 from

World Wide Web: http://www.ph.tn.tudelft.nl/~klamer/clip.ps.gz

 122

Sf4java Newsgroup, http://groups.yahoo.com/group/sf4java/, last check on May 25, 2001

Sheth, P. A. (1999). Changing Focus on Interoperability in Information Systems: From System,

Syntax, Structure to Semantics, in Goodchild, M., Egenhofer, M., Fegeas, R. & Kottman,

C. (Ed.), Interoperating Geographic Information Systems, (pp. 5-29).

Boston/Dordrecht/London: Kluwer Academic Publishers

Sun Microsystem. (1999). Code Conventions for the JavaTM Programming Language. Retrieved

June 22, 2001 from World Wide Web:

http://java.sun.com/docs/codeconv/index.html

Tao, C.V. (2000). Development of Internet-based GIServices, Proceedings of GIS2000

Conference (CD-ROM), Toronto, Canada, March 14-16

Tao, C.V., Fei, C. and Wong, R. (2001). An Internet-GIS Based Geotechnical Data Sharing and

Analysis System, Proceedings of 2001 Earth Odyssey, 54th Canadian Geotechnical

Conference & 2nd Joint IAT and CGS Groundwater Conference (CD-ROM), Calgary,

Canada, September 16-19

Tao, C.V., and Yuan, S. (2000a). GeoServNet: Renting Geotools over Internet, Geo-Informatics,

14(12), 12-15

Tao, C.V., and Yuan, S. (2000b). Developing of a GIS Service Model, Proceedings of GITA

2000 Conference, Denver, USA, March 26-29

 123

http://groups.yahoo.com/group/sf4java/

Vckovski, A. (1999). Interoperability and spatial information theory. in Goodchild, M.,

Egenhofer, M., Fegeas, R. & Kottman, C. (Ed.), Interoperating Geographic Information

Systems, (pp. 31-37). Boston/Dordrecht/London: Kluwer Academic Publishers

Yuan, S. (2000). Development of A Distributed Geoprocessing Service Model, M. Sc. Thesis,

Department of Geomatics Engineering, University of Calgary

Yun, S. (1999). The Internet GIS Infrastructure for Interoperability: MAP (Mapping Assistant

Protocol), GeoSolutions: Integrating Our World (pp. RT41-45), Vancouver

Zalik, B., Gombosi, M. and Podgorelec, D. (1998). A Quick Intersection Algorithm for Arbitrary

Polygons, Proceedings 14th Spring Conference on Computer Graphics, Budmerice,

Slovakia, 195-204

Zalik, B. and Claphworthy, J. G. (1999). A Universal Trapezoidation Algorithm for Planar

Polygons, Computer & Graphics, 23(3), 353-363

Zalik, B. (2000). Two Efficient Algorithms for Determining Intersection Points Between Simple

Polygons, Computer & Geosciences, 26(2000), 137-151

 124

APPENDIX DATA MODEL NOTATION

1. Conceptual Model Notation

 Concept
A

Property
Names

B

3 Association name

Concept

1 1..*

In the above diagram:

: Concepts or types in a conceptual model. The upper part of the rectangle box gives the

name of the concept and the lower part list the important properties of the concept. In many

cases, the property name could be empty.

: The association between two concepts. In this thesis, dotted lines represent association

between remote objects.

: Association name: The name that describe the association between two concepts.

: Direction of association: It gives the direction to read the association. The default

direction of an association is from left to right or from top to bottom, in which the arrow can

be ignored.

 125

: Multiplicity of an association. For example: "1" means only one, "*" means many, "1..*"
means 1 or more, and so forth.

2. Class Diagram Notation

 Class Notation Dataset

Unimplemented

Class

Data Files

Database

Abstract Class

Concrete Class

Association Multiplicity Aggregation

2+ Class 2 Class 1

Class 2 Class 1

Class 2 Class 1

Class 2
(component)

Class 1
(aggregate)

Exactly one

Zero or more

Two or more

Inheritance

SubClass

SuperClass

SubClass 1 SubClass 2

SuperClass

 126

	APPROVAL PAGE
	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 INTRODUCTION
	1.1Research Background
	1.2Objectives and Limitations
	1.3Outline

	CHAPTER 2 INTEROPERABILITY
	Background
	GIS Trend
	2.1.2 Overview of Interoperability

	2.2Interoperability Levels
	2.3 Interoperability Approaches
	2.3.1 Overview
	2.3.2 OGC’s Approach

	2.4Summary

	CHAPTER 3 RESEARCH METHODOLOGY
	3.1 Exiting Work Review
	3.2 Design And Implementation
	3.3 Testing Suite
	3.4 Case Study

	CHAPTER 4 EXISTING WORK REVIEW
	4.1 OGC’s Implementation Specifications
	4.2 Other Existing References

	CHAPTER 5 JAVA IMPLEMENTATION
	5.1 General Logical Model Design
	5.1.1 Design Criteria
	5.1.2 Geometry Entity Design
	Geometry Entity Classification Criteria

	5.2 Geometry Data Model Design
	Abstract Geometry Data Model Design
	Geometry Data Model
	Factory Design

	5.3 Geometry Implementation
	Functions
	5.3.2 Geodata Storage

	Characteristics Analysis

	CHAPTER 6 TESTING SUITE
	Objectives
	Testing Suite Design
	Testing Suite Generation
	Testing Procedure
	Design Considerations
	Components of Testing Suite

	Implementation
	Issues
	Dataset
	Distribution

	CHAPTER 7 CASE STUDY
	Background
	System Design
	7.2.1 Architecture

	Data Model
	Implementation
	Database Implementation
	GIS Prototype Implementation

	Case Conclusions

	CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS
	8.1Conclusions
	8.2Recommendations

	REFERENCES
	APPENDIX DATA MODEL NOTATION

