
The Evaluation of Three Approaches to Implementing an

OGC Web Map Service Client Application

A thesis

submitted in partial fulfilment

of the requirements for the Degree

of

Master of Science

at the

University of Canterbury

by

Hao Ding

University of Canterbury

2003

ii

Examining Committee

Supervisor Dr Richard Pascoe

Department of Computer Science

The University of Canterbury

Associate Supervisor Dr Neville Churcher

Department of Computer Science

The University of Canterbury

External Examiner Dr XinFeng Ye

Department of Computer Science

The University of Auckland

iv

To my parents and my girlfriend, Xiaohong,

for their ongoing support and love

vi

Abstract

A multitude of technologies are presently available for the development of Web appli-

cations, each having its strengths and weaknesses. Three of them that are used on the

Java 2 platform, Enterprise Edition (J2EE) are introduced in this thesis. They are

JavaServer Pages (JSP), JavaServer Pages Standard Tag Library (JSTL), and eXten-

sible Markup Language Compiler (XMLC).

The functionality that is representative of a generic OpenGIS Consortium (OGC)

Web Map Service (WMS) client has been implemented using three approaches that are

based on the above technologies—JSP with embedded Java, JSP with JSTL tags, and

XMLC. The functionality includes producing a custom map with layers retrieved from

different WMS servers; manipulating views of the map; querying information about

features of a location selected on the map by the user, and so on.

In this thesis we evaluate and compare the three approaches from the perspective of

application architecture, development, and maintenance, based on our implementation

experience. We also present the design and setting up of a local Web mapping system

on which the WMS client being implemented has been running.

viii

Acknowledgments

I would like to thank my supervisors Dr. Richard Pascoe and Dr. Neville Churcher for

their patience, guidance, and support. Also thank Michael Herman for proof reading

the draft of this thesis.

I also would like to acknowledge the support of Dr. Greg Ewing, who set up a

WMS-compliant map server that was interacted with in the experiment.

Finally, thank all my colleagues and friends who have given me help, support, and

inspiration.

x

Contents

1 Introduction 1

1.1 OGC Web Map Service . 1

1.1.1 OGC WMS Server . 2

1.1.2 OGC WMS Client . 3

1.2 Three Approaches to Implementing an OGC WMS Client 5

1.3 Objective . 6

1.4 Methodology . 7

2 JSP, JSTL and XMLC 9

2.1 Introduction to the Technologies . 9

2.1.1 Java Servlets . 9

2.1.2 JavaBeans . 10

2.1.3 Document Object Model (DOM) 11

2.2 JavaServer Pages (JSP) . 11

2.3 JSP Standard Tag Library (JSTL) . 13

2.4 Extensible Markup Language Compiler (XMLC) 14

2.5 A Simple Example . 15

2.6 Summary . 19

3 Design of a Generic WMS Client 21

3.1 Designing a Local Web Mapping System 21

3.2 Functionality . 23

3.2.1 A Simple Prototype . 24

3.2.2 Multiple Request Enabled . 24

3.2.3 Multiple WMS Server Interaction 25

xii CONTENTS

3.3 Functional Modules . 26

3.3.1 The Architecture . 27

3.3.2 Capabilities Module . 29

3.3.3 Legend Control Module . 29

3.3.4 Map Control Module . 30

3.3.5 Feature Module . 31

3.4 Summary . 31

4 Implementation 33

4.1 Building the Local Web Mapping System 33

4.2 Implementation of a Generic WMS Client 34

4.2.1 Capabilities Module . 35

4.2.2 Legend Control Module . 36

4.2.3 Map Control Module . 39

4.2.4 Feature Module . 42

4.2.5 Other Components . 45

4.3 Generic Implementation . 46

4.3.1 The Algorithm for Inserting Data into Tables with XMLC . . . 46

4.3.2 The Use of DOM for Dealing with XML/GML 49

4.3.3 The Use of CSS for Supporting Maps Overlapping 54

4.4 Summary . 55

5 Evaluation 57

5.1 Evaluation Criteria . 57

5.2 Separating Content from Presentation 60

5.2.1 Separating Markup from Code 60

5.2.2 Separating Presentation-oriented Tasks from Data-oriented Ones 62

5.3 Ease of Development . 66

5.3.1 Method Calling . 66

5.3.2 Data Type Conversion . 70

5.3.3 Conditional Web Page Output 72

5.3.4 Inserting Content into Tables 75

5.3.5 Dealing with XML/GML . 80

5.3.6 Overlapping Multiple Maps . 82

CONTENTS xiii

5.3.7 Error Localisation . 83

5.4 Ease of change . 85

5.4.1 Changing the Page Appearance 85

5.4.2 Changing the Content . 87

5.4.3 Rebuilding Updated Pages . 89

5.5 Summary . 89

6 Comparison 91

6.1 Separating Content from Presentation 91

6.2 Ease of Development . 92

6.3 Ease of Change . 95

7 Conclusions 97

8 Future Work 101

A Sample WMS Capabilities XML Document 103

B Sample GML Document presenting Feature Information 109

C Sample Mapfile for UMN MapServer 115

D Source file game.java 125

Bibliography 135

xiv CONTENTS

List of Figures

1.1 Interoperable Web mapping structure 2

1.2 A sequence diagram depicting a typical interaction between a WMS

client and server . 4

2.1 A sample DOM tree representing a document 11

2.2 JSP processing phases . 12

2.3 XMLC processing phases . 15

2.4 JSP example: game1.jsp . 16

2.5 JSTL example: game2.jsp . 17

2.6 XMLC example: template page game.html 17

2.7 XMLC example: The DOM of the template page 18

2.8 XMLC example: The manipulation class gameMan.java 20

3.1 Local Web mapping system architecture 22

3.2 WMS client Use Case diagram . 23

3.3 Map overlapping . 25

3.4 WMS client functional modules . 26

3.5 WMS client architecture . 28

4.1 Practical Web mapping system . 34

4.2 The capabilities module class diagram 35

4.3 The index page . 36

4.4 The legend control module class diagram 37

4.5 A framed pape containging the layerList page 38

4.6 Another layerList page showing capabilities information of two WMS

servers . 39

xvi LIST OF FIGURES

4.7 The map control module class diagram 40

4.8 A simple mapViewer page with the featureInfo page included 41

4.9 The mapViewer page with the featureSummary page included. Multiple

maps are overlapped and the order of layers is changeable 42

4.10 Another mapViewer page with the featureSummary page included. The

map is composed of layers retrieved from multiple WMS servers 43

4.11 The feature module class diagram . 44

4.12 The featureInfo page . 44

4.13 The prototype table created in the template page layerList.html 46

4.14 The algorithm used for inserting data into a table using XMLC 47

4.15 In the manipulation class LayerListMan, a table with layer titles listed

is generated . 47

4.16 The prototype table created in the template page featureSummary.html 48

4.17 The modified algorithm used for inserting data into a table using XMLC 49

4.18 In the manipulation class FeatureMan, a table with feature summary

presented is generated . 50

4.19 The WMS server’s capabilities XML is parsed into a DOM document in

the ServerCapabilitiesDAO . 51

4.20 Retrieve map layers from a WMS server’s capabilities XML file 52

4.21 Retrieve legend features from a GML file 53

4.22 The map is overlapped using the styles defined in CSS 54

5.1 Sample code from mapViewer.jsp, displaying selected layer titles in a

selection list using JSP with embedded Java 61

5.2 Sample code from mapViewer.jsp, displaying selected layer titles in a

selection list using JSP with JSTL tags 61

5.3 Sample code from template page mapViewer.html, creating a sample

multiple selection list . 62

5.4 Sample code from the manipulation class MapViewerMan, displaying

layer titles in a selection list using XMLC 62

5.5 Sample code from featureSummary.jsp, implementing using JSP with

embedded Java . 64

5.6 Sample code from featureInfo.jsp, accessing GML file using JSTL tags . 65

LIST OF FIGURES xvii

5.7 Sample code from mapViewer.jsp, overlapping maps using JSP with

embedded Java . 67

5.8 The methods getMapRequest() and getMapLegendStr() implemented in

classes RequestManager and LegendInformation 67

5.9 Sample code from mapViewer.jsp, overlapping maps using JSP with

JSTL tags . 68

5.10 The methods implemented in the class RequestManager are conformed

to the JavaBeans property conventions 69

5.11 Sample code from the manipulation class MapViewerMan, demonstrat-

ing the method calling using XMLC . 70

5.12 Sample code from featureSummary.jsp, showing automatic data type

conversion using JSTL . 71

5.13 Sample code from featureInfo.jsp, demonstrating the conditional output

using JSP with embedded Java. 73

5.14 Sample code from featureInfo.jsp, demonstrating the conditional output

using JSP with JSTL tags. 74

5.15 Sample code from template page featureInfo.html 75

5.16 Sample code from the manipulation class FeatureInfoMan, demonstrat-

ing the conditional output using XMLC. 76

5.17 Sample code from layerList.jsp, displaying a list of layer titles in a table

using JSP with embedded Java. 77

5.18 Sample code from layerList.jsp, displaying a list of layer titles in a table

using JSP with JSTL tags. 78

5.19 Sample code from featureSummary.jsp, displaying feature summary in

a table using JSP with JSTL tags. 79

5.20 In the template page mapViewer.html, the styled prototype HTML ele-

ments are used . 83

5.21 Sample code from the class MapViewerMan, manipulating the map over-

lapping. 83

5.22 Sample code from layerList.jsp, displaying a list of layer titles in a mul-

tiple selection list using JSP with embedded Java 86

5.23 The prototype selection list created in the revised template page lay-

erList.html . 88

xviii LIST OF FIGURES

5.24 The revised manipulation class LayerListMan 88

5.25 Evaluation summary . 90

Chapter 1

Introduction

With the rise of the Internet, the World Wide Web1 (WWW) has become an important

medium for information distribution because of its accessibility and popularity. In the

area of Geographic Information System (GIS), Web technologies are widely used in

distributed applications, such as Web mapping systems, for geographic data gathering,

accessing, and processing. Mapping on the Web includes the visual presentation of geo-

spatial data, as well as more interactive operations, such as creating thematic maps,

and querying and analyzing spatial information.

1.1 OGC Web Map Service

The Open GIS Consortium (OGC) Web Map Service (WMS) is part of the Web Map-

ping Testbed (WMT) project. It intends to advance interoperable Web mapping tech-

nology. The OGC WMS specification 1.1.02 [25] offers a standard client-server inter-

action protocol that each map server implements as a common interface for accepting

requests and returning responses. The effect of the standard is to ensure that a client

is able to access all the available OGC Web map servers over the Internet.

In the absence of the OGC WMS specification, a client that successfully interacts

with one map server would in most cases be unable to interact with another as map

servers from different venders would probably be implementing different functions.

The interoperable Web mapping structure is illustrated in Figure 1.1, where each

1Through out the thesis we will abbreviate the term WWW to the Web
2WMS 1.1.0 is the specification we referenced in our research. The latest version is WMS 1.1.1

2 Introduction

map server is accessed by the client through the common interface and connects to

a unique database containing geo-feature data for a specified spatial domain. In a

distributed OGC WMS, a WMS server could also be a cascading map server [25] that

is able to aggregate the capabilities of other WMS servers by interacting with them.

The WMS client and WMS servers communicate with each other using the Hypertext

Transfer Protocol (HTTP).

Client

Web MapServers DataBases

HTTP

Browsers

HTTP

Figure 1.1: Interoperable Web mapping structure

1.1.1 OGC WMS Server

An OGC WMS server implements three standard operations: GetCapabilities, GetMap,

and GetFeatureInfo. The first two operations are mandatory for each WMS server:

GetCapabilities: The GetCapabilities operation provides the client with a WMS

server’s service metadata. This metadata is provided as an eXtensible Markup

Language (XML) [40] document that specifies the WMS server’s capabilities,

including geographic areas covered, supported image formats, coordinate refer-

ence systems, available map layers, and so on (see Appendix A for a sample

capabilities XML document).

GetMap: The GetMap operation enables the client to request a map. The map is

generally rendered in a pictorial format such as Graphics Interchange Format

1.1 OGC Web Map Service 3

(GIF) [6] and Portable Network Graphics (PNG) [37], which can be viewed di-

rectly in a graphical Web browser or other pictorial software.

GetFeatureInfo: The GetFeatureInfo operation is optional for a WMS server. Using

this operation a client requests more information about features at a specific

location in the map. The WMS server will respond with either a Geography

Markup Language (GML) [24] document, or a plain text file, or a Hypertext

Markup Language (HTML) file containing this information. GML is a type of

XML encoding for specifying the geographic feature information (see Appendix B

for a sample GML document).

1.1.2 OGC WMS Client

An OGC WMS client is a Web application that communicates with OGC WMS servers

using the three standard operations. It also dynamically generates HTML pages for

displaying WMS server capabilities, maps and features in the Web browser.

In a typical OGC WMS client-server interaction (see Figure 1.2), the client first

requests a capabilities document from the WMS server in order to determine what

functions the map server implements and what maps can be provided. The client then

uses the GetMap operation to get a map. Finally, the client may use the GetFeatureInfo

operation with a specific point on the map to retrieve more information.

The WMS client asks a WMS server to perform these operations by submitting

HTTP requests in the form of Universal Resource Locators (URLs). All URLs include:

the protocol; hostname; path; question mark ‘?’; specification version number; and

service type. An ampersand ‘&’ is inserted between each parameter name/value pair.

URLs containing these parameters look like this:

http://www.servername/cgi-bin/mapserv?VERSION=1.1.0&SERVICE=WMS&

Additional request parameters are appended depending on what operation is requested.

When requesting the GetCapabilities operation, a request type parameter as shown

below should be appended to above string:

REQUEST=GetCapabilities

The GetMap request usually includes several parameters that are needed to produce

a map by the WMS server. These include: layers; styles; bounding box; Spatial

4 Introduction

Figure 1.2: A sequence diagram depicting a typical interaction between a WMS client

and server

Reference System (SRS); map output width and height; image format; and so on.

This information must be aligned with the information provided in the capabilities

XML document. The following are example parameters that may be appended to

construct a GetMap request:

REQUEST=GetMap&BBOX=171.8889,-43.8908,173.1171,-43.2767&

SRS=EPSG:4326&WIDTH=600&HEIGHT=300&FORMAT=image/png&

LAYERS=airport_poly,road_cl&STYLES=default,default&TRANSPARENT=TRUE

Layers specify the information to be shown on the map (e.g. roads, rivers, towns).

A list of styles, one or more for each layer, defines how to depict layers. For example,

lines represent roads, circles represent towns. If the style of a layer is not claimed in the

WMS server’s capabilities document, that style is known as the “default” style [25].

The bounding box is a set of four coordinate values (minX, minY, maxX, maxY)

indicating a rectangular area on the earth to be mapped using a specified SRS. The

SRS names a projected reference system code, which includes a namespace prefix, a

1.2 Three Approaches to Implementing an OGC WMS Client 5

colon and the identifier. Two namespaces are defined in the WMS specification: EPSG

and AUTO (see [25] for detailed description)

Most of the GetMap request parameters that generate the original map are repeated

in a GetFeatureInfo request. Additional parameters of the GetFeatureInfo request

define the format of the file to be returned, the layer to be queried, the coordinates

indicated on the map, and the maximum number of features about which to return

information. The following illustrates the parameters that may be appended in a

GetFeatureInfo request URL:

REQUEST=GetFeatureInfo&BBOX=171.8889,-43.8908,173.1171,-43.2767&

SRS=EPSG:4326&WIDTH=600&HEIGHT=300&FORMAT=image/png&

LAYERS=airport_poly,road_cl&STYLES=default,default&TRANSPARENT=TRUE&

QUERY_LAYERS=airport_poly,road_cl&X=280&Y=130&FEATURE_COUNT=5&

INFO_FORMAT=application/vnd.ogc.gml

Generic Functionality

Lots of institutions have already developed their OGC WMS-compliant client appli-

cations, such as CubeView of CubeWerx Inc [7], WMS Viewer of InterGraph [16] and

Digital Earth Web Map Viewer of NASA [10]. Although each WMS client has its own

features, some common functionality, such as zooming and panning image maps, ad-

justing display order of map layers, and producing custom maps with layers retrieved

from different WMS servers, is implemented by all of them. We identify this function-

ality as being representative of a generic WMS client implementation for this research,

and implement them using different approaches within the Java 2 Platform, Enterprise

Edition (J2EE) framework [36].

1.2 Three Approaches to Implementing an OGC

WMS Client

A Web application is a collection of Web components and configuration information

running on a Web server, which manages the interaction between Web clients and the

application business logic. Web technologies are usually utilised in a Web application

6 Introduction

implementation to produce dynamic Web content on demand. Of the many technolo-

gies in J2EE, two are of particular interest for this research: Java Servlets [34] and

JavaServer Pages (JSP) [33].

A Java Servlet is a Java class implementing the standard interface javax.servlet. It

produces dynamic content in response to requests (in an HttpServletRequest object)

from the Web server and outputs HTML by populating an HttpServletResponse object.

The JSP is another way to write Java Servlets. Java code fragments are inserted

directly into a static HTML page to control dynamic Web content. A JSP document

is translated into a Java Servlet, usually at runtime.

The JSP Standard Tag Library (JSTL) [35] is a new technology based on JSP. This

library provides a set of standard functional tags and a kind of Expression Language

(EL) that can be used in a JSP document instead of Java code to manipulate dynamic

Web content.

Enhydra XMLC [12] is an alternative to JSP. It applies the Java Servlet technology

and provides an object-oriented mechanism for generating dynamic Web pages from

static template HTML pages.

JSP with embedded Java, JSP with JSTL tags, and XMLC are the three approaches

under investigation in this research. A detailed introduction of JSP, JSTL, and XMLC

is provided in Chapter 2.

1.3 Objective

The objective of the research is to evaluate and compare the efficacy of three Java-

based approaches—JSP with embedded Java, JSP with JSTL tags, and XMLC—to

implementing a client that interacts with servers supporting the OGC WMS within

J2EE framework. This research shows the advantages and disadvantages of each of

these three approaches and thus helps developers select the appropriate technology in

Web application architecture design, as well as in the development and maintenance

of Web pages.

1.4 Methodology 7

1.4 Methodology

We identify a number of functions that are intended to be representative of a generic

WMS client implementation (Section 3.2). These functions are separated into three

levels, with the complexity increasing from one level to the next. The WMS client

prototype is executed in a locally built Web mapping system. The design of the local

system and the generic WMS client are described in Chapter 3.

The generic WMS client has been implemented using the three approaches under

investigation. The implementation details are presented in Chapter 4.

With the experience of the implementation, each approach is evaluated and com-

pared with the other two using a set of evaluation criteria (Section 5.1) defined from

the perspective of Web application architecture, development and maintenance. They

are:

• Separating content from presentation

- Separating markup from code

- Separating presentation-oriented tasks from data-oriented ones

• Ease of development

- Method calling

- Data type conversion

- Conditional Web page output

- Inserting content into HTML tables

- Dealing with XML/GML

- Overlapping multiple maps

- Error Localisation

• Ease of change

- Changing the page appearance

- Changing the content

- Rebuilding updated pages

8 Introduction

A detailed description of the evaluation and comparison is discussed in Chapters 5

and 6 respectively. Finally, the conclusion is offered in Chapter 7, and future work is

specified in Chapter 8.

Chapter 2

JSP, JSTL and XMLC

JSP, JSTL and XMLC are all Java-based Web technologies for dynamically generat-

ing Web content. In this chapter, each technology is introduced and an example is

presented to show how they differ one from the other.

2.1 Introduction to the Technologies

Three technologies are introduced in this section: Java Servlets; JavaBeans; and Doc-

ument Object Model (DOM). They are the essential elements of the JSP, JSTL and

XMLC approaches, and will be applied on our implementation.

2.1.1 Java Servlets

A Servlet is a compiled Java class that is managed by a Servlet Container. The Servlet

technology allows one to develop Java applications that generate Web content.

An HTTP Servlet must extend javax.servlet.http.HttpServlet. When the Web browser

requests a page that is produced with a Servlet, the request is processed by a Servlet

container in the Web server. The Servlet container creates an instance of the ap-

propriate Servlet and the init() method in the Servlet is invoked. After that, the

Servlet’s service() method is called with request and response objects as parameters.

The Servlet then executes either the doGet() or doPost() method and creates the

HTML output. Finally, the Servlet container passes the output to the Web browser

through the response object.

10 JSP, JSTL and XMLC

A Servlet can instantiate other Java classes and perform actions. It can also connect

to another Servlets, JSP documents, or HTML pages. The state of the information

in an Web application can be managed with scope, which defines the length of time

over which the information is maintained and available to be accessed. There are four

levels of scope defined in Servlet and JSP: page; request; application; and session.

Page Scope: Page scope is only available to a single Servlet or JSP file. The infor-

mation stored in the page scope cannot be accessed from outside that page.

Request Scope: The information stored in the request scope will be available across

pages and Servlets.

Application Scope Application scope is the broadest level. The information stored

in the application scope can be accessed by all of the Servlets and JSP documents

that are part of a Web application.

Session Scope Session scope is not tied to particular pages or Servlets, it relates to

a particular user or task.

2.1.2 JavaBeans

JavaBeans [32] are portable Java components. They can be used to build visual com-

ponents, perform the business logic of an application, maintain data elements, and

so on. Properties, methods, and events are the three most important features of a

JavaBean. Properties are public attributes that can be accessed through get and set

methods. Methods are normal Java methods that can be called from other components

or a scripting environment. Events are used to notify other components of the change

of states. There are some common conventions that all JavaBeans follow:

• A JavaBean must have a constructor without arguments.

• A JavaBean property consists of a member variable and a get method and an

optional set method for returning and/or setting the variable.

• The name of the get and set methods contains the property name, such as get-

PropertyName() and setPropertyName().

• The get method does not contain any input arguments.

2.2 JavaServer Pages (JSP) 11

2.1.3 Document Object Model (DOM)

The DOM [5] is an Application Programming Interface (API) that allows you to access

and manipulate the contents of HTML and XML documents. It provides a set of

standard objects for representing individual elements and content in an HTML or XML

document, with methods for accessing, changing, deleting, or adding those objects.

The DOM represents a document as a hierarchy of nodes, each representing an

element, a comment, text, or some other object. This results in a tree-like structure

as illustrated in Figure 2.1. Each object implements the Node interface. The root

of the tree is a document object that also implements the Document interface. The

document object contains only one child element, which is the root element of the tree

representing the document. Starting from the root element, we can traverse the tree

to access individual node within the tree.

Document

Element

Element Element Element

Comment Element Element Text

Text

Element

Figure 2.1: A sample DOM tree representing a document

2.2 JavaServer Pages (JSP)

Sun Microsystem’s JSP [33] is based on Java Servlets technology. A JSP document

is basically an HTML file with embedded fragments of Java code, which generates

dynamic content. A JSP file is processed by a JSP container at run time as illustrated

12 JSP, JSTL and XMLC

in Figure 2.2. When the Web browser requests a JSP file, the JSP container in the

Web server first converts the JSP file to a Servlet and compiles it with more business

logic Java code (i.e. JavaBeans). The container then executes the compiled Servlet to

generate an HTML page, which is subsequently sent to the Web browser.

JSP Container

Business
Logic Java

JSP Page

Servlet

Browser

HTML

Figure 2.2: JSP processing phases

Aside from HTML, JSP defines three main types of JSP elements you can embed

in a page: directives; scripting elements; and action elements:

Directives provide compiler information and let you include class libraries and import

tag libraries. There are three directives: page; include; and taglib. They have a

syntax of the form 〈%@ directive. . .%〉.

Scripting elements let you specify Java code. There are three types: declarations

with the syntax 〈%!. . .%〉; scriptlets with the syntax 〈%. . .%〉; and expressions

with the syntax 〈%=. . .%〉.

Action elements let you control the behaviour based on the specific request received

by the JSP file, including “include” and “forward” flow control, JavaBeans ac-

cessing, and applet plug-ins. They have the syntax 〈jsp:. . . 〉 with the tag prefix

“jsp”.

JSP tags may be extended by custom tags, which are user-generated markup tags.

They link to back-end Java code and implement specific user-defined actions. There

are many JSP container vendors and each provides their own tag libraries such as

Jakarta Taglibs and JRun’s library, as well as custom tags written by Java developers

2.3 JSP Standard Tag Library (JSTL) 13

for specific projects. There is no standard that ties them together, and none of them

can be used as a standard in all JSP containers [30]. To aggregate and standardize tag

libraries, the Java Community Press (JCP) released a standard tag library in mid-2002.

2.3 JSP Standard Tag Library (JSTL)

As JSTL is based on JSP technology, a JSTL page is also a JSP document. JSTL

includes a set of standardized actions for almost all common tasks that are needed to

produce dynamic content in typical JSP documents in an application. These actions

include looping over data; performing conditional operations; importing and processing

data from other Web pages; simple manipulating of XML; accessing database; and text

formatting.

The availability of standard tags means that not only are JSP developers no longer

required to create custom tags for common tasks but also that once they are familiar

with JSTL they are able to use the appropriate tags in any compliant JSP container.

The Apache Jakarta project has already implemented JSTL, which can be used with

Java Servlet 2.3 and JSP 1.2.

JSTL specifies four separate tag libraries, each containing actions targeting a spe-

cific functional area:

Core library contains tags with prefix “c”. It contains general actions such as flow

control actions (conditionals, iterators), evaluating expressions and outputting

the results, manipulating scoped variables, and accessing URL-based resources.

XML processing library contains tags with prefix “x”. It addresses the basic XML

manipulation actions including parsing an XML document, accessing a parsed

XML document, looping over elements, conditional processing based on node val-

ues, and XSLT (eXtensible Stylesheet Language for Transformations) [39] trans-

formations. XML actions use the XML Path Language (XPath) [38] to specify

and select parts of an XML document.

I18N capable formatting library contains tags with prefix “fmt”. It supports in-

ternationalization and general formatting actions.

14 JSP, JSTL and XMLC

Database access library contains tags with prefix “sql”. It provides basic capabilities

to interact with relational databases.

JSTL also defines an Expression Language (EL), which is supported directly by the

JSP 1.2 specification and will be formally defined within the next generation of JSP

(JSP 2.0), for accessing and manipulating resource data without using programming

languages such as Java. A JSTL expression look like:

"${expression}"

For example, instead of the Java/JSP expression, such as

<%= session.getAttribute("layer").getTitle() %>

JSTL can access the data using JSTL expressions:

<c:out value="${sessionScope.layer.title}"/>

The JSTL tries to kick Java code out of the JSP document, but flow control logic

like iteration and conditional operation may still confuse Web designers who are using

an HTML editor to design Web pages. This problem is addressed by XMLC.

2.4 Extensible Markup Language Compiler (XMLC)

Enhydra XMLC [12] was developed by Lutris Technologies and is integrated with the

open source Enhydra application server. It can also be used separately1.

XMLC provides a very different method from JSP and JSTL to generate dynamic

pages. Compared with the “Pull model” implemented by JSP, which embeds program-

ming languages inside a markup page, XMLC uses a “Push model” that allows the

developer to manipulate a template page programmatically [9].

As illustrated in Figure 2.3, a static HTML template page with unique “id” at-

tributes, which override the “id” attribute of the Cascading Style Sheet(CSS), and

mock-up content is created first. Using XMLC, the template HTML page is converted

into a Java class, where the HTML page is represented using the DOM. The XMLC

creates accessor method getElementXXX() for every standard HTML tag that includes

1We used standalone XMLC for our WMS client implementation.

2.5 A Simple Example 15

HTML/XML
Template

Java Class
Implementing
DOM Tree

Presentation
Logic Java

(i.e. Servlet)

Business
Logic Java

Browser

XMLC

HTML

Figure 2.3: XMLC processing phases

an attribute id=“XXX” and setTextYYY(String) for the tag with text content and an

attribute id=“YYY”. With these methods and other standard DOM APIs, the at-

tributes, content, and nested tags of the elements with “id” attributes can be replaced

and removed in a manipulation class. The manipulation class can be implemented as

a Servlet. In the Servlet, the page class representing the template page is instantiated,

the HTML elements are accessed using the above-mentioned methods, the content is

retrieved from the business logic and inserted in the template page as required, and

finally the generated page is output to the browser.

2.5 A Simple Example

In this example, a very simple Web page is generated using three approaches: JSP

with embedded Java, JSP with JSTL tags, and XMLC. The page gets a parameter

named “result” from a request. If the value of the parameter is “won”, the page prints

out “It is good news! We won the game” and the word “good” will be displayed in

red. If the parameter value is “lost”, a sentence “It is bad news! We lose the game” is

printed out and the word “bad” will be displayed in blue.

We use the JSP with embedded Java approach first. In game1.jsp (see Figure 2.4),

small pieces of Java code are inserted into the HTML to receive the request parameter

and control the conditionals. The Java code is embedded with the scriptlet 〈%. . .%〉,

and the expression scripting element 〈%=. . .%〉 on line 14 is used to evaluate and print

out the value of the variable.

16 JSP, JSTL and XMLC

1 <!-- game1.jsp with Java embeded -->

2

3 <html>

4 <head><title>game</title></head>

5 <body>

6 It is

7 <% String result = request.getParameter("result");

8 if(result.equals("won")) {

9 %>

10 good

11 <% } if(result.equals("lost")) { %>

12 bad

13 <% } %>

14 news! We <%= result %> the game.

15 </body>

16 </html>

Figure 2.4: JSP example: game1.jsp

In game2.jsp (see Figure 2.5), we replace the scripting elements with JSTL tags to

control the dynamic content. The JSTL library must first be declared on line 5 using

a taglib directive to make it available in the page. The request parameter is accessed

using EL rather than Java and set to a variable using the tag 〈c:set〉. Conditionals are

controlled using tag 〈c:if〉, and tag 〈c:out〉 performs a similar function to the 〈%=. . .%〉

(line 14 of Figure 2.4) to evaluate and print out the variable value.

When generating the Web page using XMLC, we follow this process: create a

template page; compile the template page to a Java class; and manipulate the page

class to generate final page.

Step one, an HTML template file game.html (see Figure 2.6) with mock-up contents

is created. The “id” attributes are added to every tag whose attributes and/or text

content might be changed. We add attribute id=“state” to tag 〈font〉 and id=“result”

to tag 〈span〉. We can use the XMLC command with the “-dump” option to produce

a DOM hierarchy structure (see Figure 2.7) that represents the HTML template file.

Each tag in the HTML file has an element implementation type corresponding to it.

The XMLC command looks like:

2.5 A Simple Example 17

1 <!-- game2.jsp with JSTL -->

2

3 <html>

4 <head><title>game</title>

5 <%@ tablib uri="http://java.sun.com/jstl/core" prefix="c" %>

6 </head>

7 <body>

8 It is

9 <c:set var="result" value="${param.result}"/>

10 <c:if test="${result==’won’}"> good </c:if>

11 <c:if test="${result==’lost’}"> bad </c:if>

12 news! We <c:out value="${result}"/> the game.

13 </body>

14 </html>

Figure 2.5: JSTL example: game2.jsp

<!-- Template html file game.html -->

<html>

<head><title>game</title></head>

<body>

It is good or bad news!

We won or lost the game.

</body>

</html>

Figure 2.6: XMLC example: template page game.html

$xmlc -dump game.html

Step two, we use another XMLC command with the “-keep” option to compile the

game.html:

$xmlc -keep game.html

This will create a compiled Java class game.class and a source code file game.java,

which traverse the above DOM tree with access to each element with an “id” attribute.

18 JSP, JSTL and XMLC

The DOM tree hierarchy representing the game.html:

LazyHTMLDocument%[T]:

LazyComment: Template html file game.html

HTMLHtmlElementImpl: HTML

HTMLHeadElementImpl: HEAD

HTMLTitleElementImpl: TITLE

LazyText: game

HTMLBodyElementImpl: BODY

LazyText: It is

HTMLFontElementImpl: FONT: color="red" id="state"

LazyText: good or bad

LazyText: news! We

LazyHTMLElement: SPAN: id="result"

LazyText: won or lost

LazyText: the game.

Figure 2.7: XMLC example: The DOM of the template page

In the readable source Java file game.java (see appendix D), there are two getElemen-

tXXX() and two setTextYYY(String) methods for the tags 〈font〉 with id=“state” and

〈span〉 with id=“result” as below:

getElementState()

getElementResult()

setTextState(String text)

setTextResult(String text)

Step three, once we get a Java class presenting the HTML file and some methods we

can call to change the HTML element values, a manipulation Java class gameMan.java

(see Figure 2.8) is created to use the page class. The manipulation class is actually a

Servlet that manipulates the presentation of contents as required and prints out the

final page. It first creates an instance of the page class game.class representing the

template HTML page on line 14, and gets a reference to the element 〈font〉 on line

16 by calling the method getElementState(). Then within the conditional structure it

sets the “color” attribute and the text content of the tag 〈font〉, followed by setting

2.6 Summary 19

the text of the tag 〈span〉 on line 30. Finally, the modified final page is printed out on

line 32 through the method toDocument(), which will create the HTML that the user

will see.

2.6 Summary

In this Chapter we introduced JSP, JSTL, and XMLC, and demonstrated each of these

approaches using a simple example. The three technologies are designed to generate

dynamic Web content under the Java Servlet architecture. Rather than processing

HTML in Java classes with the Servlet, the JSP inserts Java code fragments into a

regular HTML page. The JSTL tries to use standard tags and EL instead of the Java

code in the JSP file to control the dynamic elements. The XMLC separates the HTML

design and the Java programming, and uses a totally object-oriented method to create

a dynamic Web page.

Three fundamental technologies—Java Servlets, JavaBeans, and DOM—were also

introduced in this Chapter. They are used by JSP, JSTL, and XMLC, and applied in

the WMS client implementation that will be presented in Chapter 4.

20 JSP, JSTL and XMLC

1 // Manipulation class gameMan.java

2

3 import java.io.*;

4 import javax.servlet.*;

5 import javax.servlet.http.*;

6 import org.w3c.dom.html.*;

7

8 public class gameMan extends HttpServlet {

9 public void doGet(HttpServletRequest req, HttpServletResponse res)

10 throws ServletException, IOException {

11 res.setContentType("text/html");

12 PrintWriter out = res.getWriter();

13 // Create an instance of the HTML page object

14 game game = new game();

15 // Get a reference to the element

16 HTMLFontElement state = game.getElementState();

17 // Get request parameter

18 String result = req.getParameter("result");

19 if(result.equals("won")) {

20 // Change the "color" attribute of <fone> element

21 state.setColor("red");

22 // Change text within tags

23 game.setTextState("good");

24 }

25 if(result.equals("lost")) {

26 state.setColor("blue");

27 game.setTextState("bad");

28 }

29 // Change the text within tags

30 game.setTextResult(result);

31 //Print out the modified page

32 out.println(game.toDocument());

33 }

34 }

Figure 2.8: XMLC example: The manipulation class gameMan.java

Chapter 3

Design of a Generic WMS Client

In this Chapter we present the design issues of the WMS client that has been imple-

mented. We begin with a description of the local Web mapping system that was used

in this research. After that, we describe the functionality that is representative of a

generic WMS client implementation. This essential functionality is implemented in

almost all of the OGC WMS clients we investigated (see Section 1.1.2). Based on the

identified functionality, four modules are identified for the WMS client. Each module

is composed of View, Model, and Controller components.

3.1 Designing a Local Web Mapping System

A local Web mapping system was assembled to provide an experimental environment

in which to execute the implemented WMS client prototype. The architecture of this

system is illustrated in Figure 3.1. In this system:

• The viewer is actually a series of HTML pages running inside a Web browser

that can interact directly with a map server via HTTP.

• The WMS client manages the viewer interactions with WMS servers via HTTP,

and dynamically generates Web pages that can be viewed in the Web Browser.

• The WMS server is a map server, which implements the OGC WMS specification

(version 1.1.0), providing three OGC Web Mapping operations (GetCapabilities,

GetMap, and GetFeatureInfo) for its clients. The server accepts requests from

22 Design of a Generic WMS Client

Web Browser

HTTP
GET/POST

HTML pages

Web
Application

Web Server

HTML Pages

OGC Web
Mapping
Interfaces

GetCapabilities Request

XML Response

GetFeatureInfo Request

GML Response

Map
Server

Database

Viewer

WMS Client

WMS Server

Figure 3.1: Local Web mapping system architecture

the WMS client and the viewer in the form of HTTP URL strings, and returns

results encoded as XML, GIF, GML, and so on.

• The database stores geo-feature data that can be accessed and utilised by the

WMS server to generate GML documents or to draw maps.

As illustrated in Figure 3.1, the user interacts locally with the viewer and submits

HTTP GET/POST requests to the WMS client. The JSP/Servlet container in the

Web server intercepts user requests and parses them before forwarding them to the

Web application. The Servlets and the other Java components that constitute the

Web application then process these requests, and return dynamically generated HTML

pages to the Web browser via the JSP/Servlet container and Web server. In practice,

GetCapabilities and GetFeatureInfo are requested from the Servlets or other Java

components, while a GetMap request is used as an image source embedded in the

generated HTML pages in the form of 〈img src=GetMap request url/〉. The map

retrieved from the WMS server is displayed directly in the Web browser.

3.2 Functionality 23

3.2 Functionality

The design begins with assessing the functional requirements for the generic WMS

client we are implementing. The Use case analysis is applied to identify the actors in

the system and the operations they may perform. The Use Case diagram for the WMS

client we implemented is shown in Figure 3.2.

Figure 3.2: WMS client Use Case diagram

24 Design of a Generic WMS Client

Only one actor, the user, interacts with the WMS client through the Web browser.

We associate these operations with three levels of functionality, each with complexity

increasing from one level to the next: a simple prototype; multiple request enabled;

and multiple WMS server interaction.

3.2.1 A Simple Prototype

On the first level, a WMS client prototype with simple operations is implemented.

Users may select only one WMS server with which to interact, although several WMS

servers could be available.

Map layers but no other capabilities information are presented to the user. Users

can select any layers they are interested in and submit them to request a map. Other

parameters, such as SRS, initial bounding box and image format, used for generating

a map are set with fixed values parsed from the capabilities XML document. They are

neither changeable nor selectable.

The WMS server returns a map showing all the requested layers. The display order

of the layers is determined by the sequence of the layer names listed in the GetMap

request, that is, a WMS server “renders the requested layers by drawing the leftmost

in the list bottommost, the next one over that, and so on” [25]. For example, in

the GetMap request, the Layers parameter might look like “. . . &Layers=rivers,loads,

bridges&. . . ”. Consequently, in the generated map the user may see some bridges cross

the rivers and roads. Once a map is loaded, the layers cannot be reordered by the user.

The requested map can be zoomed and scrolled, but recenter is unavailable. The

user can also query features by selecting a location on the map. The features of each

layer are associated with the location is presented to the user.

3.2.2 Multiple Request Enabled

On the second level, multiple GetMap requests are sent if the user selects more than

one map layer—one layer per map. For example, if the user selects three layers (e.g.

roads, lakes, and airports), three separate maps will be requested. Since the client

interacts with only one WMS server that usually provides geographic information for

a specified spatial extent, the maps that are produced for each layer have the same

bounding box, SRS, and output size. Therefore, the WMS client can accurately overlay

3.2 Functionality 25

these maps to produce a composite map as illustrated in Figure 3.3, and the user is

able to adjust the layers’ display order by changing the maps overlapping sequence to

get a different view. The background of each single-layer map must be transparent1 so

that the lower layers will not be hidden by those on top of them during overlapping.

Map 1 with Layer 1

Map 2 with Layer 2

Combined Map with Layer 1 and 2

Figure 3.3: Map overlapping

Similarly, multiple GetFeatureInfo requests will also be sent if the user wants to

view the feature information—one layer per GML file. As we don’t know which map

layers are associated with the pointed location, the features of each layer displayed on

the map will be requested (zero feature may be contained in a GML file if no layer is

associated with the selected location).

Without multiple requests, the WMS client can also adjust the display order of

map layers by changing the sequence of layer names in the request, but when a client

interacts with several servers concurrently, multiple requests will be necessary. This is

implemented in level three.

3.2.3 Multiple WMS Server Interaction

On the third level, WMS servers with different capabilities may be interacted with

simultaneously. Here the WMS client must request all user-selected WMS servers for

their capabilities information.

The user is allowed to set or choose parameters, such as bounding box, SRS, image

formats, width and height, and select map layers that may come from different WMS

servers. For example, a WMS client could interact with three WMS servers that specify

different geographic information of an area: the first server contains atmospheric in-

formation; the second presents population distribution; and the third specifies various

1Image formats such as GIF and PNG support transparent backgrounds.

26 Design of a Generic WMS Client

context layers such as roads, rivers, boundaries and coastline. The WMS client is able

to build customised maps by requesting single-layer maps from different WMS servers

and combining them in different display orders. The map created by these requests

may be zoomed, scrolled, and recentered.

When querying features, the layers that are associated with the selected location

might be requested from different WMS servers. The user will be told which WMS

server a certain layer comes from. Similarly, the features of each layer displayed on

the map are requested, and each layer’s features are returned in an individual GML

document

3.3 Functional Modules

Once the functional requirements have been identified, the WMS client application can

be divided into modules based on functionality. Four functional modules were iden-

tified: capabilities module; legend control module; map control module; and feature

module. The relationship among modules is shown in Figure 3.4. Each functional

module is structured in Model-View-Controller architecture. We introduce the archi-

tecture that we used to implement the WMS client before describing each functional

module.

XML

GML

User Interface

Capabilities

Legend Control

Map Control

Feature

Figure 3.4: WMS client functional modules

3.3 Functional Modules 27

3.3.1 The Architecture

In a multitier J2EE Web-enabled application, four tiers are always presented:

• The client tier that is usually provided by the Web browser.

• The Web tier that usually works with the Web server (JSP/Servlet container).

• The Enterprise Java Beans (EJB) tier that usually works with the application

server (EJB container).

• The data source tier, which usually includes databases, file systems, or other

business services.

Based on these four tiers, various application scenarios are produced [17]. The

most suitable scenario is determined by the application’s functionality and other re-

quirements such as security and scalability. Considering the functionality identified in

Section 3.2, the generic WMS client we implemented was not a large-scale enterprise

application with heavy transactional needs. The main duty of the WMS client was

to present the application’s data—capabilities, maps and features—in response to the

user’s requests. Consequently, a three-tier Web-centric application scenario [17] was

chosen (see Figure 3.5), as follows:

• The Web browser was the client tier.

• The Web tier was the WMS client divided into four functional modules.

• The data source tier was the capabilities XML documents, GML documents and

maps retrieved from the WMS server. As the maps are directly displayed on the

browser (See Figure 3.1). they are not presented in Figure 3.5.

The EJB tier is not applied as the Web tier is responsible for both presentation

and business logic. The software components decomposed from the functional modules

are organised following the Model-View-Controller (MVC) architecture [22]. MVC is

a widely used architecture suited for interactive applications. It decouples the presen-

tation logic from the business logic in an application.

28 Design of a Generic WMS Client

Browser

Controller
(Servlets)

Model

JavaBeans,
Helper
Objects

DAOs

View
(JSP, HTML,

Page
Objects)

Web Tier

XML,
GML

Data
Resource

Web Server

Figure 3.5: WMS client architecture

The View Layer

View handles the presentation logic. It accesses data from the Model and generates the

graphical and textual output as required. It also forwards user input to the Controller.

In our implementation, JSP and XMLC were used to handle Views. When using JSP,

HTML pages and JSP documents were used for presentation. In the case of XMLC,

Views would be composed of a set of HTML template pages and Java objects where

the HTML templates are presented using DOM.

The Model Layer

Model handles the business logic. It manages the application behavior, encapsulates

business data, and modify the data in response to instructions from the Controller.

Model is independent of the three approaches under investigation. In our implemen-

tation, Model was composed of JavaBeans and some helper objects. The Data Access

Object (DAO) pattern [8] was applied to access the data resources—WMS servers’

capabilities XML files as well as the GML files. The DAO pattern decouples the data

resource access from the business logic.

3.3 Functional Modules 29

The Controller Layer

Controller controls the application flow and connects View to Model. It processes

user requests, maps them into actions to be performed by Model, and selects which

View to display. In the “Model 2 JSP” architecture [14], a Controller is typically

implemented as a Servlet. When using XMLC, the manipulation classes can be treated

as page controllers and are also implemented as Servlets. In our implementation, each

functional module had controllers to manage the behaviors within the module and to

interact with other modules.

3.3.2 Capabilities Module

The capabilities module handles the user’s selection of WMS servers and maintains

the WMS servers’ capabilities metadata, which are parsed from capabilities XML doc-

uments fetched from WMS servers.

A WMS server catalog view is created. It lets the user view and select available

WMS servers. The user’s selection will be forwarded to a controller, which uses a data

access object to access capabilities XML documents that are retrieved from selected

WMS servers. The XML documents are parsed and capabilities data are stored in

data objects that are implemented as JavaBeans. The controller will finally forward

its control to a capabilities view, where the capabilities data are retrieved from the data

objects and then displayed. The capabilities view can be very simple as it contains only

one table or selection list when the available map layers of an individual WMS server

are listed. To satisfy the third level functionality as described in Section 3.2.3, it is

necessary to use a big form containing a number of input elements, where capabilities

data in addition to map layers are displayed and can be selected and set by the user.

3.3.3 Legend Control Module

The legend control module manages the user-selected map layers’ metadata and their

display order. This module can be very simple if the display order of map layers is not

changeable.

A controller is used to intercept the request forwarded from the capabilities view.

Various actions are performed on this controller, depending on the level of functionality

30 Design of a Generic WMS Client

required. At the lowest level (see Section 3.2.1), only parameters related to the selected

map layers are passed in from the capabilities view and there is no requirement to

adjust the display order of the map layers. The information of the selected layers is

accessed from data objects and directly used to build GetMap and GetFeatureInfo

request URLs. At the middle level (see Section 3.2.2), the display order of map layers

is changeable. The information about selected layers is maintained in data objects,

which are responsible for adjusting the sequence of the map layers’ output according

to the request from the map view. At the third level (see Section 3.2.1), the request

received from the capabilities view includes parameters set by the user in addition to

the map layers. The spatial parameters are maintained in a separate data object that

will be used in the map control module. Finally, this controller will forward its control

to another controller controlling the map output.

3.3.4 Map Control Module

The map control module handles the user’s operations on the map and maintains

spatial parameters such as the bounding box for generating maps.

A map controller is used to manipulate the operations on the map. It intercepts

the request from the map view and forwards the control to various targets as required.

When the map is zoomed or panned, the map controller will update the spatial pa-

rameters maintained in the data object, and forward the control back to the map view.

When the display order of map layers is changed, the map controller will call the data

objects that belong to the legend control module to adjust the sequence in which the

map’s layers are output, as well as forward the control to the map view. When the

feature is queried, it will forward the request to the controller that belongs to the

feature module.

The map view contains three parts: a map and some arrows that are used to scroll

the map; some options including zoom in, zoom out, recenter, and query feature; if the

maps layers’ display order is changeable then a selection list showing the titles of all

the available legends will be added. As a result, it is possible to adjust the sequence

in which the titles are listed.

3.4 Summary 31

3.3.5 Feature Module

The feature module handles the user’s querying about feature information and main-

tains the feature data, which are parsed from GML documents retrieved from WMS

servers.

The controller in this module receives the request forwarded from the map con-

troller, and also uses a data access object to access GML documents that are retrieved

from selected WMS servers. The GML documents are parsed and the feature informa-

tion about the pointed location is stored in various data objects that are also imple-

mented as JavaBeans. The controller will forward the control to a feature information

view that displays detailed information about features.

When the multiple request function is enabled, the feature information about each

layer is encapsulated in an individual GML document (see Section 3.2.2 and Sec-

tion 3.2.3). Therefore, we can create a feature summary view to show how many

features are found for each layer and which WMS server the layer comes from. This

is invoked in the controller. Then from within the feature summary view, the feature

information view can be invoked to display detailed information about features of an

individual layer.

3.4 Summary

In this Chapter we described the design of a local Web mapping system and the

functionality and architecture of the WMS client we implemented.

We identified the functionality that was representative of a WMS client in general.

The functionality was divided into three levels and the complexity increased from level

one to level three: a simple prototype; multiple request enabled; and multiple WMS

server interaction.

Four functional modules were identified according to the functionality: capabili-

ties, legend control, map control, and feature. The MVC architecture was applied on

the implementation of each module, and the DAO pattern was adopted for accessing

the WMS server’s capabilities XML file and GML file. Based on the modules, five

views were identified: WMS server catalog view, capabilities view, map view, feature

summary view, and feature information view.

32 Design of a Generic WMS Client

Considering that the WMS client is a Web application that handles user interactions

and presents data as required, without complex transactions and high security and

scalability requirements, a Web-centric J2EE application model was chosen.

Chapter 4

Implementation

In this Chapter we first introduce the building of a local Web mapping system and then

describe in detail the implementation of the WMS client based on the four functional

modules identified in Chapter 3: capabilities; legend control; map control; and feature.

Finally, the implementation of the three generic operations used by these modules is

presented.

4.1 Building the Local Web Mapping System

Based on the architecture designed in Section 3.1, a local Web mapping system was

installed and configured using a combination of open source software and the OGC

WMS clients implemented for this research. Figure 4.1 shows the system we used.

The viewer can be provided by any Web browser supporting HTML 4.0, such as

Internet Explorer, Netscape Navigator, and Mozilla. We deployed Apache HTTP

server 1.3 [2] as the Web server, and Apache Tomcat 4.0.3 [18] was set up as the

JSP/Servlet container integrating with the Apache HTTP server.

The WMS server was set up using the University of Minnesota’s (UMN) MapServer

3.6 [21], which implements Version 1.1.0 of the OGC WMS specification [25]. MapServer

consists of only one executable file named “mapserv”, which knows how to handle WMS

requests. It is a CGI program and runs in the Apache HTTP Web server. For OGC

WMS compliance, MapServer must be compiled together with PROJ.4 [29], which is a

cartographic projections library. MapServer also uses GD library [13] to render GIFs

and PNGs. Each MapServer needs a mapfile (a control file with the suffix .map), which

34 Implementation

Database

Viewer

WMS Client

WMS Server

Web Browser

HTML pages

HTTP
GET/POST

HTML pages

Apache Web Server

Tomcat
(JSP/Servlets)

PostgreSQL/
PostGIS

Apache Web Server

Minnesota
MapServer

External Map Server
(e.g. Nasa Map Server)

HTTP URL Requests

Responses

HTTP URL Requests

Responses

GD

Proj.4

GIS DataSet

Figure 4.1: Practical Web mapping system

is a configuration file defining display and query parameters and the data source to

be used. In Appendix C is shown the mapfile we set up for MapServer with UMN

MapServer demo dataset for Itasca County.

We used PostGIS [27] as a vector database to store geo-feature data. PostGIS is

an extension to the PostgreSQL [28] object-relational database system that allows GIS

objects to be stored in the database. PostGIS supports the “simple features” such

as Point, LineString, Polygon, and so on, that are defined by the OGC [23]. The

vector format data is a coordinate-based data structure that can be used directly by

MapServer to draw maps or generate GML documents.

4.2 Implementation of a Generic WMS Client

As introduced in Section 3.3, four functional modules were identified for the generic

WMS client we implemented. In this section, the software components implemented

for each module are described.

4.2 Implementation of a Generic WMS Client 35

4.2.1 Capabilities Module

The structure of the capabilities module is shown in Figure 4.21. The index page is an

HTML page, from which the controller ServerHandler is invoked when the user selects

WMS server(s). ServerHandler uses a DAO to access capabilities XML documents.

Figure 4.2: The capabilities module class diagram

The index page index.html (see Figure 4.3) is the entry page that is representative

of the WMS server catalog view, where three available WMS servers are listed.

ServerHandler is a controller Servlet that handles the request from the index page.

It uses ServerCapabilitiesDAO to load the capabilities of the user-selected WMS

server(s), and forwards the request to layerList.jsp that implements the layerList

page when JSP is used. When using XMLC, the control is forwarded to Lay-

erListMan.

LayerListMan is a Servlet manipulating the layerList page when XMLC is used.

It manipulates LayerListHtml, which is a page class representing the HTML

template layerList.html, and prints out the generated layerList page.

1In class diagrams, if the class or object is not labeled with �JSP�, �JSTL�, and �XMLC�

stereotypes , that class or object is applicable to all approaches

36 Implementation

Figure 4.3: The index page

ServerCapabilitiesDAO uses DOM APIs to parse the capabilities XML document

into a DOM document and to read it. It creates ServerData objects where the

capabilities information is stored.

ServerData encapsulates WMS servers’ capabilities information. There is always one

ServerData object for each WMS server. It integrates LayerData and Bounding-

Box objects.

LayerData encapsulates the metadata of a map layer. It integrates StyleData objects.

StyleData encapsulates the metadata of a style.

BoundingBox represents and manipulates rectangular spatial envelopes. It contains

a group of four coordinates representing west, south, east, and north respectively.

4.2.2 Legend Control Module

The structure of the legend control module is shown in Figure 4.4. The controller

LayerHandler is invoked from within the layerList page when the user submits the

4.2 Implementation of a Generic WMS Client 37

Figure 4.4: The legend control module class diagram

selected map layers.

As mentioned in Section 3.2, only one WMS server is interacted with when imple-

menting level one and level two functionality. When the user selects a WMS server in

the index page, a framed page divided into three sections is invoked (See Figure 4.5).

The page title appears in the top frame; the left-hand frame contains the layerList page

listing the map layers (titles) of the selected WMS server; and the right-hand frame

(the main area) is a “Welcome” message, which will be replaced by the mapViewer

Page when the user requests a map (see Figure 4.8 and Figure 4.9). The layerList page

is representative of the capabilities view. The map layers are presented using either a

list of checkboxes or a multiple selection list. Users can either click on the “Submit”

button to request a map or reset the selection by clicking the “Reset” button. The

buttons are below the layer list.

When we interacted with multiple WMS servers, we implemented a new layerList

page (see Figure 4.6). All the layer titles of the selected WMS servers are listed in the

multiple selection lists—one selection list per WMS server. The user is also allowed

to select or set other parameters for map and feature requesting. These parameters

include bounding box, SRS, image type, feature type2, image size, zoom rate, and

the maximum number of features to be returned. Users can either select the initial

2Only GML is available in this implementation

38 Implementation

bounding box from the list or set it manually. Finally, users can click the “Go”

button to view the generated map displayed in the mapViewer page (see Figure 4.10

on Page 43).

LayerHandler accesses ServerData objects for the selected layers’ metadata. When

implementing level one functionality, the data are directly used for building

GetMap and GetFeatureInfo request URLs. In level two, the selected layers’

information is encapsulated in LegendLayer objects, which are integrated in the

LegendInformation object. In level three, the information from the selected lay-

ers is also collected in LegendLayer objects, and the spatial parameters set by

the user are stored in a SpatialContext object. LayerHandler finally forwards

the control to MapHandler (when using JSP) or MapViewerMan (when using

XMLC).

LegendInformation integrates LegendLayer objects and manipulates the sequence

of layers to be shown on the map and listed in the selection list. It is accessed by

MapHandler or MapViewerMan when the order of layers displaying on the map

is changed. This object is not necessary for implementing level one functionality.

Figure 4.5: A framed pape containging the layerList page

4.2 Implementation of a Generic WMS Client 39

Figure 4.6: Another layerList page showing capabilities information of two WMS

servers

LegendLayer encapsulates an individual selected layer’s information that is needed

for requesting map and feature information. This object is not necessary for

implementing level one functionality.

4.2.3 Map Control Module

The structure of the map control module is shown in Figure 4.7. The zooming and

panning of the map are controlled by manipulating the spatial parameters encapsulated

in SpatialContext object.

A map containing all the selected layers with the default view scale is loaded when

the mapViewer page is invoked. See Figure 4.8, a simple mapViewer page is shown

with the layerList page in a framed page. Included in the mapViewer page is the

featureInfo page, which will be introduced in the implementation of the feature module

(Section 4.2.4).

40 Implementation

Figure 4.7: The map control module class diagram

The map is implemented as an HTML input element with “image” type, in which

the browser automatically sends the (x,y) position of the mouse (relative to the upper-

left corner of the image) to the server when the user clicks somewhere on the image.

The user can scroll the map in six different directions by clicking the arrows around

the map. To the right of the map there are three push buttons that allow the user to

either zoom in or out of the map, or recover the map to its default view scale.

A multiple selection list is added in the mapViewer page in order to adjust the

legends’ display order (see Figure 4.9). The map shown on the browser is composed

of five overlaying images3. In the selection list, the titles of the selected map layers

are listed in the order in which they are displayed on the map. The user can use the

“Up” and “Down” buttons beside the list to move the highlighted titles and then click

the “Go” button to view a map with layers displayed in the requested order. Included

in this mapViewer page is the featureSummary page, which will be introduced in the

implementation of the feature module (Section 4.2.4).

We tried using radio buttons instead of push buttons in the mapViewer page (see

Figure 4.10). The user can select the options and click the map to zoom in/out,

recenter, or query information about features of the pointed location. The map shown

in Figure 4.10 contains seven layers retrieved from two different WMS servers.

MapHandler is a controller Servlet that is implemented when JSP is used. It is

first called from LayerHandler and then invoked by mapViewer.jsp every time

3The implementation of map overlapping is described in Section 4.3.3.

4.2 Implementation of a Generic WMS Client 41

Figure 4.8: A simple mapViewer page with the featureInfo page included

the map is zoomed, panned, queried, or the legends’ display order is changed.

When the map is zoomed or panned, it sets or updates spatial parameters in

the SpatialContext object for a new map query. When the legends’ display order

is changed, it calls the LegendInformation object of the legend control module.

Finally, it forwards control back to mapViewer.jsp or FeatureHandler if features

are queried.

MapViewerMan is implemented when using XMLC. It is also first called from Lay-

erHandler and then invoked by the mapViewer page. It performs similar roles

to MapHandler but also manipulates MapViewerHtml, which is a page class

representing the HTML template mapViewer.html, and prints out the gener-

ated mapViewer page. It will forward the control to FeatureMan if features are

queried.

42 Implementation

Figure 4.9: The mapViewer page with the featureSummary page included. Multiple

maps are overlapped and the order of layers is changeable

SpatialContext encapsulates and manipulates the spatial extents such as bounding

box, SRS, map width and height, that are needed when requesting maps and

features.

4.2.4 Feature Module

The structure of the feature module is shown in Figure 4.11. A DAO is also used in

this module to access GML documents.

When the user clicks a specific point on the map, the featureInfo page is invoked

when implementing level one functionality. The featureInfo page is included in the

mapViewer page below the map (see Figure 4.8). The featureInfo page displays the

feature information that tells the user how many features associated with the pointed

location have been retrieved. If more than one feature is retreived then the user can

either click the “previous” or “next” arrow to see the previous or the next feature, or

enter a sequence number in the entry, and then click the “GO” button to move to the

numbered feature directly. If the entered number is out of the range (less than one

4.2 Implementation of a Generic WMS Client 43

Figure 4.10: Another mapViewer page with the featureSummary page included. The

map is composed of layers retrieved from multiple WMS servers

or larger than the amount of features), an error message will be shown instead of the

table listing feature data.

When implementing level two functionality, a featureSummary page is invoked first

if the user queries features (see Figure 4.12). It specifies how many features are found

about each selected layer on the pointed location. When implementing level three

functionality, the featureSummary page also shows which WMS server each layer comes

from (see Figure 4.10). An “i” icon will appear beside the layer with non-zero features.

The user can click the icon, which links to the featureInfo page (see Figure 4.12), to

view detailed information about that layer.

FeatureHandler is a controller Servlet that is implemented when using JSP. It uses

FeatureInformationDAO to load the feature information about the selected loca-

44 Implementation

Figure 4.11: The feature module class diagram

Figure 4.12: The featureInfo page

tion on the map. It forwards the request to mapViewer.jsp, where featureInfo.jsp

is included when implementing level one functionality. When implementing level

two and level three functionality, featureSummary.jsp is invoked first and in-

cluded in mapViewer.jsp, which shows the summary information. Detailed fea-

4.2 Implementation of a Generic WMS Client 45

tures are presented in featureInfo.jsp. It is not necessary to use this controller

when JSTL “xml” tags are used to handle GML. We tried handling GML doc-

uments within featureSummary.jsp and featureInfo.jsp when using the JSP with

JSTL tags approach.

FeatureMan is implemented when using XMLC. It performs similar roles to tex-

titFeatureHandler. In addition, when implementing level one functionality, it

manipulates FeatureInfoHtml, which is a page class presenting the template page

featureInfo.html, and prints out the generated featureInfo page. When imple-

menting level two and level three functionality, it manipulates FeatureSummary-

Html, which is a page class presenting the template page featureSummary.html,

and prints out the generated featureSummary page.

FeatureInfoMan manipulates the output of the featureInfo page when using XMLC.

It is created for the implementation of level two and level three functionality.

FeatureInformationDAO uses DOM APIs to parse the GML document into a DOM

document and read it. It creates LegendFeature objects where the feature infor-

mation of the selected layers is stored.

LegendFeature encapsulates an individual layer’s feature information. It integrates

Feature objects.

Feature encapsulates the data of a single feature. It integrates FeatureData objects.

FeatureData encapsulates a single feature data, which contains the data attribute

and its value.

4.2.5 Other Components

In addition to the components implemented in the four modules, two other helper

objects were implemented:

RequestManager manages the building of request URLs for querying capabilities,

maps, and features.

XmlTools contains methods to read data from XML documents using DOM APIs.

46 Implementation

4.3 Generic Implementation

In this Section the implementation of three generic operations are introduced. They

are: inserting data into tables with XMLC; dealing with XML/GML documents using

DOM; and overlaying multiple map images.

4.3.1 The Algorithm for Inserting Data into Tables with XMLC

Tables were used several times in our implementation to present a collection of data

on the Web page. In the layerList page (see Figure 4.5), a table with two columns is

used to display a list of layer titles. The first column of each table row is a checkbox,

and the layer title text is presented in the second one.

To generate such a table using XMLC, a prototype table with a sample row is first

created in the HTML template (see Figure 4.13). The mock-up data are inserted in

the “value” attribute of the 〈input〉 element and the second column of the row where

the layer title text should be presented, and unique “id” attributes are added to the

table, the row, and the cell elements.

In the manipulation class, an algorithm as shown in Figure 4.14 is applied. We first

remove the sample row from the prototype table, then repeat the operations of filling

the sample row with real data, making a copy of the row, and inserting the copied row

into the table within a iteration structure until all data in the collection are inserted.

<table id="list" border="0" width="100%">

<tr bgcolor="#d0d0d0">

<th id="serviceTitle" colspan="2">service name</th>

</tr>

<tr id="option" bgcolor="#efedde">

<td valign="top">

<input id="check" type="checkbox" name="checkedLayers"

value="layerIndex"></td>

<td>layer title</td>

</tr>

</table>

Figure 4.13: The prototype table created in the template page layerList.html

4.3 Generic Implementation 47

remove the sample row from sample table;

for(iterate over the collection of data) {

edit the sample row and fill in real data,

overwriting the old or mock-up content;

clone the sample row;

append the cloned row to the sample table;

}

Figure 4.14: The algorithm used for inserting data into a table using XMLC

LayerListHtml layerList = new LayerListHtml();

HTMLInputElement check = layerList.getElementCheck();

HTMLTableElement list = layerList.getElementList();

HTMLTableRowElement option = layerList.getElementOption();

layerList.setTextServiceTitle(server.getService());

list.removeChild(option);

for(int i=0; i<server.getLayerListSize(); i++) {

// fill in data, then clone, and append

layer = server.getLayer(i);

check.setValue(Integer.toString(i));

layerList.setTextLayerTitle(layer.getTitle());

list.appendChild(option.cloneNode(true));

}

Figure 4.15: In the manipulation class LayerListMan, a table with layer titles listed is

generated

The code used for creating the table in the manipulation class LayerListMan is shown

in Figure 4.15.

In the above example each table row is identical except for the title of layers but at

other times each row in a table may have a different structure depending on the data

to be inserted. In the featureSummary page (see Figure 4.9), each row of the table

we created to display every layer’s feature summary contains three columns: the first

one shows the layer title; the second one shows the number of features that have been

found, which determines whether or not a small “i” icon will be displayed in the third

48 Implementation

<table id="summaryTable" border="0" width="100%">

......

<tr id="summaryRow">

<td width="30%" align="left">

legendTitle

</td>

<td width="15%" align="left" id="numCell">

N Feature(s)

</td>

<td align="left" id="imgCell">

</td>

</tr>

</table>

Figure 4.16: The prototype table created in the template page featureSummary.html

column. The prototype table created in the template page is shown in Figure 4.16.

The algorithm shown in Figure 4.14 is not suitable for this example because every

time a new table row is inserted, we update the data value as well as modify the

structure of the sample row—the icon may be removed or appended. We designed

another algorithm (see Figure 4.17) to generate this table. When dealing with each

row, we cloned all the elements that needed to be changed with their child elements

removed, and then reorganised the cloned elements and inserted them into the sample

table.

The code used for creating the table in the manipulation class FeatureMan is shown

in Figure 4.18. The sample row, cell and anchor elements are removed from their parent

nodes respectively before generating the table using an iteration structure. When

dealing with each row, we cloned the sample elements whose child element had already

been removed and then either inserted the cloned anchor element in the cloned cell

if one or more features were found or left the cloned cell empty without inserting an

anchor element as its child. Finally, we inserted the cloned row, which contains the

cloned cell, to the sample table.

4.3 Generic Implementation 49

remove the sample row from sample table;

remove the sample cells from sample row;

remove the sample elements (level m elements) from sample cells;

remove the sample subelements (level m+1 elements) from the sample

level m elements;

...

remove the sample subsubelements (level n elements which are various

in each row) from the sample level n-1 elements;

for(iterate over the collection of data) {

edit the sample elements (excluding the level n elements) if necessary;

clone the sample elements (excluding the level n elements);

edit the sample level n elements depending on certain conditions;

clone the sample level n elements;

append the cloned level n elements to the cloned level n-1 elements

depending on certain conditions;

append the cloned level n-1 elements to the cloned level n-2 elements;

...

append the cloned level m elements to the cloned cells;

append the cloned cells to the cloned row;

append the cloned row to the sample table;

}

Figure 4.17: The modified algorithm used for inserting data into a table using XMLC

The algorithms used for the tables can also be used for the creation of the multiple

selection list. They are applied when generating the layerList page and mapViewer

page (see Figure 4.6 and Figure 4.9)

4.3.2 The Use of DOM for Dealing with XML/GML

The DOM is a widely used tool for reading XML documents. It represents an XML

document as a tree of nodes that can be traversed and edited with its standard APIs

(see Section 2.1.3). In our implementation, the DOM was used in the DAOs to deal

with the capabilities XML documents and GML documents. Because GML is based

on XML, the DOM is also applicable to GML documents.

In ServerCapabilitiesDAO, the capabilities XML document (see Appendix B) re-

50 Implementation

FeatureSummaryHtml featureSumm = new FeatureSummaryHtml();

HTMLTableElement table = featureSumm.getElementSummaryTable();

HTMLTableRowElement row = featureSumm.getElementSummaryRow();

HTMLTableCellElement imageCell = featureSumm.getElementImgCell();

HTMLAnchorElement imageLink = featureSumm.getElementImgLink();

table.removeChild(row);

row.removeChild(imageCell);

imageCell.removeChild(imageLink);

for(int i=0; i<legendNum; i++) {

int feaNum = 0;

String legdTitle = legdInfo.getListLegendStr()[i];

featureSumm.setTextLegendTitle(legdTitle);

if(this.allLegendFeature.get(legdTitle) == null)

featureSumm.setTextNumCell("GML is not supported");

else {

feaNum =

((LegendFeature)allLegendFeature.get(legdTitle)).getFeatureNum();

featureSumm.setTextNumCell(feaNum + " Feature(s)");

}

HTMLTableRowElement rowClone =

(HTMLTableRowElement)row.cloneNode(true);

HTMLTableCellElement imageCellClone =

(HTMLTableCellElement)imageCell.cloneNode(true);

if(feaNum>0) {

imageLink.setHref("FeatureInfoMan?legend="+legdTitle+"&fid=1");

imageCellClone.appendChild(imageLink.cloneNode(true));

}

rowClone.appendChild(imageCellClone);

table.appendChild(rowClone);

}

Figure 4.18: In the manipulation class FeatureMan, a table with feature summary

presented is generated

4.3 Generic Implementation 51

trieved from the WMS server is first parsed into a DOM document (see Figure 4.19).

The class org.apache.crimson.tree.XmlDocument implements the standard DOM in-

terface org.w3c.dom.Document. The argument “getCapaRequestURL” is a string pre-

senting the GetCapabilities request URL. The root element and all its sub-elements

are obtained by using the method getDocumentElement(). It can then be traversed

and accessed with APIs wrapped in the package org.w3c.dom.

The same method is used to parse the GML documents (see Appendix B) in Fea-

import org.apache.crimson.tree.XmlDocument;

import org.xml.sax.*;

import org.w3c.dom.*;

import java.io.*;

......

public class ServerCapabilitiesDAO {

......

public static Element loadCapabilities(String getCapaRequestURL) {

Document xmlDoc = null;

try {

xmlDoc = XmlDocument.createXmlDocument(getCapaRequestURL);

Element root = xmlDoc.getDocumentElement();

return root;

} catch(FileNotFoundException e) {

System.err.println("FileNotFoundException " + e.getMessage());

} catch(IOException e) {

System.err.println("IOException " + e.getMessage());

} catch(SAXException e) {

System.err.println("SAXException " + e.getMessage());

}

return null;

}

......

}

Figure 4.19: The WMS server’s capabilities XML is parsed into a DOM document in

the ServerCapabilitiesDAO

52 Implementation

public static ServerData getServerData(Element root) {

ServerData server = new ServerData();

...

NodeList layerNodes = root.getElementsByTagName("Layer");

for(int loop=0; loop<layerNodes.getLength(); loop++) {

Element layerElement = (Element)layerNodes.item(loop);

int childLayerNum =

XmlTools.getChildElementSize(layerElement, "Layer");

if(childLayerNum == 0)

server.addLayer(getLayer(layerElement));

}

......

return server;

}

Figure 4.20: Retrieve map layers from a WMS server’s capabilities XML file

tureInformationDAO. The request string becomes the GetFeatureInfo request URL.

Below we will show in two examples how DOM APIs were used to access the

document being parsed.

In the first example ServerCapabilitiesDAO, we retrieved map layers from a WMS

server’s capabilities XML document (See Figure 4.20). The root element of the XML

document was input in the method getServerData(), where the root element and all

its sub-elements were traversed and the capabilities data were retrieved and stored

in a ServerData object. All “Layer” elements that did not have child “Layers” were

accessed. As we could not find a method in DOM APIs to arrive at the number of

child elements by supplying the parent element and the name of the child element,

we implemented such a function getChildElementSize(Element e, String tagName) in

the class XmlTools by ourselves. Each retrieved “Layer” element was input to the

method getLayer(), where the metadata of the layer, such as title, name, and style,

were accessed.

The second example concerns FeatureInformationDAO. The features of each leg-

end showing on the map were retrieved (See Figure 4.21). Similar to handling the

capabilities XML, the root element of the GML document was input in the method

getLegendFeature(). Because the name of the element containing layer features was

4.3 Generic Implementation 53

public static LegendFeature getLegendFeature(Element root) {

// the GML is not supported

if(root.getNodeName().equals("ServiceExceptionReport"))

return null;

LegendFeature legendFeature = new LegendFeature();

// get the 2nd level nodes

NodeList layerNodes = root.getChildNodes();

int featureNum = 0;

for(int loop=0; loop<layerNodes.getLength(); loop++) {

Node layerNode = layerNodes.item(loop);

if(!layerNode.getNodeName().equals("#text")) {

// get the third level nodes

NodeList featureNodes = layerNode.getChildNodes();

for(int inloop=0; inloop<featureNodes.getLength(); inloop++){

Node featureNode = featureNodes.item(innerloop);

if(!featureNode.getNodeName().equals("#text"))

legendFeature.addFeature(getFeature(featureNode));

} // end innerloop

break;

}

} // end loop

return legendFeature;

}

Figure 4.21: Retrieve legend features from a GML file

different for each layer, we traversed the entire DOM tree to get the elements with

the name 〈layerName feature〉, which was in the third level of the tree (under the

root element 〈msGMLOutput〉 and its parent element 〈layerName layer〉). From each

second-level node whose name was not “#text”4, we gained the third-level nodes.

These were also checked for “#text”. The non-text elements were the feature elements

we needed and their metadata were stored in a LegendFeature object.

4Each node in the DOM tree contains a default child node named “#text”

54 Implementation

4.3.3 The Use of CSS for Supporting Maps Overlapping

A Cascading Style Sheet (CSS) was used in the mapViewer page to define “style

classes” for overlaying maps. We overlapped multiple maps of identical size by putting

them in the same position on the Web page. To implement that, we used CSS Posi-

tioning properties to define the position of an HTML element, as follows:

<style type="text/css">

.background {position: relative; top: 0px; left: 0px;}

.layer {position: absolute; top: 0px; left: 0px;}

</style>

We defined the “.background” class with a position relative to the left and top of

its parent element. The map contained in the HTML element using the “.background”

class will be the container for all other maps contained in the HTML elements using

the “.layer” class. That is, the first map requested becomes the background and the

following maps are overlapped sequentially on the background map (see Figure 4.22).

When implementing mapViewer page, the style classes were applied to the HTML

〈div〉 tag. The “div.background” tag was nested in a table cell with a size equivalent

to the size of the map to be requested. The first map requested was put in the

<td width="600" height="300" valign="top">

<form method="POST" action="FeatureHandler">

<div class="background">

<input border=0 src="map1 URL" name="map" type="image">

<div class="layer">

<input border=0 src="map2 URL" name="map" type="image">

</div>

<div class="layer">

<input border=0 src="map3 URL" name="map" type="image">

</div>

......

</div>

</form>

</td>

Figure 4.22: The map is overlapped using the styles defined in CSS

4.4 Summary 55

“div.background” tag and displayed at the bottom. All maps that followed were put

in the “div.layer” tags nesting within the “div.background” tag and displayed at the

top.

4.4 Summary

In this Chapter, we described the building of a local Web mapping system and the

implementation of a generic OGC WMS client.

Open source software was used locally to set up the entire system, including the

Web server, JSP/Servlet container, OGC WMS server, and database.

The OGC WMS client was implemented in terms of the functionality and mod-

ules identified in Chapter 3. Each module was composed of Model, View, Controller

components. The views were implemented three times, one for each approach under

investigation. The controllers were implemented depending on the views, the ap-

proaches, and the functionality. Similarly, the implementation of models depended on

the functionality but it was independent of the approaches we used.

Finally, the implementation of three generic operations were introduced. They

were inserting data into tables with XMLC, dealing with XML/GML documents using

DOM, and using CSS to support multiple maps overlapping.

56 Implementation

Chapter 5

Evaluation

In this Chapter, the three approaches—JSP with embedded Java, JSP with JSTL tags,

and XMLC—are evaluated against a set of criteria from the perspective of architecture,

development, and maintenance. Each approach will be rated with one to three stars

(“*”, “**” or “***”) for each criterion. The more stars, the better or easier. First of

all, the evaluation criteria are introduced.

5.1 Evaluation Criteria

Many vendors have provided frameworks for Web application development with JSP

and XMLC. The typical ones are Apache Struts [3] and Enhydra Barracuda [11].

Lutris Technologies has made a detailed comparison between Barracuda and Struts [20].

The Jcorporate also evaluated its product—Expresso and many other open source

application frameworks including Struts and Enhydra [15]. Although those frameworks

were not used in this research to implement the OGC WMS client, some criteria they

proposed can still be applied here to evaluate the JSP and XMLC. Below is a set of

criteria we developed to evaluate the three approaches.

Separating Content from Presentation

In a dynamic Web page, the content typically indicates those raw data generated in

the business logic, which is usually implemented in programming language. In a J2EE

Web application, the default programming language is Java. The presentation allows

58 Evaluation

those data to be formatted and dynamically presented with Web technologies like JSP

and XMLC. Two measures were used to assess how well the content and presentation

are separated:

1. Separating Markup from Code: Separating markup from code means a Web page

document contains only markup elements without any Java code. In other words,

HTML do not contain Java, and Java do not contain HTML.

2. Separating Presentation-oriented Tasks from Data-oriented Ones: Presentation-

oriented tasks define how to present, and data-oriented ones generate what to

present. Separating those two kinds of tasks means the content to be presented

should not be generated in the presentation.

Ease of Development

Seven measures are used to evaluate how easy to develop using the three approaches.

These issues are essential and frequently happened in dynamic Web page development,

not only for the OGC WMS client, but all other Java-based Web applications.

1. Method Calling: In a Web application with MVC architecture, the data presented

on the Web page (View) are usually got from JavaBeans and/or other Java

objects (Model). The Model provides a number of public methods that process

the data as required and return them; these methods can be called from within

the View or by other objects within the application scope.

2. Data Type Conversion: Data is often converted between different types according

to the context in which this data is to be used. A data been accessed in the View

may not always exactly match the type expected. In the context of Model,

the data is usually generated in their initial types and/or encapsulated in some

collection objects. In the context of View, the type of the data retrieved from

the Model needs to be converted at times for the purpose of display.

3. Conditional Web Page Output: The output of a Web page is often conditional

depending on the value of dynamic data. As a result, the same page could display

various content every time it is invoked.

5.1 Evaluation Criteria 59

4. Inserting Content into Tables: Often, a collection of data is displayed in a table,

one data value in each column of a table row. In simple cases, each table row

has identical structure except the value of the data. While in some complicate

situations, the structure may be distinct among rows in a table as the elements

to be displayed in each row, even each cell of a row, are various depending on

the data presented.

5. Dealing with XML/GML: XML is now widely used in the Web for exchanging in-

formation. When developing a dynamic Web page, we often need to display some

content extracted from an XML document. In the case of the OGC WMS client,

the WMS server capabilities are provided in the form of an XML document, and

the feature information are also possibly presented using GML.

6. Overlapping Multiple Maps: CSS is a client-side technology usually used to define

how HTML elements are displayed. In our implementation, we defined HTML

structures in the CSS for multiple maps overlapping (see Section 4.3.3). We

want to see how easily the three approaches make use of styled HTML elements

to overlap maps on the Web page.

7. Error Localisation: To reduce the number of delivered errors, debugging is very

important in software development. Errors have to be located and corrected. The

localisation of the errors can be very time consuming because of the confusing

error message. How easily can errors be diagnosed using the three approaches

will be discussed here.

Ease of change

After completing the development of a Web application, we usually need to do some

revisions or updating. We will discuss the maintenance of a dynamic Web page from

three aspects.

1. Changing the Page Appearance: Changing a Web page’s appearance indicates

the modification or update of static HTML elements. We may add a image,

change the background, or use another HTML structure to present the same

data.

60 Evaluation

2. Changing the Content: The change of content may be caused by the revision of

the back-end Java components or the change of page appearance. The code used

to control the Web page may be modified, and the data being displayed could be

reorganised.

3. Rebuilding Updated Pages: Once completing the change, the updated page needs

to be rebuilt in the Web server.

We have concluded the description of the criteria in this Section. From the next

Section, we will describe the evaluation in terms of these criteria.

5.2 Separating Content from Presentation

As introduced previously, the separation of content from presentation is discussed in

terms of: separating markup from code and separating presentation-oriented tasks

from data-oriented ones.

5.2.1 Separating Markup from Code

JSP with Embedded Java

As introduced in Section 2.2, JSP allows Java to be inserted into the Web page. When

using JSP with embedded Java, the markup (HTML) and code (Java programming) are

not mixed in the Java class like Servlet, instead, they are mixed together within the JSP

file. The HTML is responsible for presenting the page template, which is static; and

the embedded Java is responsible for controlling the dynamic content presentation. For

example, in mapViewer.jsp (see Figure 4.9 on Page 42), we displayed titles of selected

layers in a multiple selection list using the code as shown in Figure 5.1. Although we

can write our own custom tags or use JSTL tags to take the place of the Java code,

that is not mandatory. Due to the explicit mixture of HTML and Java, we mark it

with “*”.

JSP with JSTL Tags

JSTL uses HTML-like tags and Expression Language to manipulate the dynamic con-

tent in the JSP file, ideally, Java code will occur less frequently. As a result, the JSP

5.2 Separating Content from Presentation 61

<select name="selectedLayers" size="10" multiple>

<% String[] listLegends = legdInfo.getListLegendStr();

for(int i=0; i<lgNum; i++) {

String legend = listLegends[i];

%>

<option> <%= legend %>

<% } %>

</select>

Figure 5.1: Sample code from mapViewer.jsp, displaying selected layer titles in a se-

lection list using JSP with embedded Java

<select name="selectedLayers" size="10" multiple>

<c:forEach var="legend" items="${sessionScope.legdInfo.listLegendStr}">

<option> <c:out value="${legend}"/>

</c:forEach>

</select>

Figure 5.2: Sample code from mapViewer.jsp, displaying selected layer titles in a se-

lection list using JSP with JSTL tags

file may contain only markup such as HTML elements, JSTL tags, and JSP tags (no

scriplets). For example, in mapViewer.jsp that is implemented using JSP with JSTL

tags, the multiple selection list was created using the code shown in Figure 5.2.

Note that, although almost all tasks that are needed to create a JSP file can be

achieved using JSTL tags, Java may still occasionally be used in a JSP file to implement

functionality not attainable from JSTL tags. Therefore, we mark it with “**”.

XMLC

When using XMLC, the HTML is used to create the template Web page that has no

embedded Java. The template page is compiled into a Java class, which is manipulated

using DOM APIs in another Java class (manipulation class). Therefore, the HTML and

Java are perfectly separated. No Java is included in the template page, and no HTML

will appear in the manipulation class. For example, to generate the multiple selection

list in the mapViewer page, a sample selection list with a sample option element is

created in the template page mapViewer.html (see Figure 5.3). The template page is

62 Evaluation

<select id="legendSelection" name="selectedLayers" size="10" multiple>

<option id="option">legend layer

</select>

Figure 5.3: Sample code from template page mapViewer.html, creating a sample mul-

tiple selection list

public class MapViewerMan extends HttpServlet{

......

MapViewerHtml mapViewer = new MapViewerHtml();

HTMLSelectElement selectionList = mapViewer.getElementLegendSelection();

HTMLOptionElement option = mapViewer.getElementOption();

selectionList.removeChild(option);

for(int i=0; i<legendNum; i++) {

.....

mapViewer.setTextOption(listLegends[i]);

selectionList.appendChild(option.cloneNode(true));

}

}

Figure 5.4: Sample code from the manipulation class MapViewerMan, displaying layer

titles in a selection list using XMLC

compiled into a Java class MapViewerHtml, which is manipulated in the manipulation

class MapViewerMan (see Figure 5.4) where the titles of selected layers are inserted

into the sample selection list using the algorithm we introduced in Figure 4.14 on

Page 47. We award XMLC “***”.

5.2.2 Separating Presentation-oriented Tasks from Data-oriented

Ones

JSP with Embedded Java

As introduced in Section 3.3.1, “Model 2 JSP” is such an architecture conforming

to MVC, which enforces the separation of presentation logic and business logic. The

View handles the presentation logic doing presentation-oriented tasks, and the Model

deals with business logic doing data-oriented ones; the Controller connects them to-

5.2 Separating Content from Presentation 63

gether. The Java fragments embedded in JSP files are purely used to make the page

dynamic and aid presentation. For example, the code shown in Figure 5.5 uses a loop

structure to display the title and the number of features of each selected map layer in

featureSummary.jsp. The data presented in the page are managed in the “bean” class

LegendInformation and a HashMap with session context.

However, using “Model 2 JSP” is not mandatory. Because JSP allows Java code

to be inserted into a page, some data-oriented tasks are quite easy to be included in.

Even worse, the controller logic such as dealing with the HTTP request may also be

mixed in. Therefore, we give JSP with embedded Java “**”.

JSP with JSTL Tags

“Model 2 JSP” is also applicable to the JSP with JSTL tags. We can leave all business

logic to be achieved in the Model, and just use JSTL “core” tags to control the presen-

tation. Thus, the presentation-oriented tasks and data-oriented tasks are separated.

As discussed previously, however, using “Model 2 JSP” is not mandatory. JSTL

provides other functional tags (see Section 2.3) besides the “core” tags that let the

developer able to do many simple data-oriented tasks, such as XML document accessing

and data formatting, within the JSP document. For example, we tried requesting and

parsing the GML document within featureSummary.jsp using JSTL “xml” tags as well

as “core” tags (see Figure 5.6). As a result, the Model are mixed into the View.

Therefore, we mark it with “**”.

XMLC

The XMLC approach makes the application architecture easier to be conformed to

the MVC paradigm. The template pages and the page classes representing each tem-

plate page can be regarded as the Views defining how the page will be displayed.

The manipulation classes are the Controllers of each template page, which interact

with the Model and manipulate the template page to determine what content will be

displayed. The presentation-oriented tasks and data-oriented ones are handled sepa-

rately. For example, to create the featureSummary page, we developed a template page

featureSummary.html that defines how the feature summary should be presented and

compiled it into a page class FeatureSummaryHtml. The data-oriented tasks are done

64 Evaluation

<jsp:useBean id="legdInfo" scope="session" class="wms.LegendInformation"/>

<jsp:useBean id="allLegendFeature" scope="session"

class="java.util.HashMap"/>

......

<table border="0" width="100%">

......

<% for(int i=0; i<legdInfo.getLegendNum(); i++) {

int feaNum = 0;

String legdTitle = legdInfo.getListLegendStr()[i]; %>

<tr>

<td width="30%" align="left">

<%= legdTitle %>

</td>

<td width="30%" align="left">

<% if(allLegendFeature.get(legdTitle) == null)

out.println("GML is not supported");

else {

feaNum =

((LegendFeature)allLegendFeature.get(legdTitle)).getFeatureNum();

out.println(feaNum+" Feature(s)");

} %>

</td>

<td align="left">

<% if(feaNum > 0) { %>

<a href="featureInfo.jsp?legend=<%= legdTitle %>&fid=1" target="new">

<% } %>

</td>

</tr>

<% } //end for loop %>

</table>

Figure 5.5: Sample code from featureSummary.jsp, implementing using JSP with em-

bedded Java

5.2 Separating Content from Presentation 65

<table border="0" width="100%">

......

<c:forEach var="entry" items="${sessionScope.legdInfo.legendBuf}"

varStatus="status">

<c:set var="legendTitle" value="${entry.key}"/>

<c:set var="legend" value="${entry.value}"/>

<c:set var="request"

value="${legend.urlPrefix}${sessionScope.reqMange.featureInfoRequestParams}

&LAYERS=${legend.layerStr}&STYLES=${legend.styleStr}

&QUERY_LAYERS=${legend.name}&X=${param[’map.x’]}&Y=${param[’map.y’]}"/>

<c:import url="${request}" var="gml"/>

<x:parse xml="${gml}" var="doc"/>

<tr>

<td width="25%" align="left">

<c:out value="${legendTitle}"/></td>

<td width="25%" align="left">

<c:out value="${legend.service}"/></td>

<td width="15%" align="left">

<x:choose><x:when select="name($doc/*)=’ServiceExceptionReport’">

<c:out value="GML is not supported"/>

</x:when><x:otherwise>

<x:set var="features" select="$doc/*/*/*"/>

<c:set target="${feaMap}" property="${legendTitle}"

value="${features}"/>

<x:out select="count($doc/*/*/*)"/> Feature(s)

</x:otherwise>

</x:choose>

</td>

......

</tr>

</c:forEach>

</table>

Figure 5.6: Sample code from featureInfo.jsp, accessing GML file using JSTL tags

66 Evaluation

in a DAO that accesses the GML documents and stores the data in JavaBeans and

other objects. A manipulation class FeatureMan was developed to use the DAO and

control the page class by inserting data got from those data objects (see Section 4.2.4).

Therefore “***” is rewarded to XMLC.

5.3 Ease of Development

In this section, seven issues are discussed to evaluate the three approaches to devel-

oping dynamic Web pages: method calling; data type conversion; inserting content

into tables; conditional Web page output; dealing with XML/GML; overlapping mul-

tiple maps; and error localisation. We assume that the Web page developer has the

knowledge of HTML, JSP, JSTL, and Java programming.

5.3.1 Method Calling

JSP with Embedded Java

In a JSP file with embedded Java, we usually use simple Java statements to get re-

quired data by calling JavaBeans properties and/or specific methods performed in the

JavaBeans and other back-end Java components. For example, to request maps for

each layer in mapViewer.jsp, we get GetMap request strings from reqMange—an in-

stance of the class RequestManager (see Figure 5.7). As each map represents a specific

layer, the title of the layer is needed to be provided as a parameter when getting the

GetMap request string by calling the method getMapRequest() implemented in the

class RequestManager (See Figure 5.8). The titles of those layers to be displayed on

the map are collected in a string array got from legdInfo—an instance of another class

LegendInformation by calling the method getMapLegendStr().

Obviously, the MapRequest is not a JavaBean property, because it is not follow the

JavaBeans property conventions introduced in Section 2.2. While the MapLegengStr

can be regarded as a read only JavaBean property (without set method provided) and

accessed using the JSP action tag alternatively:

<jsp:getProperty name="legdInfo" property="MapLegendStr" />

From the view of Java programming, however, calling JavaBean properties and

normal Java methods have no serious difference. Therefore, we mark it with “***”.

5.3 Ease of Development 67

<td width="<%= spaContx.getWidth() %>" height="<%= spaContx.getHeight() %>"

valign="top">

<div class="background">

<% int lgNum = legdInfo.getLegendNum();

String[] mapLegends = legdInfo.getMapLegendStr();

for(int i=0; i<lgNum; i++) {

String mapRequest = reqMange.getMapRequest(mapLegends[i]);

if(i>0) { %>

<div class="layer">

<% } %>

<input border=0 src="<%= mapRequest %>" name="map" type="image">

<% if(i>0) { %>

</div>

<% } } %>

</div>

</td>

Figure 5.7: Sample code from mapViewer.jsp, overlapping maps using JSP with em-

bedded Java

public class LegendInformation {

String mapLegendStr;

......

public String[] getMapLegendStr () {...}

......

}

public class RequestManager {

String mapRequest;

......

public String getMapRequest (String layerTitle) {...}

......

}

Figure 5.8: The methods getMapRequest() and getMapLegendStr() implemented in

classes RequestManager and LegendInformation

68 Evaluation

JSP with JSTL Tags

JSTL provides a convenient way for accessing JavaBean properties. As introduced in

Section 2.3, JSTL supports an Expression Language(EL). When using EL to access

the JavaBeans properties, we only need to simply put the property name after the

convention of Java identifiers. We still use the example shown in Figure 5.8. The

string array containing a set of layer titles can be accessed conveniently using the

JSTL expression:

"${legdInfo.mapLegendStr}"

because the “mapLegendStr” is a JavaBean property with a get method getMapLe-

gendStr() returning a string array (see Figure 5.9).

<td width=’<c:out value="${sessionScope.spaContx.width}"/>’

height=’<c:out value="${sessionScope.spaContx.height}"/>’

valign="top">

<div class="background">

<c:forEach var="legdTitle" items="${legdInfo.mapLegendStr}"

varStatus="status">

<c:set target="${sessionScope.reqMange}" property="activeLegendTitle"

value="${legdTitle}"/>

<c:if test="${status.first==false}">

<div class="layer">

</c:if>

<input border=0 name="map" type="image"

src=’<c:out value="${sessionScope.reqMange.mapRequest}"/>’ >

<c:if test="${status.first==false}">

</div>

</c:if>

</c:forEach>

</div>

</td>

Figure 5.9: Sample code from mapViewer.jsp, overlapping maps using JSP with JSTL

tags

5.3 Ease of Development 69

public class RequestManager {

String activeLegendTitle;

String mapRequest;

......

public Void setActiveLegendTitle (String activeLegendTitle) {...}

public String getActiveLegendTitle () {...}

public String getMapRequest () {...}

......

}

Figure 5.10: The methods implemented in the class RequestManager are conformed to

the JavaBeans property conventions

The methods that do not conform to the JavaBeans property conventions, perhaps

because a method has input arguments or the method name is not start with “get”,

are inaccessible from JSTL EL, but would be accessible using Java. For example, the

method getMapRequest() in Figure 5.8 cannot be accessed using JSTL EL due to the

input argument “layerTitle”. In this situation, we must define setter/getter methods

that conform to the JavaBeans property conventions to make it accessible from the

JSTL EL. We defined a JavaBean property called “activeLegendTitle” that can be

set using the setter method setActiveLegendTitle() and then be accessed from within

the accessor method getMapRequest() using getActiveLegendTitle() (see Figure 5.10).

Thus, the “mapRequest” is a JavaBean property that can be accessed from the JSP

using JSTL EL (See Figure 5.9).

In a word, when implementing using JSP with JSTL tags, the methods implemented

in the Java classes must be carefully defined to conform to the JavaBeans property

conventions if they are to be accessed from within JSP files. As a result, some extra

properties might be defined. Therefore, we mark the JSP with JSTL tags with “**”.

XMLC

Since the Web page is manipulated in a Servlet class when using XMLC, there is no

obstacle on the way to access any kind of methods implemented in other Java objects.

For example, in MapViewerMan, which is a manipulation class create the mapViewer

page, the “mapLegendStr” and the “mapRequest” are retrieved using the code shown

70 Evaluation

int lgNum = this.legdInfo.getLegendNum();

String[] mapLegends = this.legdInfo.getMapLegendStr();

for(int i=0; i<lgNum; i++) {

String mapRequest = this.reqMange.getMapRequest(mapLegends[i]);

......

}

Figure 5.11: Sample code from the manipulation class MapViewerMan, demonstrating

the method calling using XMLC

in Figure 5.11. We reward XMLC “***” for this criterion.

5.3.2 Data Type Conversion

JSP with Embedded Java

When using Java in a JSP document to convert one type of data into another, we

usually follow the rules of “casting” ([31] Chapter 5.5). That is, if we want to convert

type A data into type B data (cast type A to type B), put the type B name in

parentheses in front of the type A data. See the example shown in Figure 5.5 on

Page 64, the number of features was retrieved using the statement below:

feaNum = ((LegendFeature)allLegendFeature.get(legdTitle)).getFeatureNum();

The “allLegendFeature” is a HashMap object containing a collection of Legend-

Feature objects. In Java, the collection classes like HashMap and Vector deal with

its elements as type Object, which is the root class of all classes in Java. We must

restore each Object to its specific type before using it. Therefore, each Object got from

“allLegendFeature” must be cast to LegendFeature.

The other kind of data type conversion that always happens is the conversion

between String and those primitive types like int and double. In this case, Java provides

methods to realise the type conversion. For example, see the code below got from

featureInfo.jsp, a parameter named “fid” indicating which feature is going to be display

is got from the request. The type of the gained data is a String. We used the static

method Integer.parseInt() to convert the String to an int value.

int fid = Integer.parseInt(request.getParameter("fid"));

5.3 Ease of Development 71

<c:set var="feaNum"

value="${sessionScope.allLegendFeature[legdTitle].featureNum}"/>

<c:out value="${feaNum} Feature(s)"/>

Figure 5.12: Sample code from featureSummary.jsp, showing automatic data type

conversion using JSTL

Overall, we mark “**” to the JSP with embedded Java. Note that, this issue is more

associated with the Java programming language than the JSP itself; it occurs in the

JSP development because of the insertion of Java. The good news is that the problem

is likely to be addressed by the new Generics feature of J2SE 1.51, which provides

compile-time type safety for collections and eliminates the drudgery of casting.

JSP with JSTL Tags

The JSTL EL provides automatic data type conversion, which coerces the type of

resulting data to the expected type. For example, the number of feature was retrieved

using the code shown in Figure 5.12 when JSTL tags were used in featureSummary.jsp.

Each object got from “allLegendFeature” is automatically coerced to a LegendFea-

ture object. Therefore, the page author does not need to worry about the specific type

of the collection of objects to iterate over. Similarly, the conversion between String and

primitive types is also automatic. Therefore, we reward JSP with JSTL tags “***”.

XMLC

When using XMLC, the operations on the data are performed in the manipulation

classes using Java. There is no difference from that implemented using JSP with

embedded Java; therefore, we also mark it with “**”. As mentioned when evaluating

the JSP with embedded Java, this issue is more associated with the Java programming

language. If the problem can be removed by the new version of J2SE, we would award

XMLC “***”.

1The beta of Java 2 Platform, Standard Edition 1.5 may be released later 2003

72 Evaluation

5.3.3 Conditional Web Page Output

JSP with Embedded Java

Conditional structures like “if” and “if-else” are usually used in a JSP file to determine

which part should be displayed every time when the page is invoked. For example, in

the featureInfo page (see Figure 4.12 on Page 44), two red arrows are used to let the

user turn over the features forwards or backwards. If the feature displaying is the first

one, the “previous” arrow will be removed; if the feature displaying is the last one,

the “next” arrow will be removed. Moreover, if the feature sequence number that the

user typed in the entry is out of the range, an error message will be shown instead

of the table listing feature data, and both arrows will be removed. In featureInfo.jsp,

an “if” statement is used to control which arrow will be shown, and an “if-else” is

adopted to determine whether the error message, or the table listing feature data, will

be displayed for the user (see Figure 5.13). The structure and Java statement are clear

and simple; we mark it with “***”

JSP with JSTL Tags

In a JSP file with JSTL tags, the 〈c:if〉 tag, corresponding to “if” statement of Java,

can be used to do conditional control. In addition, the “if-else” structure of Java can

also be achieved using 〈c:choose〉/〈c:when〉/〈c:otherwise〉 tags. See the code shown in

Figure 5.14, which generates the same part of the featureInfo page as the code shown

in Figure 5.13 does. These JSTL tags are meaningful and easy to use; we also reward

the JSP with JSTL tags “***”.

XMLC

When using XMLC, which part of the page should be displayed is manipulated in

manipulation classes. We need to put all possibilities in template HTML pages, because

the manipulate class does not know what should be displayed until it is executed at

run time. See the HTML code shown in Figure 5.15, which is extracted from the

template page featureInfo.html. It displays three sections of the page: a table with a

single row containing two arrows and others content, an error message, and a table for

displaying feature data. Each element that might be removed is marked with unique

5.3 Ease of Development 73

<table border="0" width="100%">

<tr>

<td valign="top" align="left" width="25%">

<%= feaNum %> feature(s)

</td>

<td valign="top" width="11%">

<% if(fid>1 && fid<=feaNum) { %>

<a href="featureInfo.jsp?legend=<%= legendTitle %>&fid=<%= fid-1 %>">

<% } %>

</td>

<td valign="top" width="12%">

<% if(fid>=1 && fid<feaNum) { %>

<a href="featureInfo.jsp?legend=<%= legendTitle %>&fid=<%= fid+1 %>">

<% } %>

</td>

......

</tr>

</table>

<% if(fid>feaNum || fid<0) { %>

<hr>

The feature you selected is not in the list!

<% } else { %>

<table border="2" frame="hsides" width="100%">

......

</table>

<% } %>

Figure 5.13: Sample code from featureInfo.jsp, demonstrating the conditional output

using JSP with embedded Java.

“id” attribute.

In the manipulation class FeatureInfoMan, some parts in the template page are

74 Evaluation

<table border="0" width="100%">

<tr>

<td valign="top" align="left" width="25%">

<c:out value="${feaNum} feature(s)"/>

</td>

<td valign="top" width="11%">

<c:if test="${fid>1 and fid<=feaNum}">

<a href=’featureInfo.jsp?legend=<c:out value="${legendTitle}"/>

&fid=<c:out value="${fid-1}"/>’>

</c:if>

</td>

<td valign="top" width="12%">

<c:if test="${fid>=1 and fid<feaNum}">

<a href=’featureInfo.jsp?legend=<c:out value="${legendTitle}"/>

&fid=<c:out value="${fid+1}"/>’>

</c:if>

</td>

......

</tr>

</table>

<c:choose><c:when test="${fid>feaNum or fid<0}">

<hr>

The feature you selected is not in the list!

</c:when><c:otherwise>

<table border="2" frame="hsides" width="100%">

......

</table>

</c:otherwise>

</c:choose>

Figure 5.14: Sample code from featureInfo.jsp, demonstrating the conditional output

using JSP with JSTL tags.

5.3 Ease of Development 75

<table border="0" width="100%">

<tr>

<td valign="top" align="left" width="25%">

N feature(s)</td>

<td valign="top" width="11%">

</td>

<td valign="top" width="12%">

</td>

......

</tr>

</table>

<div id="error"><hr>

The feature you selected is not in the list!

</div>

<table id="report" border="2" frame="hsides" width="100%">

......

</table>

Figure 5.15: Sample code from template page featureInfo.html

kept and some are removed depending on the value of the variable named “fid”, which

is the sequence number of the feature the user requested (see Figure 5.16). When we

remove an HTML element, its all child elements are removed together with it. That

makes mistakes easy to be made when implementing, although the programming is not

difficult for a Java developer. Therefore, we mark the XMLC with “**”.

5.3.4 Inserting Content into Tables

JSP with Embedded Java

As introduced in criteria description in Section 5.1, a table being created to display data

could be simple or complex. We are using same examples described in Section 4.3.1 to

76 Evaluation

FeatureInfoHtml featureInfo = new FeatureInfoHtml();

HTMLAnchorElement prev = featureInfo.getElementPrev();

HTMLAnchorElement next = featureInfo.getElementNext();

HTMLDivElement error = featureInfo.getElementError();

HTMLTableElement report = featureInfo.getElementReport();

......

if(fid>1 && fid<=feaNum) {

int newFid = fid - 1;

prev.setHref("FeatureInfoMan?lid=" + lid + "&fid=" + newFid);

}

else

prev.getParentNode().removeChild(prev);

if(fid>=1 && fid<feaNum) {

int newFid = fid + 1;

next.setHref("FeatureInfoMan?lid=" + lid + "&fid=" + newFid);

}

else

next.getParentNode().removeChild(next);

if(fid<1 || fid>feaNum)

report.getParentNode().removeChild(report);

else {

error.getParentNode().removeChild(error);

......

}

Figure 5.16: Sample code from the manipulation class FeatureInfoMan, demonstrating

the conditional output using XMLC.

discuss inserting content into tables using JSP with embedded Java.

The first example is the table created in the layerList page (see Figure 4.5 on

Page 38), displaying a list of layer titles. Iteration structures such as “for” or “while”

are usually used to insert rows of data in such a simple table. In layerList.jsp, a list

of checkboxes and layer titles are inserted in a table with two columns using “for”

structure, each title per row with same display style (see Figure 5.17).

In the case that each row or cell in a table displays different components, condi-

5.3 Ease of Development 77

<table border="0" width="100%">

......

<% for(int i=0; i<server.getLayerListSize(); i++) {

layerData layer = server.getLayer(i);

%>

<tr>

<td width="1%" height="21" valign="top" bgcolor="#efedde">

<input type="checkbox" name="checkedLayers" value="<%= i %>">

</td>

<td bgcolor="#efedde">

<%= layer.getTitle() %>

</td>

</tr>

<% } %>

</table>

Figure 5.17: Sample code from layerList.jsp, displaying a list of layer titles in a table

using JSP with embedded Java.

tional statements such as “if” or “if-else” are usually used within iteration structure

to determine what, or if anything, is to be displayed. The example we are using is the

table created in the featureSummary page (see Figure 4.9 on Page 42), displaying the

feature summary. In featureSummary.jsp, we used “if” statement in the “for” structure

to decide whether a small “i” icon linking to featureInfo.jsp should be added in the

third column of each row. (see Figure 5.5 on Page 64).

From both examples discussed above, we can see that a table with a collection

of data inserted can be easily created in the JSP file using simple Java iteration and

conditional structures. Therefore, we award JSP with embedded Java “***”.

JSP with JSTL Tags

The two tables created in the layerList page and the featureSummary page are still

used to discuss inserting content into tables using JSP with JSTL tags.

JSTL 〈c:forEach〉 tag provides a iteration structure that can be easily used to iterate

over a collection of objects and build a table, one row per loop. In layerList.jsp, the

78 Evaluation

<table border="0" width="100%">

......

<c:forEach var="layer" items="${sessionScope.server.layerList}"

varStatus="status">

<tr>

<td width="1%" height="21" valign="top" bgcolor="#efedde">

<input type="checkbox" name="checkedLayers"

value=’<c:out value="${status.count-1}"/>’>

</td>

<td bgcolor="#efedde">

<c:out value="${layer.title}"/>

</td>

</tr>

</c:forEach>

</table>

Figure 5.18: Sample code from layerList.jsp, displaying a list of layer titles in a table

using JSP with JSTL tags.

〈c:forEach〉 tag is used to retrieve each layer title from a collection object and display

it in the second cell of the row being processed; a checkbox is put in the first cell of

each row (see Figure 5.18).

In featureSummary.jsp, the conditional JSTL tag 〈c:if〉 is used within the 〈c:forEach〉

tag to determine the output of the small “i” icon (see Figure 5.19). It is also straight-

forward and easy to implement; therefore, we award the JSP with JSTL tags “***”.

XMLC

Inserting content into tables using XMLC has been introduced in Section 4.3.1. Be-

cause creating the prototype table and manipulating it are performed in two separate

files, inserting data into a table using XMLC is not straightforward, especially in the

case that the components displayed in each row of a table are various, such as the table

created in the featureSummary page. As each row been inserted in the table is built on

the same sample row, the sample row has to be very carefully protected without any

5.3 Ease of Development 79

<table border="0" width="100%">

......

<c:forEach var="entry" items="${sessionScope.legdInfo.legendBuf}"

varStatus="status">

<c:set var="legdTitle" value="${entry.key}"/>

<c:set var="legend" value="${entry.value}"/>

<tr>

<td width="30%" align="left">

<c:out value="${legdTitle}"/>

</td>

<td width="30%" align="left">

<c:choose>

<c:when test="${empty sessionScope.allLegendFeature[legdTitle]}">

<c:out value="GML is not supported"/>

</c:when><c:otherwise>

<c:set var="feaNum"

value="${sessionScope.allLegendFeature[legdTitle].featureNum}"/>

<c:out value="${feaNum} Feature(s)"/>

</c:otherwise></c:choose>

</td>

<td align="left">

<c:if test="${feaNum>0}">

<a href=’featureInfo.jsp?legend=<c:out value="${legdTitle}"/>&fid=1’

target="new">

</c:if>

</td>

</tr>

</c:forEach>

</table>

Figure 5.19: Sample code from featureSummary.jsp, displaying feature summary in a

table using JSP with JSTL tags.

80 Evaluation

alteration; otherwise mistakes may take place when printing out the generated Web

page at run time. That makes the manipulation on the table complex and fallible.

Therefore, we give XMLC “*” for this criterion.

5.3.5 Dealing with XML/GML

JSP with Embedded Java

To prevent the Web page from containing too much Java code and becoming too

complex, the XML/GML document is usually handled in the Java classes. In our

implementation, the WMS server’s capabilities XML and GML documents are parsed

and accessed using DOM in DAOs (see Section 4.3.2). The data extracted from the

XML/GML document are stored in JavaBeans and other Java objects, which can be

easily accessed from within the JSP document using simple Java statements. Therefore,

whether it is easy to handle XML/GML depends on what XML parser is used.

Using DOM to handle XML/GML is not quite simple. Although DOM provides

standard APIs for XML handling, some functions are not available and the developer

need to implement their own APIs based on DOM. Therefore, we would only mark

it with “*”. Lots of optional tools are available besides DOM to handle XML, such

as Simple API for XML (SAX), XML Path Language (XPath), Java API for XML

Parsing (JAXP), and JDOM. These tools can be used individually or in combinaiton

with each other to make XML handling easier.

JSP with JSTL Tags

When using JSP with JSTL tags, we have three options to consider.

1. The XML/GML document is entirely parsed and accessed in the JSP file, no

more Java classes needed.

2. We can parse an XML/GML file into a DOM document in the Java class, and

use JSTL “xml” tags, and probably “core” tags as well, to access the DOM and

display the data in a JSP file.

3. Like JSP with embedded Java, the XML/GML document is totally handled in

Java classes. We use JSTL “core” tags to get and display data in the JSP file.

5.3 Ease of Development 81

As introduced in Section 2.3, the JSTL “xml” tags allow you to parse an XML file

and access its data within a JSP file. We tried it to handle the GML document in

featureSummary.jsp and featureInfo.jsp. See the sample code from featureSummary.jsp

in Figure 5.6 on Page 65. The GML document was parsed using 〈x:parse〉 tag, and

the result was set to a variable named “doc”. The feature elements that are located in

the third level of the hierarchy tree can be easily accessed using XPath expression as

below:

<x:set var="features" select="$doc/*/*/*"/>

These feature elements were stored in an HashMap object, which were then accessed

using other “xml”.tags in featureInfo.jsp.

For the second option, we can handle the XML parsing in the Java classes such as

controller Servlet or DAO, and access the parsed document in the JSP document to

display required XML-based data. We did not try this option in our implementation.

We still can see that, however, using this approach, the complex manipulation on the

data that retrieved from the XML file can be performed in the Java classes, and in the

JSP document the “xml” tags will be purely used for XML-based data presentation.

Thus, the behaviors performed in the JSP document are still presentation-oriented

without business logic included in.

The third option handles the XML document in the Java classes, which is same as

that implemented using JSP with embedded Java. Thus, “xml” tags are not necessary

to be used in the JSP file. We can use only “core” tags to call data from the JavaBeans

or other Java objects and display them on the page.

The simplicity of handling XML/GML using JSP with JSTL tags is various in

different cases. It is easy to parse and access XML file using JSTL “xml” tags and

XPath expression, but the JSP file might become complex. Handling XML with DOM

in the Java classes keeps the good architecture of the application, but accessing XML-

based data could be harder. Therefore, we reward “**” to it.

XMLC

When using XMLC, the capabilities XML and GML documents were also handled

using DOM in DAOs. There is no difference from using JSP with embedded Java. As

mentioned when evaluating the JSP with embedded Java, it is more associated with

the XML tools than the approach itself. Therefore, we would also mark “*” here.

82 Evaluation

5.3.6 Overlapping Multiple Maps

JSP with Embedded Java

The styles defined in CSS for multiple maps overlapping was introduced in Section 4.3.3.

In a JSP file with Java embedded, the CSS is able to be defined and applied to the

HTML elements just like in a general HTML page. The outlay of the elements been

styled can then be easily controlled using simple Java code. In mapViewer.jsp, we

simply used “for” and “if” structure to nest the styled elements (see Figure 5.7 on

Page 67). The issues are quite related to those we discussed in the Sections about con-

ditional output (Section 5.3.3) and inserting data into table (Section 5.3.4). Therefore,

we reward the JSP with embedded Java “***”.

JSP with JSTL Tags

The same idea as that used for JSP with embedded Java was used for JSP with JSTL

tags. The styles were easily defined in mapViewer.jsp. The styled HTML elements

“div.background” and “div.layer” were manipulated using the JSTL tags to help the

overlapping of the map (see Figure 5.9 on Page 68). We also mark the JSP with JSTL

tags with “***”.

XMLC

When using XMLC, the CSS is defined and applied on the prototype HTML elements

in the template page (see Figure 5.20). In the manipulation class, the styled elements

are treated like other general HTML elements. The developer do not need to care

about what the style of the element is. What they are interested in are those elements

with “id” attribute (see Figure 5.20).

Defining styles for HTML elements in the template page is simple, while mistakes

may be made when assembling those elements in the manipulation class, as we dis-

cussed in the Sections about conditional output (Section 5.3.3) and inserting content

into tables (Section 5.3.4). Therefore, we mark the XMLC “**”.

5.3 Ease of Development 83

<td id="mapCell" width="mapWidth" height="mapHeight" valign="top">

<div class="background" id="baseDiv">

<input id="baseMap" border=0 src="mapRequest" name="map" type="image">

<div class="layer" id="topDiv">

<input id="topMap" border=0 src="mapRequest" name="map" type="image">

</div>

</div>

</td>

Figure 5.20: In the template page mapViewer.html, the styled prototype HTML ele-

ments are used

baseDiv.removeChild(topDiv);

......

for(int i=0; i<lgNum; i++) {

String mapRequest = this.reqMange.getMapRequest(mapLegends[i]);

if(i==0)

baseMap.setSrc(mapRequest);

if(i>0) {

topMap.setSrc(mapRequest);

baseDiv.appendChild(topDiv.cloneNode(true));

}

......

}

Figure 5.21: Sample code from the class MapViewerMan, manipulating the map over-

lapping.

5.3.7 Error Localisation

JSP with Embedded Java

A JSP file is compiled when it is executed at run time. As introduced in Section 2.2, the

JSP file is converted to a Servlet first, and the Servlet is then compiled and executed.

The compilation may be failed because of syntax errors or semantics errors. When it

is a syntax error, such as forgetting a semi-colon, missing a tag, or spelling mistake,

Tomcat (Version 4.0.3) will generate an error message containing the line number where

the error happened in the JSP file. The error is easy to be located. For example, if we

84 Evaluation

write a scriptlet instead of an expression by forgetting the equal sign like below:

<% layer.getTitle() %>

Tomcat generates the error:

An error occurred at line: 26 in the jsp file: /layerList.jsp

Generated servlet error:

work/localhost/jspTask2/layerList$jsp.java:110: Invalid type expression.

layer.getTitle()

^

An error occurred between lines: 26 and 27 in the jsp file: /layerList.jsp

Generated servlet error:

work/localhost/jspTask2/layerList$jsp.java:113: Invalid declaration.

out.write("\r\n");

^

When it is a semantics error, such as the Array index is out of range, however,

the error message only indicates the line number that matches to the error in the

generated Servlet. Debugging such an error is hard and time consuming, because the

developer has no way to locate the error in the JSP file, and often require to look at

the generated Servlet code to diagnose what cause the error. Therefore, we award JSP

with embedded Java “**”.

JSP with JSTL Tags

JSP with JSTL Tags suffers from the the same problem as JSP with embedded Java.

Besides that, the syntax error on the JSTL tags is also difficult to be located. For

example, if we accidentally miss a slash in a JSTL tag like blow:

<c:out value="${layer.title}" >

Tomcat generates the error:

org.apache.jasper.compiler.ParseException: End of content reached while

more parsing required: tag nesting error?

at org.apache.jasper.compiler.JspReader.popFile(JspReader.java:293)

......

5.4 Ease of change 85

without saying which line in the JSP file cause the error. We have to go through the

entire JSP file from the first line to catch such a small bug. Therefore, we award JSP

with JSTL tags “*”.

XMLC

XMLC compiles the template page and the manipulation class prior to the run time.

The HTML syntax error is diagnosed when converting the template page to a page

class. The Java syntax error is located when compiling the manipulation class using

javac. As for the semantics errors happened in the manipulation class, they are gen-

erated at run time when executing the manipulation class that is implemented as a

Servlet. The error message contains the line number in the manipulation class of where

the error happened. Therefore, locating the error is not hard. We award XMLC “***”.

5.4 Ease of change

We discuss how easily to make changes from three aspects as introduced earlier in this

Chapter: changing the page appearance; changing the content; and rebuilding updated

pages.

5.4.1 Changing the Page Appearance

JSP with Embedded Java

Because of the embedding of Java and other JSP tags, the JSP document cannot be

easily edited using typical HTML design tools such as FrontPage and DreamWave. For

example, non-HTML or non-HTM files are refused to be loaded into the FrontPage

2000. That could be a problem for those page designers who do not know JSP tags

and Java. They might transfer a JSP document to a HTML file by simply changing

the file name’s extension to make it editable using HTML editor, but consequently the

data could be appeared at the position that are not expected at run time. That is

because the Web designer may not know what the means of the Java code and JSP

tags and where they should be put in the page being edited. In addition, the change

on the HTML elements may also cause the change on the code that controls them. As

86 Evaluation

a result, the programmer usually ends up reinserting the Java code and JSP tags into

the renewed page.

However, the work could be easier for a developer who knows HTML, JSP, as well

as Java. For example, same Java code was used in layerList.jsp, no matter a table with

checkboxes (see Figure 5.17 on Page 77) or a multiple selection list (see Figure 5.22)

is used, to control the display of layer titles. If the Web designer knows what those

Java code is used for, the revision should be quite easy. Overall, we give JSP with

embedded Java “*”.

<select name="checkedLayers" size="20" multiple>

<% for(int i=0; i<server.getLayerListSize(); i++) {

layerData layer = server.getLayer(i);;

%>

<option value="<%= i %>"><%= layer.getTitle() %>

<% } %>

Figure 5.22: Sample code from layerList.jsp, displaying a list of layer titles in a multiple

selection list using JSP with embedded Java

JSP with JSTL Tags

As JSTL tags are also typically not recongised by HTML editors, we can only edit

the JSP document in a text editor. However, the JSTL tags are intended to be easier

to learn than Java for those Web designers, because they are HTML-like tags with

similar syntax. Even that, the logics such as scoped variable setting, data looping, and

condition evaluating might still make the designers feel complex to edit a Web page.

If the page designer knows how to use JSTL and has some JSP knowledge, the page

modification should not be hard. Therefore, we award the JSP with JSTL tags “**”.

XMLC

When using XMLC, we change the Web page appearance by revising the template

HTML page, which can be edited using any HTML editors. It is quite convenient for

the Web designers. Only if the elements marked with “id” attribute are not removed

or replaced by other HTML elements, the template page can be freely updated without

5.4 Ease of change 87

changing any Java code. For example, we use push buttons in the mapViewer page

(Figure 4.9 on Page 42) for zoom in/out options, and these push buttons are then

replaced by radio buttons (Figure 4.10 on Page 43). Because these HTML elements

do not concern any dynamic content presentation and no “id” attribute is marked on

them, their changes do not impact any Java code implemented in the manipulation

class.

Another example, see the code in layerList.html (Figure 4.13 on Page 47), where

a table with checkboxes are created. We can vary the background color of table rows,

or even move the two buttons from below the table to on top of it, but still use the

original manipulation class (Figure 4.15 on Page 47) without doing any change in it.

If there are any marked elements are removed or replaced by other elements, how-

ever, the class that manipulate the page has to be revised too. For example, we vary

the layerList page by using a selection list instead of the checkboxes to list the layer ti-

tles. See the revised template HTML in layerList.html (Figure 5.23), the id attributes

“check” and “layerTitle” are removed along with the 〈input〉 and 〈font〉 elements. Al-

though the id attributes “list” and “option” are still there, they have already belonged

to other HTML elements. As a result, the manipulation class LayerListMan has to be

altered as well (see Figure 5.24).

In a word, changing the page appearance by modifying the template page is easy,

but should be done carefully when altering the elements with “id” attribute, which

may cause the change on its manipulation class. Therefore, we award XMLC “**”.

5.4.2 Changing the Content

JSP with Embedded Java

Because the HTML and Java are coupled together in JSP file, some changes on back-

end Java components may cause the modification of the code embedded in the JSP file

correspondingly if those revised objects are refered to. In addition, the exhibition of

HTML elements could also need to be adjusted along with the change of content. In

an application with good architecture such as “Model 2 JSP”, the change of content in

the JSP file is usually very subtle. However, it is still a kind of hard work for designers

who do not know Java. Therefore, we award JSP with Embedded Java “**”.

88 Evaluation

<table border="0" width="100%">

<tr bgcolor="#d0d0d0"><th id="serviceTitle" colspan="2" >service name</th>

</tr>

<tr>

<td>

<select id="list" name="checkedLayers" size="20" multiple>

<option id="option" value="layerIndex">layer title

</select>

</td>

</tr>

</table>

Figure 5.23: The prototype selection list created in the revised template page lay-

erList.html

LayerListHtml layerList = new LayerListHtml();

HTMLSelectElement list = layerList.getElementList();

HTMLOptionElement option = layerList.getElementOption();

layerList.setTextServiceTitle(server.getService());

list.removeChild(option);

for(int i=0; i<server.getLayerListSize(); i++) {

layer = server.getLayer(i);

option.setValue(Integer.toString(i));

layerList.setTextOption(layer.getTitle());

list.appendChild(option.cloneNode(true));

}

Figure 5.24: The revised manipulation class LayerListMan

JSP with JSTL Tags

Like JSP with embedded Java, some changes in the back-end Java components will

cause the small modification on the JSP file using JSTL tags if the application has good

MVC architecture. However, if there are huge number of XML accessing or database

reading operations being done in the JSP file with JSTL “xml” or “sql” tags, In this

comparison, we assume that the Web page developer has the knowledges of HTML,

5.5 Summary 89

JSP, JSTL, and Java programmingrevising those part of codes for a page author are

not so easy. Therefore, we award JSP with JSTL tags “**”.

XMLC

When using XMLC, any dynamic content and server side modifications are done in the

Java classes by programmer, which will not affect the HTML code in the template page.

Therefore, the page designer can pay their attention on the page design and decoration

without needing to know any programming things. We award XMLC “***”.

5.4.3 Rebuilding Updated Pages

JSP with Embedded Java

Once the revision of the JSP file is completed and the revised page is saved and

deployed, it will be compiled by the JSP container automatically at run time. No

more work need to be done by the developer. We would mark it with “***”.

JSP with JSTL Tags

No manual compilation is needed because the JSP container will compile the updated

JSP file automatically at run time. It should also be reasonable to mark it with “***”.

XMLC

Every time the template page is changed, even just a little revision, it has to be

recompiled and redeployed. If alteration is needed in the manipulation class due to the

change on the template page, the manipulation class should also be recompiled and

redeployed manually2. Therefore, we only mark the XMLC with “*”.

5.5 Summary

In this Chapter we evaluated the three approaches against a set of criteria. The

evaluation results are summarised in Figure 5.25, where “***” means good or easy, “**”

means unsure, depending on specific situation, and “*” means not good, or complex.

2all discussion is based on the use of XMLC without the Enhydra server

90 Evaluation

Criteria Sub-criteria JSP with em-

bedded Java

JSP with

JSTL Tags

XMLC

Separating

content

from

presentation

Separating markup from

code (5.2.1)

* ** ***

Separating presentation-

oriented tasks from data-

oriented ones (5.2.2)

** ** ***

Easy to

development

Method calling (5.3.1) *** ** ***

Data type conversion (5.3.2) ** *** **

Conditional Web page out-

put (5.3.3)

*** *** **

Inserting content into tables

(5.3.4)

*** *** *

Dealing with XML/GML

(5.3.5)

* ** *

Overlapping multiple

maps(5.3.6)

*** *** **

Error localisation(5.3.7) ** * ***

Easy to

change

Changing the page appear-

ance (5.4.1)

** ** **

Changing the content

(5.4.2)

** ** ***

Rebuilding updated pages

(5.4.3)

*** *** *

Figure 5.25: Evaluation summary

In everage, 2.25 stars are awarded to JSP with embedded Java, 2.33 stars are

awarded to JSP with JSTL tags, and 2.17 stars are awarded to XMLC. JSP with

JSTL tags gets the most stars among the three approaches. A detailed comparison is

provided in Chapter 6.

Chapter 6

Comparison

In this Chapter, we compare the three approaches—JSP with embedded Java, JSP

with JSTL tags, and XMLC—based on the evaluation discussed in Chapter 5. For the

comparison, we have applied the identical criteria used in the evaluation (Section 5.1).

6.1 Separating Content from Presentation

Separating Markup from Code

JSP with embedded Java merges the HTML and the Java code into one file. The

other two approaches—JSP with JSTL tags and XMLC—permit markup and code to

be separated. In a JSP file with JSTL tags, Java code is not required because JSTL

tags can be used for almost all the operations required to develop a JSP document.

However, JSP does not forbid Java code to be used in a JSP file where JSTL or other

custom tags are also used. Separating markup from code in a JSP file is practicable,

but not obligable. Of the three approaches, XMLC is the preferred one as it physically

separates the template HTML page from the code that manipulates the page into

two files. Separating markup from code in a Web page implemented using XMLC is

enforced.

Separating Presentation-oriented Tasks from Data-oriented Ones

The architecture of applications implemented using XMLC enforces the separation of

presentation logic and business logic. Thus it conforms to the MVC pattern (Sec-

92 Comparison

tion 3.3.1) of separating presentation-oriented and data-oriented tasks. By applying

“Model 2 JSP” architecture, separation can also be achieved using the other two ap-

proaches. But the use of “Model 2 JSP” is neither mandatory nor universal as data

can be generated using Java in JSP files and XML documents and database can also

be accessed using JSTL tags. Choice of architecture is ultimately influenced by the

application’s requirements.

6.2 Ease of Development

In this comparison, we assume that the Web page developer has knowledge of HTML,

JSP, JSTL, and Java programming

Method Calling

It is easy to use simple Java statements to perform method calling in a JSP file with

Java embedded, or in manipulation classes if XMLC is used. JSTL EL provides a

convenient way to get JavaBean properties but will only work on methods that conform

to JavaBeans property conventions. In some situations using Java statements offers

greater flexibility as only some of the Java components handling the business logic

at the back-end may conform strictly to the JavaBeans property conventions or be

JavaBeans themselves. However, data processing can be accomplished implicitly in

normal Java methods and the results of the processing can be provided using getter

methods. The getter methods can be called from within JSP files or any other Java

object regardless of whether Java or JSTL tags have been used.

Data Type Conversion

Data type conversion is most easily achieved using the JSP with JSTL tags approach

as JSTL EL can convert data types automatically in a JSP file. Therefore, the page

author does not need to worry about the type of data retrieved from the Java objects

or session context. As for the other two approaches, the developer has to treat data

type conversion manually and carefully using Java, otherwise errors may occur when

compiling or erroneous results may be produced. Fortunately, this problem is likely

to be solved by the generic features of J2SE 1.5 and data type conversion will be also

6.2 Ease of Development 93

convenient when using JSP with embedded Java and XMLC.

Conditional Web Page Output

Web page output can be easily controlled in the JSP file using some conditional struc-

tures, regardless of whether Java code or JSTL tags are used. The same is not true for

XMLC, for which the process is neither simple nor straightforward. As we explained

earlier, the template page and the control of the page output are performed separately

in two files when using XMLC, which introduces a requirement for all achievable out-

comes to be listed in the template page. These are used to manipulate the Web page

output by including or removing related HTML elements in the manipulation class ac-

cording to certain conditions. The intricacy of this process increases the probability of

mistakes being made, especially when manipulating pages with complex functionality.

Inserting Content into Tables

Inserting content into tables using XMLC is a complex operation, especially when

the components to be displayed in each row or cell are conditional on the data to be

displayed along with them. This arises from the need to use complex algorithms to

preserve the original HTML structure and to organise the output according to certain

conditions. When working with manipulation classes, XMLC uses the parameters of

the appropriate sample row in the template page to create each new row in a table. In

contrast, the JSP approaches are much more straightforward as both the table creation

and content insertion are performed in a single JSP file. This means that by using

Java statements or JSTL tags, simple iteration and conditional structures can easily

be used to perform these outputs.

Dealing with XML/GML

XML/GML can be handled in back-end Java components such as DAOs or Servlets.

Accordingly, the XML processing tools being used are a more important influence on

how easily XML/GML is dealt with than are the three approaches themselves. We

used DOM, which provides standard APIs for accessing XML documents. However,

the DOM APIs did not cover all our needs to access XML-based data.

94 Comparison

Using JSTL “xml” tags and XPath to handle XML documents is convenient, as

there is no need to write back-end Java components. The failing is that the JSP file

may become very complex. Moreover, the architecture of the application could be yet

more complex. This approach is suitable only for small applications that simply dis-

play XML-based data in a single page. In bigger applications it is preferable for Java

components to perform the complex manipulation of XML-based data. For example,

we preferred handling the capabilities XML file in a DAO because many types of capa-

bilities data such as styles of a layer need not be displayed to the user. Furthermore,

certain types of capabilities data are manipulated frequently; bounding box is one such

example. Although GML can be handled in a JSP file, using the DAO ensures that

the application business logic remains unchanged by different WMS servers, each of

which may provide features with various schemes. The DAO is able to retain the in-

tegrity of the application business logic because it can implement a common interface

for retrieving GML documents from different WMS servers.

Overlapping Multiple Maps

We defined styles for HTML elements using CSS position properties to support over-

lapping multiple maps. The overlapping of multiple maps is equally straightforward for

all three approaches because defining styles using CSS, which is a client-side technol-

ogy, is independent of server-side Web technologies. However, differences between the

approaches become apparent when considering how styled HTML elements are used

for dynamic Web page generation. As this issue relates to others about conditional

output and the insertion of content into tables, both of the JSP approaches would be

easier to use than XMLC.

Error Localisation

The errors in a JSP file cannot be diagnosed until we execute it at run time. For

most syntax errors, the container will generate an error message containing the line

number in the JSP file where the error happened. Therefore, locating the error is not

hard. This is not the case when a syntax error occurs in a JSTL tag; here the error

message will not contain a line number. Furthermore, when semantic errors occur in

a JSP file the error message references the line number that matches the error in the

6.3 Ease of Change 95

generated Servlet code, not the JSP file. This makes debugging much harder and far

more time consuming. The converse is true of locating errors in XMLC as syntax errors

can be diagnosed when compiling template pages and manipulation classes. Moreover,

semantic errors are reported at run time and are easily located as the error message

shows the line numbers corresponding to the errors in the manipulation class.

6.3 Ease of Change

Changing the Page Appearance

No HTML editor known to us has the ability to edit JSP documents and almost none

support non-HTML elements. Consequently, editing JSP documents is a difficult task

for Web designers who know HTML only and who work exclusively with HTML editors.

Clearly, knowledge on the part of the Web designer of Java and JSTL makes the editing

of JSP documents much easier but where this knowledge is absent, designers should

consider choosing XMLC as this approach minimizes the degree of coupling between

the HTML and the Java components. Designers can change the page appearance freely

by editing the template page in any WYSIWYG1 HTML editor. A shortcoming worth

noting is that modifications to the template page might result in modifications to the

manipulation class.

Changing the Content

When using XMLC, changes to Web page content are performed in the manipulation

class and the template page is left unchanged. However, when using JSP approaches,

Web page content is changed in the JSP document, which could affect the presentation

of HTML elements. For this reason, Web page designers need to know Java or JSTL in

addition to HTML. In an application with a well-designed MVC architecture, even big

changes to the back-end Java code would result in only small content changes in JSP

files. When using JSTL tags in the JSP file, the level of complexity and the number

of changes required may increase significantly once the XML file or database has been

accessed or changed. For these reason, XMLC is the preferred approach for making

changes to Web page content.

1WYSIWYG stands for What You See Is What You Get

96 Comparison

Rebuilding Updated Pages

The JSP container performs the compilation of a JSP file automatically at run time.

For this reason, it takes a long time to load a new or updated JSP file for the first time.

When using XMLC, it is possible to rebuild pages frequently during development but

it is likely that the manipulation class will need to be manually recompiled along with

the template page every time a Web page is updated. In this instance the two JSP

approaches are preferable as they do not require frequent manual recompilation.

Chapter 7

Conclusions

In this thesis we have evaluated and compared three approaches to developing dynamic

Web pages for a J2EE Web application. These approaches are JSP with embedded

Java, JSP with JSTL tags, and XMLC. We used each of them to develop a client

that interacted with servers implementing the OGC WMS specification. We identified

functionality that was representative of a generic OGC WMS client and divided it

into three levels with the complexity increasing from level one to level three: a simple

prototype interacting with a single WMS server; that enables multiple requests; and

that interacts with multiple WMS servers. The evaluation of the three approaches was

based on the experience obtained through the implementation of this functionality.

We evaluated the approaches from three perspectives: architecture; development;

and maintenance. During the implementation, each approach revealed advantages and

disadvantages in various area.

Using JSP with embedded Java is a traditional approach to implement JSP files.

Its advantage is that if the page author has the ability to use both HTML and Java, the

development and update of the Web page will be straightforward. Because the HTML

and Java code share a single file, the development process is simple. The disadvantage

is that the mixture of HTML and Java provides an opportunity for the use of a bad

application architecture. In addition, the development and maintenance of a JSP file

will be hard for a Web designer who knows only HTML. Furthermore, page appearance

changes might call for frequent changes to Java code, and vice versa.

The JSP with JSTL tags approach is a relatively new solution to implementing

JSP files. Its advantage is that using JSTL tags in JSP files is straightforward. The

98 Conclusions

most important improvement introduced by using JSTL tags in JSP files is that the

tags can replace Java code, which means that markup and Java can be separated.

The disadvantage is that business logic can also be included in JSP files by using

functional JSTL tags such as “xml” or “sql” tags. The presence of these tags could

increase the complexity of JSP files and thereby make it more difficult to update Web

pages. We also noticed that in instances where they were to be called from within a

JSP file, there was a requirement for the methods implemented in Java components

to conform to JavaBeans property conventions. This was because JSTL EL can access

only JavaBeans properties and not normal Java methods.

The application implemented using XMLC closely conforms to the MVC architec-

ture. This is the biggest advantage of XMLC. The presentation logic and business logic

are clearly separate; the HTML is also totally isolated from Java. Thus the roles per-

formed by page designers and Java programmers are distinct. Consequently updating

an application becomes easier as changes to the user interface and the back-end Java

component are less likely to affect each other. The disadvantage is that decoupling the

HTML template and the manipulation code results in a far more complex development

process compared to the process that would be followed with JSP. Furthermore, the

separation of the HTML template from the manipulation code also requires that addi-

tional Java code be implemented ‘behind the scenes’ to manipulate the page output.

The Java programming language and XML parsers such as DOM are always used

along with JSP and XMLC to implement Web applications. The presence of these

elements have the effect of making Web page development more or less complex.

Our research shows that “Model 2 JSP” architecture should be implemented when

using the JSP with embedded Java approach as it conforms to the MVC paradigm

by separating presentation logic from business logic in the application. JSP with

embedded Java is viable in situations where the page author can program with Java

and where Web page decoration is an insignificant factor.

Using JSP with JSTL tags releases Java programmers from having to write various

Java components as certain simple business tasks can be handled within the JSP

file. Accordingly, this approach is the preferred one in situations where there is no

requirement to display anything other than simple XML-based data or database data

in a Web page, as well as no need to perform complex manipulation. In all other

situations where the JSP with JSTL tags approach is used, “Model 2 JSP” is the

99

preferred approach.

In situations where the page author uses only HTML editor to edit Web pages,

XMLC might be the preferred approach. However, implementing using XMLC be-

comes difficult when the Web page has a complex structure and contains complicated

functionality.

100 Conclusions

Chapter 8

Future Work

The evaluation of the three approaches—JSP with embedded Java, JSP with JSTL

tags, and XMLC—in this research was based on the implementation of the OGC

WMS client. Consequently, some features of JSP, JSTL and XMLC have not been

covered. For example, since the WMS client does not connect to a database directly,

we did not used JSTL “sql” tags in our implementation. Similarly, the WMS client is a

relatively simple application capable of processing only a small number of transactions.

Its limitations restricted the scope of our research as there was no need to consider

security requirements, scalability or consistency issues.

A client for OGC Web Feature Service (WFS) [26] could be a good case for further

investigation. WFS allows data transactions on geographic features. Users can delete,

update, or create a new feature instance in addition to the read-only operations. Scal-

able Vector Graphics (SVG) [41] will be created from GML and displayed on the Web

page. EJB could be considered as the middle tier between the Web page and WFS

server in the implementation of a WFS client.

Further investigation can also include other Web technologies with different devel-

opment methodologies. Apache Cocoon [1] uses a new approach to generate dynamic

Web pages. It is based entirely on the XML and XSLT technologies. Java Server Faces

(JSF) [19] is another new technology that provides an extensible server-side user inter-

face framework integrating with JSP and JSTL. Its goal is to make it much easier to

build user interfaces for Web application. Apache Velocity [4] is also a Java-based tech-

nology that is similar to JSP. It uses Velocity Template Language (VTL) to incorporate

dynamic content in a Web page.

102 Future Work

Yet another large area for future work is the JSP editor. We have discussed in

Section 5.4.1 that maintaining a JSP file is hard for a Web page designer who knows

only HTML. JSP files would be far easier to maintain if a a WYSIWYG JSP editor

were available to provide a graphic environment and to support JSP as well as HTML

elements.

Appendix A

Sample WMS Capabilities XML

Document

This document describes the capabilities of the UMN MapServer demonstration appli-

cation for Itasca County located in north central Minnesota.

<?xml version=’1.0’ encoding="ISO-8859-1" standalone="no" ?>

<!DOCTYPE WMT_MS_Capabilities SYSTEM "http://www.digitalearth.gov/wmt/

xml/capabilities_1_1_0.dtd"

[

<!ELEMENT VendorSpecificCapabilities EMPTY>

]> <!-- end of DOCTYPE declaration -->

<WMT_MS_Capabilities version="1.1.0" updateSequence="0">

<Service> <!-- a service IS a MapServer mapfile -->

<Name>GetMap</Name> <!-- WMT defined -->

<Title>UMN MapServer Itasca Demo</Title>

<Abstract>This is the UMN MapServer demonstration application for

Itasca County located in north central Minnesota.</Abstract>

<OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:href="http://localhost:8080/cgi-bin/mapserv?"/>

<ContactInformation>

</ContactInformation>

<AccessConstraints>none</AccessConstraints>

</Service>

104 Sample WMS Capabilities XML Document

<Capability>

<Request>

<GetCapabilities>

<Format>application/vnd.ogc.wms_xml</Format>

<DCPType>

<HTTP>

<Get><OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:href="http://localhost:8080/cgi-bin/mapserv?"/></Get>

<Post><OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:href="http://localhost:8080/cgi-bin/mapserv?"/></Post>

</HTTP>

</DCPType>

</GetCapabilities>

<GetMap>

<Format>image/gif</Format>

<Format>image/png</Format>

<Format>image/wbmp</Format>

<DCPType>

<HTTP>

<Get><OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:href="http://localhost:8080/cgi-bin/mapserv?"/></Get>

<Post><OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:href="http://localhost:8080/cgi-bin/mapserv?"/></Post>

</HTTP>

</DCPType>

</GetMap>

<GetFeatureInfo>

<Format>text/plain</Format>

<Format>text/html</Format>

<Format>application/vnd.ogc.gml</Format>

<DCPType>

<HTTP>

<Get><OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:href="http://localhost:8080/cgi-bin/mapserv?"/></Get>

105

<Post><OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:href="http://localhost:8080/cgi-bin/mapserv?"/></Post>

</HTTP>

</DCPType>

</GetFeatureInfo>

</Request>

<Exception>

<Format>application/vnd.ogc.se_xml</Format>

<Format>application/vnd.ogc.se_inimage</Format>

<Format>application/vnd.ogc.se_blank</Format>

</Exception>

<VendorSpecificCapabilities />

<Layer>

<Name>DEMO</Name>

<Title>UMN MapServer Itasca Demo</Title>

<SRS>EPSG:26915</SRS>

<LatLonBoundingBox minx="-94.5002" miny="46.9476"

maxx="-92.9892" maxy="47.9717" />

<BoundingBox SRS="EPSG:26915" minx="388014" miny="5.2004e+06"

maxx="500802" maxy="5.31316e+06" />

<Layer queryable="0" opaque="0" cascaded="0">

<Name>ctybdpy2</Name>

<Title>County Boundary</Title>

<Abstract>Itasca County boundary shapefile. See

http://deli.dnr.state.mn.us/metadata/full/ctybdne2.html for more

information.</Abstract>

</Layer>

<Layer>

<Name>cities</Name>

<Title>cities</Title>

<Layer queryable="1" opaque="0" cascaded="0">

<Name>mcd90py2</Name>

<Title>Minor Civil Divisions</Title>

<Abstract>Minor civil divisions for Itasca County.(boundaries only)

</Abstract>

106 Sample WMS Capabilities XML Document

</Layer>

<Layer queryable="0" opaque="0" cascaded="0">

<Name>mcd90py2_anno</Name>

<Title>Minor Civil Divisions Names</Title>

<Abstract>Minor civil divisions for Itasca County.(annotation only)

</Abstract>

</Layer>

</Layer>

<Layer queryable="0" opaque="0" cascaded="0">

<Name>twprgpy3</Name>

<Title>Township Boundaries</Title>

<Abstract>Pulic Land Survey (PLS) township boundaries for Itasca

County. See http://deli.dnr.state.mn.us/metadata/full/twprgne2.html for

more information.

</Abstract>

</Layer>

<Layer queryable="1" opaque="0" cascaded="0">

<Name>lakespy2</Name>

<Title>Lakes and Rivers</Title>

<Abstract>DLG lake and river polygons for Itasca County.

See http://deli.dnr.state.mn.us/metadata/full/dlglkpy2.html for

more information.

</Abstract>

</Layer>

<Layer queryable="1" opaque="0" cascaded="0">

<Name>dlgstln2</Name>

<Title>Streams</Title>

<Abstract>DLG streams for Itasca County.

See http://deli.dnr.state.mn.us/metadata/full/dlgstln2.html for

more information.

</Abstract>

</Layer>

<Layer>

<Name>roads</Name>

<Title>roads</Title>

107

<Layer queryable="0" opaque="0" cascaded="0">

<Name>ctyrdln3</Name>

<Title>County Roads</Title>

<Abstract>County roads. (lines only) Derived from MNDOT roads

layer, see http://deli.dnr.state.mn.us/metadata/full/dotrdln2.html for

more information.

</Abstract>

</Layer>

<Layer queryable="0" opaque="0" cascaded="0">

<Name>ctyrdln3_anno</Name>

<Title>County Roads Names</Title>

<Abstract>County roads. (shields only) Derived from MNDOT roads

layer, see http://deli.dnr.state.mn.us/metadata/full/dotrdln2.html for

more information.

</Abstract>

</Layer>

<Layer queryable="0" opaque="0" cascaded="0">

<Name>majrdln3</Name>

<Title>Highways</Title>

<Abstract>Highways- state, US and interstate.(lines only)

Derived from MNDOT roads layer,

see http://deli.dnr.state.mn.us/metadata/full/dotrdln2.html for

more information.

</Abstract>

</Layer>

<Layer queryable="0" opaque="0" cascaded="0">

<Name>majrdln3_anno</Name>

<Title>Highways Names</Title>

<Abstract>Highways- state, US and interstate.(shields only)

Derived from MNDOT roads layer,

see http://deli.dnr.state.mn.us/metadata/full/dotrdln2.html for

more information.

</Abstract>

</Layer>

</Layer>

108 Sample WMS Capabilities XML Document

<Layer queryable="1" opaque="0" cascaded="0">

<Name>airports</Name>

<Title>Airports</Title>

<Abstract>Airport runways for Itasca County.</Abstract>

</Layer>

</Layer>

</Capability>

</WMT_MS_Capabilities>

Appendix B

Sample GML Document presenting

Feature Information

This document describes geographic feature information provided by the UMN MapServer

demonstration application. The features of two layers are presented: lake and airport.

<?xml version="1.0" encoding="ISO-8859-1"?>

<msGMLOutput xmlns:gml="http://www.opengis.net/gml"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance">

<lakespy2_layer>

<lakespy2_feature>

<gid>422</gid>

<area>1576600.89769</area>

<perimeter>12743.5631</perimeter>

<usclass>421</usclass>

<dowlknum>69093900</dowlknum>

<dow_verif>1</dow_verif>

<lake_name>STURGEONWEST</lake_name>

<lake_class>10</lake_class>

<elevation>1371</elevation>

<acres>389.578</acres>

<perfeet>41811.631</perfeet>

<gml:boundedBy>

110 Sample GML Document presenting Feature Information

<gml:Box srsName="EPSG:26915">

<gml:coordinates>

494267.830461,5278432.894177 495357.223954,5282092.221817

</gml:coordinates>

</gml:Box>

</gml:boundedBy>

<gml:MultiPolygon srsName="EPSG:26915">

<gml:Polygon>

<gml:outerBoundaryIs>

<gml:LinearRing>

<gml:coordinates>

494330.752194,5278593.021148 494315.566150,5278648.895884

494318.192261,5278699.770187 494325.818703,5278768.269135

494407.194914,5278869.765625 494447.883074,5278923.138836

494432.696575,5278958.763820 494353.947219,5278941.016231

494290.448176,5278946.142936 494277.761244,5278963.893072

494277.762447,5279017.267417 494313.452045,5279131.515021

494305.890676,5279177.264670 494267.830461,5279256.014767

494290.770286,5279372.887692 494318.835092,5279492.135442

494463.646310,5279522.506012 494499.208725,5279540.254797

494550.020420,5279535.128436 494590.581688,5279504.627677

494664.203648,5279413.126748 494702.265463,5279405.500778

494753.076938,5279390.249545 494760.701270,5279364.874647

494755.512256,5279293.750674 494704.635165,5279169.253639

494689.321737,5279118.504695 494712.132064,5279034.630098

494778.130168,5278988.878827 494813.628455,5278933.003532

494861.876576,5278877.127883 494933.000240,5278859.251127

495032.061599,5278866.748278 495103.186221,5278892.120982

495151.499815,5278970.743653 495151.563155,5279008.868174

495121.127349,5279067.368290 495027.192617,5279135.995052

495024.694110,5279201.994298 495067.944710,5279255.367423

495075.570112,5279278.241924 495052.759098,5279331.616894

495055.322124,5279356.991505 495111.197099,5279389.989530

495159.446054,5279372.113404 495215.320133,5279364.486937

495264.086336,5279391.919508 495244.762814,5278835.100412

111

495240.307955,5278825.992996 495141.182750,5278757.496609

495113.182054,5278709.247991 495115.680060,5278620.374033

495047.056125,5278628.000842 495003.868345,5278589.877515

494968.306705,5278607.753279 494937.997977,5278760.127223

494917.686082,5278775.377597 494882.124053,5278775.503584

494838.873660,5278732.255323 494838.809581,5278661.131209

494846.370460,5278592.631850 494838.745051,5278569.757346

494726.931690,5278465.761735 494676.119961,5278470.763080

494625.307897,5278460.764612 494472.871748,5278432.894177

494429.748449,5278483.769746 494419.625119,5278552.269184

494330.752194,5278593.021148

</gml:coordinates>

</gml:LinearRing>

</gml:outerBoundaryIs>

</gml:Polygon>

<gml:Polygon>

<gml:outerBoundaryIs>

<gml:LinearRing>

<gml:coordinates>

495265.721227,5279439.029870 495174.824707,5279547.360777

495027.578338,5279621.113982 494979.392565,5279669.489729

494948.956774,5279727.864855 494936.270630,5279781.239546

494946.458159,5279788.864164 494997.207349,5279783.737803

495185.077028,5279659.109088 495271.450792,5279656.481698

495273.277334,5279656.763726 495265.721227,5279439.029870

</gml:coordinates>

</gml:LinearRing>

</gml:outerBoundaryIs>

</gml:Polygon>

<gml:Polygon>

<gml:outerBoundaryIs>

<gml:LinearRing>

<gml:coordinates>

495296.229158,5280318.134542 495205.902546,5280263.600915

495096.653627,5280243.354254 495017.967454,5280253.606347

112 Sample GML Document presenting Feature Information

494885.971499,5280352.733837 494825.036438,5280423.984673

494746.415937,5280576.360003 494657.735590,5280840.609237

494576.551754,5280952.485158 494449.617678,5281023.737888

494363.308137,5281099.989405 494315.123449,5281193.989620

494317.749326,5281234.614045 494348.249795,5281275.237675

494414.311731,5281292.985570 494541.310786,5281333.481445

494620.059748,5281338.479134 494708.997135,5281391.725933

494808.058411,5281401.847977 494871.620937,5281444.970622

495001.438551,5281762.337938 495128.564854,5281907.082474

495222.565625,5282005.953529 495298.815542,5282054.200728

495357.223954,5282092.221817 495352.374997,5281951.950479

495346.246180,5281773.577907 495309.856639,5280713.702279

495224.100740,5280761.469144 495127.666410,5280842.845860

495046.547117,5281048.595588 494769.803774,5281168.226977

494751.991193,5281152.977675 494746.928482,5281140.227978

494960.172802,5281023.223364 494985.417775,5280812.475281

495053.914943,5280728.599386 495165.662789,5280703.096536

495221.473375,5280652.220592 495254.471788,5280601.345297

495292.533526,5280591.219346 495302.720937,5280593.719026

495306.057688,5280603.054703 495300.561409,5280442.970985

495296.229158,5280318.134542

</gml:coordinates>

</gml:LinearRing>

</gml:outerBoundaryIs>

</gml:Polygon>

</gml:MultiPolygon>

</lakespy2_feature>

</lakespy2_layer>

<airports_layer>

<airports_feature>

<gid>4</gid>

<name>Christenson Point Seaplane Base</name>

<lat>47.6692</lat>

<lon>-93.0544</lon>

113

<elevation>1372</elevation>

<quadname>Side Lake</quadname>

<gml:boundedBy>

<gml:Box srsName="EPSG:26915">

<gml:coordinates>

495913.000000,5279532.000000 495913.000000,5279532.000000

</gml:coordinates>

</gml:Box>

</gml:boundedBy>

<gml:Point srsName="EPSG:26915">

<gml:coordinates>495913.000000,5279532.000000</gml:coordinates>

</gml:Point>

</airports_feature>

<airports_feature>

<gid>10</gid>

<name>Sixberrys Landing Seaplane Base</name>

<lat>47.6775</lat>

<lon>-93.0481</lon>

<elevation>1372</elevation>

<quadname>Side Lake</quadname>

<gml:boundedBy>

<gml:Box srsName="EPSG:26915">

<gml:coordinates>

496393.000000,5280458.000000 496393.000000,5280458.000000

</gml:coordinates>

</gml:Box>

</gml:boundedBy>

<gml:Point srsName="EPSG:26915">

<gml:coordinates>496393.000000,5280458.000000</gml:coordinates>

</gml:Point>

</airports_feature>

</airports_layer>

</msGMLOutput>

114 Sample GML Document presenting Feature Information

Appendix C

Sample Mapfile for UMN

MapServer

This is the mapfile for the UMN MapServer with demonstration dataset for Itasca

County located in north central Minnesota.

#

Start of map file

#

NAME DEMO

SIZE 600 600

EXTENT 388013.643812817 5200395.13465842 500802.348432817 5313156.99196842

#

Projection definition, consult the PROJ.4 documentation for

parameter discussion

#

PROJECTION:

"init=epsg:26915"

END

#

Start of web interface definition (including WMS enabling metadata)

#

WEB

116 Sample Mapfile for UMN MapServer

TEMPLATE demo.html

METADATA

WMS_TITLE "UMN MapServer Itasca Demo"

WMS_ABSTRACT "This is the UMN MapServer demonstration application for

Itasca County located in north central Minnesota."

WMS_ACCESSCONSTRAINTS none

WMS_ONLINERESOURCE "http://localhost:8080/cgi-bin/mapserv?"

WMS_SRS "EPSG:26915"

END

END

#

Start of symbol definitions (we’re only using a few)

#

SYMBOL

NAME ’circle’

TYPE ELLIPSE

POINTS 1 1 END

FILLED TRUE

END

#

Start of layer definitions

#

LAYER

NAME ctybdpy2

CONNECTIONTYPE postgis

CONNECTION "user=hdi12 dbname=mygisdb host=localhost port=5432"

DATA "the_geom from ctybdpy2"

TYPE POLYGON

STATUS off

CLASSITEM ’cty_name’

CLASS

EXPRESSION ’Itasca’

OUTLINECOLOR 128 128 128

117

COLOR 225 225 185

END

CLASS # every other county in the state

EXPRESSION /./

OUTLINECOLOR 128 128 128

COLOR 255 255 255

END

METADATA

WMS_TITLE "County Boundary"

WMS_ABSTRACT "Itasca County boundary shapefile. See

http://deli.dnr.state.mn.us/metadata/full/ctybdne2.html for more

information."

END

END # county boundary

LAYER

NAME mcd90py2

CONNECTIONTYPE postgis

CONNECTION "user=hdi12 dbname=mygisdb host=localhost port=5432"

DATA "the_geom from mcd90py2"

TYPE POLYGON

STATUS OFF

GROUP cities

CLASSITEM city_name

CLASS

NAME "Cities & Towns"

EXPRESSION /./

COLOR 255 225 90

TEMPLATE "mcd90py2.html"

END

DUMP TRUE # allow GML export

METADATA

WMS_TITLE "Minor Civil Divisions"

WMS_GROUP_TITLE "cities"

WMS_ABSTRACT "Minor civil divisions for Itasca County.(boundaries only)"

118 Sample Mapfile for UMN MapServer

END

END citys

LAYER

NAME mcd90py2_anno

CONNECTIONTYPE postgis

CONNECTION "user=hdi12 dbname=mygisdb host=localhost port=5432"

DATA "the_geom from mcd90py2"

TYPE ANNOTATION

STATUS OFF

GROUP cities

LABELITEM "city_name"

CLASSITEM "city_name"

CLASS

EXPRESSION /./

COLOR -1 -1 -1

LABEL

COLOR 0 0 0

SHADOWCOLOR 218 218 218

SHADOWSIZE 2 2

TYPE BITMAP

SIZE MEDIUM

POSITION CC

PARTIALS FALSE

BUFFER 2

END

END

METADATA

WMS_TITLE "Minor Civil Divisions Names"

WMS_ABSTRACT "Minor civil divisions for Itasca County.(annotation only)"

END

END # city annotation

LAYER

NAME "twprgpy3"

119

CONNECTIONTYPE postgis

CONNECTION "user=hdi12 dbname=mygisdb host=localhost port=5432"

DATA "the_geom from twprgpy3"

TYPE POLYGON

STATUS OFF

CLASS

SYMBOL ’circle’

SIZE 2

NAME ’Townships’

OUTLINECOLOR 181 181 145

END

METADATA

WMS_TITLE "Township Boundaries"

WMS_ABSTRACT "Pulic Land Survey (PLS) township boundaries for Itasca

County. See http://deli.dnr.state.mn.us/metadata/full/twprgne2.html for

more information."

END

END # township

LAYER

NAME lakespy2

CONNECTIONTYPE postgis

CONNECTION "user=hdi12 dbname=mygisdb host=localhost port=5432"

TYPE POLYGON

STATUS OFF

DATA "the_geom from lakespy2"

CLASS

NAME ’Lakes & Rivers’

TEMPLATE "lakespy2.html"

COLOR 49 117 185

END

DUMP TRUE # allow GML export

METADATA

WMS_TITLE "Lakes and Rivers"

WMS_ABSTRACT "DLG lake and river polygons for Itasca County.

120 Sample Mapfile for UMN MapServer

See http://deli.dnr.state.mn.us/metadata/full/dlglkpy2.html for

more information."

END

END # lakes

LAYER

NAME dlgstln2

CONNECTIONTYPE postgis

CONNECTION "user=hdi12 dbname=mygisdb host=localhost port=5432"

DATA "the_geom from dlgstln2"

TYPE LINE

STATUS OFF

CLASS

NAME "Streams"

TEMPLATE "dlgstln2.html"

COLOR 49 117 185

END

DUMP TRUE # allow GML export

METADATA

WMS_TITLE "Streams"

WMS_ABSTRACT "DLG streams for Itasca County. See

http://deli.dnr.state.mn.us/metadata/full/dlgstln2.html for more

information."

END

END

LAYER

NAME ctyrdln3

CONNECTIONTYPE postgis

CONNECTION "user=hdi12 dbname=mygisdb host=localhost port=5432"

DATA "the_geom from ctyrdln3"

TYPE LINE

STATUS OFF

GROUP roads

CLASS

121

COLOR 0 0 0

END

METADATA

WMS_TITLE "County Roads"

WMS_GROUP_TITLE "roads"

WMS_ABSTRACT "County roads.(lines only) Derived from MNDOT roads layer,

see http://deli.dnr.state.mn.us/metadata/full/dotrdln2.html for more

information."

END

END # county roads

LAYER

NAME ctyrdln3_anno

CONNECTIONTYPE postgis

CONNECTION "user=hdi12 dbname=mygisdb host=localhost port=5432"

DATA "the_geom from ctyrdln3"

TYPE ANNOTATION

STATUS OFF

LABELITEM "road_name"

GROUP roads

CLASS

COLOR 255 255 255

SYMBOL ’symbols/ctyhwy.gif’

LABEL

MINFEATURESIZE 40

MINDISTANCE 150

POSITION CC

SIZE TINY

COLOR 0 0 0

END

END

METADATA

WMS_TITLE "County Roads Names"

WMS_ABSTRACT "County roads.(shields only) Derived from MNDOT roads

layer, see http://deli.dnr.state.mn.us/metadata/full/dotrdln2.html for

122 Sample Mapfile for UMN MapServer

more information."

END

END # county road annotation

LAYER

NAME majrdln3

CONNECTIONTYPE postgis

CONNECTION "user=hdi12 dbname=mygisdb host=localhost port=5432"

DATA "the_geom from majrdln3"

TYPE LINE

STATUS OFF

GROUP roads

CLASS

NAME "Roads"

COLOR 255 0 0

SIZE 10

END

METADATA

WMS_TITLE "Highways"

WMS_ABSTRACT "Highways- state, US and interstate.(lines only)

Derived from MNDOT roads layer,

see http://deli.dnr.state.mn.us/metadata/full/dotrdln2.html for more

information."

END

END # highways

LAYER

NAME majrdln3_anno

CONNECTIONTYPE postgis

CONNECTION "user=hdi12 dbname=mygisdb host=localhost port=5432"

DATA "the_geom from majrdln3"

TYPE ANNOTATION

STATUS OFF

GROUP roads

LABELITEM "road_num"

123

CLASSITEM "road_class"

CLASS

EXPRESSION "3"

COLOR 0 0 0 # dummy color

SYMBOL ’symbols/sthwy.gif’

LABEL

MINFEATURESIZE 50

MINDISTANCE 150

POSITION CC

SIZE TINY

COLOR 0 0 0

END

END

CLASS

EXPRESSION "2"

COLOR 0 0 0 # dummy color

SYMBOL ’symbols/ushwy.gif’

LABEL

MINFEATURESIZE 50

MINDISTANCE 150

POSITION CC

SIZE TINY

COLOR 0 0 0

END

END

CLASS

EXPRESSION "1"

COLOR 0 0 0 # dummy color

SYMBOL ’symbols/interstate.gif’

LABEL

MINFEATURESIZE 50

MINDISTANCE 150

POSITION CC

SIZE TINY

COLOR 255 255 255

124 Sample Mapfile for UMN MapServer

END

END

METADATA

WMS_TITLE "Highways Names"

WMS_ABSTRACT "Highways- state, US and interstate.(shields only)

Derived from MNDOT roads layer,

see http://deli.dnr.state.mn.us/metadata/full/dotrdln2.html for more

information."

END

END # highway annotation

LAYER

NAME "airports"

CONNECTIONTYPE postgis

CONNECTION "user=hdi12 dbname=mygisdb host=localhost port=5432"

DATA "the_geom from airports"

TYPE POINT

STATUS off

CLASS

NAME ’Airports’

COLOR 0 0 0

#COLOR 128 255 164

SYMBOL ’circle’

SIZE 7

TEMPLATE "airports.html"

END

DUMP TRUE # allow GML export

METADATA

WMS_TITLE "Airports"

WMS_ABSTRACT "Airport runways for Itasca County."

END

END # ariports

END # Map File

Appendix D

Source file game.java

/*

* XMLC GENERATED CODE, DO NOT EDIT *

*/

import org.w3c.dom.*;

import org.enhydra.xml.xmlc.XMLCError;

import org.enhydra.xml.xmlc.XMLCUtil;

import org.enhydra.xml.xmlc.dom.XMLCDomFactory;

/**

* XMLC Document class, generated from

* game.html

*/

public class game extends org.enhydra.xml.xmlc.html.HTMLObjectImpl

implements org.enhydra.xml.xmlc.XMLObject,

org.enhydra.xml.xmlc.html.HTMLObject {

private int $elementId_result = 15;

private int $elementId_state = 8;

private org.enhydra.xml.lazydom.html.LazyHTMLElement $element_Result;

private org.enhydra.xml.lazydom.html.HTMLFontElementImpl $element_State;

126 Source file game.java

/**

* Field that is used to identify this as the XMLC generated class

* in an inheritance chain. Contains a reference to the class object.

*/

public static final Class XMLC_GENERATED_CLASS = game.class;

/**

* Field containing CLASSPATH relative name of the source file

* that this class can be regenerated from.

*/

public static final String XMLC_SOURCE_FILE = "/game.html";

/**

* XMLC DOM factory associated with this class.

*/

private static final org.enhydra.xml.xmlc.dom.XMLCDomFactory fDOMFactory =

org.enhydra.xml.xmlc.dom.XMLCDomFactoryCache.getFactory(

org.enhydra.xml.xmlc.dom.lazydom.LazyHTMLDomFactory.class);

/**

* Options used to preformat the document when compiled

*/

private static final org.enhydra.xml.io.OutputOptions fPreFormatOutputOptions;

/**

* Template document shared by all instances.

*/

private static final org.enhydra.xml.lazydom.TemplateDOM fTemplateDocument;

/**

* Lazy DOM document

*/

private org.enhydra.xml.lazydom.LazyDocument lazyDocument;

/*

127

* Class initializer.

*/

static {

org.enhydra.xml.lazydom.html.LazyHTMLDocument doc =

(org.enhydra.xml.lazydom.html.LazyHTMLDocument

)fDOMFactory.createDocument(null, "HTML", null);

buildTemplateSubDocument(doc, doc);

fTemplateDocument = new org.enhydra.xml.lazydom.TemplateDOM(doc);

fPreFormatOutputOptions = new org.enhydra.xml.io.OutputOptions();

fPreFormatOutputOptions.setFormat(

org.enhydra.xml.io.OutputOptions.FORMAT_AUTO);

fPreFormatOutputOptions.setEncoding("ISO-8859-1");

fPreFormatOutputOptions.setPrettyPrinting(false);

fPreFormatOutputOptions.setIndentSize(4);

fPreFormatOutputOptions.setPreserveSpace(true);

fPreFormatOutputOptions.setOmitXMLHeader(false);

fPreFormatOutputOptions.setOmitDocType(false);

fPreFormatOutputOptions.setOmitEncoding(false);

fPreFormatOutputOptions.setDropHtmlSpanIds(true);

fPreFormatOutputOptions.setOmitAttributeCharEntityRefs(true);

fPreFormatOutputOptions.setPublicId(null);

fPreFormatOutputOptions.setSystemId(null);

fPreFormatOutputOptions.setMIMEType(null);

fPreFormatOutputOptions.markReadOnly();

}

/**

* Default constructor.

*/

public game() {

buildDocument();

}

/**

* Constructor with optional building of the DOM.

128 Source file game.java

*/

public game(boolean buildDOM) {

if (buildDOM) {

buildDocument();

}

}

/**

* Copy constructor.

*/

public game(game src) {

setDocument((Document)src.getDocument().cloneNode(true),

src.getMIMEType(), src.getEncoding());

syncAccessMethods();

}

/**

* Create document as a DOM and initialize accessor method fields.

*/

public void buildDocument() {

lazyDocument = (org.enhydra.xml.lazydom.html.LazyHTMLDocument)(

(org.enhydra.xml.xmlc.dom.lazydom.LazyDomFactory

)fDOMFactory).createDocument(fTemplateDocument);

lazyDocument.setPreFormatOutputOptions(fPreFormatOutputOptions);

setDocument(lazyDocument, "text/html", "ISO-8859-1");

}

/**

* Create a subtree of the document.

*/

private static void buildTemplateSubDocument(

org.enhydra.xml.lazydom.LazyDocument document,

org.w3c.dom.Node parentNode) {

Node $node0, $node1, $node2, $node3, $node4;

129

Element $elem0, $elem1, $elem2, $elem3;

Attr $attr0, $attr1, $attr2, $attr3;

Element $docElement = document.getDocumentElement();

$node1 = document.createTemplateComment(

" Template html file game.html ", 1);

parentNode.insertBefore($node1, $docElement);

$elem1 = document.getDocumentElement();

((org.enhydra.xml.lazydom.LazyElement)$elem1).makeTemplateNode(2);

((org.enhydra.xml.lazydom.LazyElement)$elem1

).setPreFormattedText("<HTML>");

$elem2 = document.createTemplateElement("HEAD", 3, "<HEAD>");

$elem1.appendChild($elem2);

$elem3 = document.createTemplateElement("TITLE", 4, "<TITLE>");

$elem2.appendChild($elem3);

$node4 = document.createTemplateTextNode("game", 5, "game");

$elem3.appendChild($node4);

$elem2 = document.createTemplateElement("BODY", 6, "<BODY>");

$elem1.appendChild($elem2);

$node3 = document.createTemplateTextNode("It is ", 7, "It is ");

$elem2.appendChild($node3);

$elem3 = document.createTemplateElement(

"FONT", 8, "");

$elem2.appendChild($elem3);

$attr3 = document.createTemplateAttribute("color", 9);

$elem3.setAttributeNode($attr3);

$node4 = document.createTemplateTextNode("red", 10, "red");

130 Source file game.java

$attr3.appendChild($node4);

$attr3 = document.createTemplateAttribute("id", 11);

$elem3.setAttributeNode($attr3);

$node4 = document.createTemplateTextNode("state", 12, "state");

$attr3.appendChild($node4);

$node4 = document.createTemplateTextNode("good or bad", 13,

"good or bad");

$elem3.appendChild($node4);

$node3 = document.createTemplateTextNode(" news! We ", 14,

" news! We ");

$elem2.appendChild($node3);

$elem3 = document.createTemplateElement("SPAN", 15, "");

$elem2.appendChild($elem3);

$attr3 = document.createTemplateAttribute("id", 16);

$elem3.setAttributeNode($attr3);

$node4 = document.createTemplateTextNode("result", 17, "result");

$attr3.appendChild($node4);

$node4 = document.createTemplateTextNode("won or lost", 18,

"won or lost");

$elem3.appendChild($node4);

$node3 = document.createTemplateTextNode(" the game.", 19,

" the game.");

$elem2.appendChild($node3);

}

/**

* Clone the document.

*/

131

public Node cloneNode(boolean deep) {

cloneDeepCheck(deep);

return new game(this);

}

/**

* Get the XMLC DOM factory associated with the class.

*/

protected final org.enhydra.xml.xmlc.dom.XMLCDomFactory getDomFactory() {

return fDOMFactory;

}

/**

* Get the element with id <CODE>result</CODE>.

* @see org.w3c.dom.html.HTMLElement

*/

public org.w3c.dom.html.HTMLElement getElementResult() {

if (($element_Result == null) && ($elementId_result >= 0)) {

$element_Result = (org.enhydra.xml.lazydom.html.LazyHTMLElement

)lazyDocument.getNodeById($elementId_result);

}

return $element_Result;

}

/**

* Get the element with id <CODE>state</CODE>.

* @see org.w3c.dom.html.HTMLFontElement

*/

public org.w3c.dom.html.HTMLFontElement getElementState() {

if (($element_State == null) && ($elementId_state >= 0)) {

$element_State = (org.enhydra.xml.lazydom.html.HTMLFontElementImpl

)lazyDocument.getNodeById($elementId_state);

}

return $element_State;

}

132 Source file game.java

/**

* Get the value of text child of element <CODE>result</CODE>.

* @see org.w3c.dom.Text

*/

public void setTextResult(String text) {

if (($element_Result == null) && ($elementId_result >= 0)) {

$element_Result = (org.enhydra.xml.lazydom.html.LazyHTMLElement

)lazyDocument.getNodeById($elementId_result);

}

doSetText($element_Result, text);

}

/**

* Get the value of text child of element <CODE>state</CODE>.

* @see org.w3c.dom.Text

*/

public void setTextState(String text) {

if (($element_State == null) && ($elementId_state >= 0)) {

$element_State = (org.enhydra.xml.lazydom.html.HTMLFontElementImpl

)lazyDocument.getNodeById($elementId_state);

}

doSetText($element_State, text);

}

/**

* Recursize function to do set access method fields from the DOM.

* Missing ids have fields set to null.

*/

protected void syncWithDocument(Node node) {

if (node instanceof Element) {

String id = ((Element)node).getAttribute("id");

if (id.length() == 0) {

} else if (id.equals("result")) {

$elementId_result = 15;

133

$element_Result =

(org.enhydra.xml.lazydom.html.LazyHTMLElement)node;

} else if (id.equals("state")) {

$elementId_state = 8;

$element_State =

(org.enhydra.xml.lazydom.html.HTMLFontElementImpl)node;

}

}

Node child = node.getFirstChild();

while (child != null) {

syncWithDocument(child);

child = child.getNextSibling();

}

}

}

134 Source file game.java

Bibliography

[1] Apache Cocoon home page. http://cocoon.apache.org/2.0/.

[2] Apache HTTP Server home page. http://httpd.apache.org.

[3] Apache Struts home page. http://jakarta.apache.org/struts.

[4] Apache Velocity home page. http://jakarta.apache.org/velocity/.

[5] Common Gateway Interface. http://www.w3.org/DOM/.

[6] CompuServe Incorporated. GRAPHICS INTERCHANGE FORMAT(sm) Version

89a, July 1990. http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt.

[7] CubeView Demo. http://demo.cubewerx.com/demo/dubeview.

[8] Data Access Object. http://java.sun.com/blueprints/patterns/DAO.html.

[9] D.H.Young. A Frient Game of Yug of War: XMLC vs JSP, April 2002.

http://www2.theserverside.com/resources/article.jsp?l=XMLCvsJSP.

[10] Digital Earth Web Map Viewer. http://viewer.digitalearth.gov.

[11] Enhydra Barracuda home page. http://barracuda.enhydra.org.

[12] Enhydra XMLC home page. http://xmlc.enhydra.org.

[13] GD Graphics Library. http://www.boutell.com/gd/.

[14] G.Seshadri. Understanding JavaServer Pages Model 2 architecture.

http://www.javaworld.com/javaworld/jw-12-1999/jw-12-ssj-jspmvc p.html.

136

[15] H.Sheil. OSS MVC Application Framework Matrix Review.

http://www.jcorporate.com/html/products/expresso/matrix compare.html.

[16] InterGraph WMS Viewer. http://www.wmsviewer.com.

[17] I.Singh, B.Stearns, M.Johnson, and the Enterprise Team. Designing Enterprise

Applications with the J2EETM Platform, chapter 1. Addison-Wesley, 2nd edition,

March 2002.

[18] Jakarta Tomcat home page. http://jakarta.apache.org/tomcat.

[19] JavaServer Faces Technology. http://java.sun.com/j2ee/javaserverfaces/.

[20] Inc. Lutris Technologies. Barracuda - Framework Comparisons.

http://barracuda.enhydra.org/cvs source/Barracuda/docs/barracuda vs struts.html.

[21] MapServer home page. http://mapserver.gis.umn.edu.

[22] Model-View-Controller. http://java.sun.com/blueprints/patterns/MVC.html.

[23] Open GIS Consortium Inc. OpenGIS Simple Feature Specification For SQL. Ver-

sion 1.1, May 1999. Open GIS project document 99-049.

[24] Open GIS Consortium Inc. Geography Markup Language (GML) 2.0, February

2001. OGC Document Number: 01-029.

[25] Open GIS Consortium Inc. Web Map Service Implementation Specification. Ver-

sion 1.1.0, June 2001. Open GIS project document: OGC 01-047r2.

[26] Open GIS Consortium Inc. Web Feature Service Implementation Specification.

Version 1.0.0, September 2002. Open GIS project document: OGC 02-058.

[27] PostGIS home page. http://postgis.refractions.net.

[28] PostgreSQL home page. http://www.postgresql.org.

[29] PROJ.4 - Cartographic Projections Library. http://www.remotesensing.org/proj/.

[30] S.Bayern. Introducing The JSP Standard Tag Library, April 2002.

http://www.theserverside.com/resources/articles/JSTL/article.html.

137

[31] Sun Microsystems Inc. JavaTM Language Specification, 2nd edition, 1996.

[32] Sun Microsystems Inc. JavaBeansTM Specification. Version 1.01, August 1997.

[33] Sun Microsystems Inc. JavaServer PagesTM Specification. Version 1.2, August

2001.

[34] Sun Microsystems Inc. JavaTM Servlet API Specification Version: 2.3, September

2001.

[35] Sun Microsystems Inc. JavaServer PagesTM Standard Tag Library (JSTL) Speci-

fication. Version 1.0, March 2002.

[36] Sun Microsystems Inc. JavaTM 2 Platform Enterprise Edition Specification, v1.4,

April 2003.

[37] W3C Recommendation. PNG (Portable Network Graphics) Specification Version

1.0, October 1996. http://www.w3.org/TR/PNG.

[38] W3C Recommendation. XML Path Language (XPath) Version 1.0, November

1999. http://www.w3.org/TR/1999/REC-xpath-19991116.

[39] W3C Recommendation. XSL Transformations (XSLT) Version 1.0, November

1999. http://www.w3.org/TR/xslt/.

[40] W3C Recommendation. Extensible Markup Language (XML) 1.0, 2nd edition,

October 2000. http://www.w3.org/TR/2000/REC-xml-20001006.

[41] W3C Recommendation. Scalable Vector Graphics (SVG) 1.0 Specification,

September 2001. http://www.w3.org/TR/SVG/.

