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Abstract 

 

We present a web client-server service WEB-IS, which we have developed for remote analysis 

and visualization of seismic data consisting of both small magnitude events and large 

earthquakes. We show that the problem-solving environment (PSE) intended for prediction of 

large magnitude earthquakes can be based on this WEB-IS idea. The clustering schemes, feature 

generation, feature extraction techniques and rendering algorithms form a computational 

framework of this environment. On the other hand, easy and fast access both to the seismic data 

distributed among distant computing resources and to computational and visualization 

resources can be realized in a GRID framework. We discuss the usefulness of NaradaBrokering 

(iNtegrated Asynchronous Real-time Adaptive Distributed Architecture) as a middleware 

allowing for flexibility and high throughput for remote visualization of geophysical data.  The 

WEB-IS functionality was tested both on synthetic and the actual earthquake catalogs. We 

consider the application of similar methodology for tsunami alerts. 
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1.   Introduction  

 

Earthquake dynamics is one of the most challenging problems in modern geophysics and computer 

modeling. In the most recent fifty years a great deal of effort has been devoted trying to devise 

techniques for their prediction. Unfortunately, in many cases these methods are unreliable or work 

only in retrospective studies. This has created some skepticism in the geophysical community about 

the predictability of earthquakes (Song and Simons, 2003). 

 A predictive knowledge can be acquired either by constructing models expressed in terms of 

the partial differential equations, finite automata, or supervised learning techniques such as feed-

forward neural networks. For earthquakes and other SOC (self-organized criticality) processes these 

approaches may not be adequate as a precise predictive tool.  Instead, the knowledge can be extracted 

from past seismic measurements by using methods of pattern recognition (Jain and Dubes, 1988; Ertoz 

et. al., 2003) and then used for extrapolating the future. The process of knowledge extraction consists 

of studying similarity and dissimilarity of N-dimensional (N-D) feature vectors of measurements. 

These vectors build-up spatio-temporal clusters made of similar objects (Dzwinel et. al. 2003; Dzwinel 

et. al. 2005). We can expect that these clusters, their shapes and mutual position in the N-D feature 

space, encode the knowledge about the seismic patterns in the region under interest. Of course, multi-

resolution cluster structures depend strongly on many environmental properties and on background 

noise. The success of pattern recognition requires elimination of all of these factors and detection of 

clusters closely related to the earthquake precursors.  

The proper selection of both feature generation and clustering techniques are critical for 

knowledge extraction. In Dzwinel et. al. (2003 and 2005) we show that different techniques of 

clustering in different types of feature spaces have to be combined to scrutinize various aspects of the 

earthquake dynamics. Therefore, integrated pattern recognition software similar to CLUTO 

(Rasmussen et. al. 2003; Karypis 2003), must be used for exploration of earthquake data catalogs. 

Moreover, to explore the relevance of the clusters obtained, the clustering package must be 

empowered with advanced visualization tool such as Amira (2004). This visualization package should 

allow for: 

1.On-line exploration of the feature space.  

2.Selection of the most appropriate clustering scheme, clustering parameters and a proper 

similarity measure. 

3.Representation of data in a compressed, compact and understandable format. 

4.Results on demand for quick analysis. 

This idea of predicting earthquakes by observation of similarities between thousands and millions 

of seismic events by visualization of earthquake clusters requires the fast access to large databases. 

The largest earthquake catalogs comprise GBytes of data. Taking into account also the data from 



tsunami earthquakes and micro-earthquakes in mines, the total amount of data collected by seismic 

centers spread all over the world is huge. Moreover, the knowledge extraction of earthquake 

precursors may demand exploration of cross-correlations between different catalogs. Consequently, 

both fast communication between data centers and large disk spaces are required.  

 
Figure 1. Map showing distribution of data acquisition centers at regions of high seismic activity, 
supercomputing centers where this data is stored and analyzed, and WEB-IS as a solution to integrate 
all of these locations. 

 

As shown in Figure 1, earthquake modeling centers, data mining centers and data acquisition 

centers, which collect earthquake data from regions with high seismic activity, are spread all over the 

world. Therefore, the unprocessed data needs to be stored and then transferred to a dedicated remote 

server for data processing. After processing, the results should be returned to the data acquisition 

centers and/or other clients. Broad access to remote pattern recognition and visualization facilities 

allows for scrutinizing local data catalogs by using peer-to-peer connections of data acquisition centers 

to data preprocessing servers. Clients in the network can compare various types of earthquake 

catalogs, data measured in distant geological regions, and the results from various theoretical and 

computational models. By comparing data accessible in the network we have a chance to eliminate 

environmental factors and to extract the net earthquake precursory effects.  

Integration of a variety of hardware, operating systems, and their proper configuration results 

in many communication problems between data centers. Efficient, reliable, and secure integration of 



distributed data and software resources, such as pattern recognition and visualization packages, is 

possible only within the GRID paradigm of computing. 

The GRID mode of computing has flourished rapidly in recent years and has facilitated   

collaboration and accessibility to many types of resources, such as large data sets, visualization servers 

and computing engines. Scientific teams have developed easy-to-use, flexible, generic and modular 

middleware, enabling today’s applications to make innovative use of global computing resources. 

Remote access tools were also produced to visualize huge datasets and monitor performance and data 

analysis properties, effectively steering the data processing procedures interactively. 

 
Figure 2. The NaradaBrokering middleware allows the WEB-IS client to communicate with multiple 
servers, in the form of a GRID service, for data visualization and analysis. 

 

We discuss the idea of an integrated problem-solving environment (PSE) intended for the analysis of 

seismic data and prediction of the earthquakes. A simplified scheme of the data acquisition and 

visualization system for geophysical data, integrated within a NaradaBrokering environment is 

displayed in Figure 2. This system promotes portability, dynamic results on-demand, and collaboration 

among researchers separated by long distances by using a client server paradigm. To accomplish this 

we provide a light-weight front-end interface for users to run locally while the a remote server takes 

care of intensive processing tasks on large data bases, off-screen rendering and data visualization. We 

present a web service WEB-IS, which we have developed for remote visualization of clustered seismic 

data.  



In the first section we present typical earthquake data we use in our system. The earthquake 

clustering and visualization idea are discussed in the following section. We then describe the WEB-IS 

functionality and the usefulness of NaradaBrokering (iNtegrated Asynchronous Real-time Adaptive 

Distributed Architecture) as a middleware allowing for better flexibility and higher throughput for 

such a GRID service. In the conclusions we summarize our work and show the perspectives of the idea 

presented. 

.  

2.  Earthquake Data  

 

There exist various types of seismic data catalogs: local and global, synthetic and observed. There is a 

definite need to reveal their complexity, eliminate noise (e.g. using wavelets (Erlebacher and Yuen, 

2004)), outliers and extract the knowledge hidden behind the patterns the data create.  

There are two main sources of earthquake data: computer modeling and seismic 

measurements, which produce synthetic and actual data catalogs, respectively. The earthquake 

catalogs can comprise GBytes of data when including data from various kinds of earthquakes such as 

regular, tsunami (and tsunamigenis) and micro-earthquakes in mines. 

 

Table 1. Observed (JMA) and synthetic (AUMF) earthquake data specifications. 
 
Catalog Total number

of events 
Time interval 
(years) 

Events with  m>6 Earthquake magnitude 

JMA data 42,370 5 62 3<m<7.90 
U 32,185 150 32 3.26<m<6.68 
A 25,881 150 30 3.26<m<6.73 
F 10,475 150 16 3.43<m<6.73 
M 29,039 150 20 3.41<m<6.81 
 

 The usefulness of synthetic catalogs based on theoretical models, such as those listed in Table 

1, depends on the extent to which the models mimic realistic fault activity including earthquakes. The 

use of synthetic data for analysis of seismic events and developing methodology for prediction of 

earthquakes has many advantages, all of which are exceedingly relevant for revealing complex 

physical behavior. Moreover, synthetic data have the advantage of retaining the statistical reliability of 

the results. The data are free of measurement errors, which occur in estimating earthquake magnitudes 

and hypocentral locations, and do not suffer from incomplete recording of small events, which exist in 

natural catalogs. Synthetic data generated by computational models can comprise many events 

covering large spatial areas and extremely long time spans.  These features are very attractive both for 

studying new methods for data analysis and understanding theoretical aspects of earthquake dynamics. 

As an example of synthetic data we use the results from the numerical model of a discrete fault plane 

simulated with 3D elastic dislocation theory and power-law creep for the central San Andreas Fault 



(Eneva and Ben-Zion, 1997a and 1997b; Ben-Zion, 1996). The results cover the earthquake 

distribution in space, time and level of magnitude. We study catalogs from four different models 

representing various levels of fault zone disorder. These are models with statistically uniform brittle 

properties (U), with a Parkfield type Asperity (A), with fractal brittle properties (F), and with multi-

size-heterogeneities (M). These models and various statistical properties of the catalogues have been 

discussed in greater detail elsewhere (Eneva and Ben-Zion, 1997a and 1997b; Ben-Zion, 1996). The 

time interval covers every event, which occurred during the last 150 years of simulated fault activity 

and this period contains from 1 to 3×104 events. 

The data representing seismic activities of the Japanese islands collected by the Japan 

Meteorological Agency (JMA) (Ito and Yoshioka, 2002) is an example of measured data. The seismic 

events were detected during a 7-year time interval from 1997 to 2003. The data set consists of 4×104 

seismic events with magnitudes m, position in space (latitude X, longitude Y, depth z) and occurrence 

time t. The lowest magnitudes were determined by using a detection level, estimated from the 

Gutenberg-Richter frequency-size distribution. Thus the statistical completeness of the earthquakes 

above the detection level assures that there is no significant lack of events in space and time.  

Every seismic event i can be represented as the data point xi in N-dimensional space, i.e., 

xi∈RN and xi={xi1,xi2,...,xiN} where xil are the features describing the earthquake. These features can be 

represented by earthquake characteristic values: energy, moments, position or other geophysical 

parameters resulting from theoretical or/and statistical models. The clustering idea allows for grouping 

similar (or correlated) objects and finding their common properties. The clustering and vector 

quantization empowered with visualization facilities studying seismic patterns, and their uniformity, 

replication, or periodicity. Visual inspection greatly assists in detecting subtle structures, which escape 

the classical pattern extraction algorithms such as clustering techniques. In the following section we 

discuss the idea of earthquake clustering and visualization. 

 

3. Clustering of earthquakes and visualization 

 

Cluster analysis (Gowda and Krishna, 1978; Jain and Dubes, 1988) – unsupervised learning – divides 

data objects, or feature vectors, into groups (clusters), for the purposes of summarization, improved 

understanding and knowledge extraction.  

Definition 

Let X will be a data set: X = {xi}i=1,...,M and where x∈RN and ; xi={xi1,xi2,...,xiN}. We define as an m-

clustering of X, as the partition of X into m clusters C1,...,Cm provided three conditions are met: 

• Ci≠0, i=1,...,m 

• ∪i=1,...,mCi=X 

• Ci∩Cj=0, i≠j, j=1,...,m 



 

The basic that steps must be followed in order to develop a clustering task are the following: 

1. Feature selection – Features must be properly selected to encode as much information as 

possible. Parsimony and minimum redundancy among the features is a major goal. 

2. Proximity measure – The measure of how “similar” (or “dissimilar”) two features vectors are. 

3. Clustering criterion – This defines what constitutes a good clustering structure in the given 

data set depends on the interpretation of the term “sensible”, depending on the type of 

clusters are expected in the data set e.g., such as oblate, elongated, “bridged”, circular etc. 

4. Clustering algorithms – Choose a specific algorithmic scheme that unravels the clustering 

structure of the data set. 

5. Validation and interpretation of results – The final processes of clustering involving the 

knowledge of the specialist who analyzes the results. 

There are two principal types of clustering algorithms: non-hierarchical and agglomerative schemes 

(Gowda and Krishna, 1978). Because the global information about the data is required for the non-

hierarchical schemes, they non-hierarchical algorithms suffer from a high computational complexity 

and most of them require an a priori knowledge about of the number of clusters.  

Agglomerative clustering schemes consist in the subsequent merging of smaller clusters into 

the larger clusters, basing on proximity and clustering criteria. Depending on the definition of these 

criteria, there exist many agglomerative schemes such as: average link, complete link, centroid, 

median, minimum variance and nearest neighbor algorithm. The hierarchical schemes are very fast for 

extracting localized clusters with non-spherical shapes. The proper choice of proximity and clustering 

criteria depend on many aspects such as dimensionality of data.  

For example, by using smart clustering criterion in molecular dynamics (da Silva et. al., 2002) 

we can provide a more efficient method for clustering N-dimensional data (where N < 5) in situations 

with extremely high computational complexity and spatial locality between data events.  Two feature 

vectors are taken as linked if they satisfy some proximity measure criterion and are spatially closer to 

each other than some maximum cut-off radius. The method performs the cluster calculation in two 

steps.  In the first step it uses a data structure named Verlet’s Neighbor List (VNL) (Stein and Okal, 

2004). In order to avoid quadratic time complexity for the creation of the VNL, a Linked Cell (LC) 

structure algorithm is used (Stein and Okal, 2004). Creating an LC and subsequently a VNL from the 

LC is very fast, with a time complexity of order N (da Silva et. al., 2002). The feature vectors and the 

VNL form a compact representation of a graph. Consequently, the second step is simply a 

backtracking search for connected trees in that graph.  In this step, we have the opportunity to reject 

the inclusion of some feature vector in a given tree if the vector does not satisfy some additional 

criterion.  This method can be applied in higher dimensions, thus reducing the number of feature 

vector components by using principal component analysis (PCA) or non-linear multidimensional 

scaling (Ertoz et. al. 2003). 



Additionally, we note that all agglomerative algorithms suffer from the lack of properly 

defined control parameters, which can be matched for the data of interest and hence can be regarded as 

invariants for other similar data structures.  

There are four basic directions in which clustering is of use (Gowda and Krishna, 1978): 

1. Data reduction – Data (or features) can be quantized into groups represented by only one 

representative feature vector instead of many similar ones belonging to a specific group 

(cluster). 

2. Hypothesis generation – Applying cluster analysis to a data set in order to infer some 

hypotheses concerning the nature of the data. Thus, clustering can be used as a vehicle to 

suggest hypotheses. 

3. Hypothesis testing – Cluster analysis can be used for verification of a specific hypothesis’ 

validity, on the basis of common properties of feature vectors belonging to a specific cluster. 

4. Prediction based on groups – If an anonymous feature vector belongs to a specific cluster 

characterized by a set of common attributes, this vector will be also described by these 

attributes.  

In (Dzwinel et. al., 2003; Dzwinel et. al., 2005) we used clustering for all four purposes. We 

investigated multi-resolution earthquake patterns in both observed data from Japanese islands and the 

synthetic data generated by numerical simulations. At the highest resolution, we analyzed the local 

cluster structures in the 4-D data space of seismic events. We demonstrated that small magnitude 

events produce local spatio-temporal patches that correspond to large neighboring events. Seismic 

events, quantized in space and time, generate the 7-D feature space characterized by the earthquake 

parameters. Using a non-hierarchical clustering algorithm and multi-dimensional scaling, we explore 

the multitudinous earthquakes by real-time 3-D visualization and inspection of the multivariate 

clusters. At the spatial resolutions characteristic of earthquake parameters, all ongoing seismicity, both 

before and after the largest events, accumulates to a global structure consisting of a few separate 

clusters in the feature space. We show that by combining the clustering results from low and high 

resolution spaces, we can recognize precursory events more precisely and unravel vital information 

that cannot be discerned at a single resolution. The problem of finding clusters in data is challenging, 

when multidimensional clusters are of widely differing sizes, densities and shapes, and when the data 

contains large amount of noise and outliers. Therefore, we used clustering schemes, which are based 

on nearest neighbor proximity measures, such as mutual nearest neighbor agglomerative clustering 

(Theodoris and Koutroumbas, 1998) and modern shared nearest neighbor schemes (Ertoz et. al., 

2003).  
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Figure 3 The diagram of multi-resolution analysis of seismic events 

 

 As shown in Figure 3 the software environment of a Problem Solving Environment (PSE) for 

clustering and visualization of seismic data can be constructed on the basis of multi-dimensional 

clustering software and Multi-Dimensional Scaling (MDS)  procedures (Jain and Dubes, 1988; 

Theodoris and Koutroumbas, 1998) for visualization. Our goal is to construct an interactive system for 

data-mining, allowing users to match the most appropriate clustering schemes on the structure of 

actual seismic data. The proposed PSE combines local clustering techniques in the data space with a 

non-hierarchical clustering in the feature space. The raw data are represented by M, n-dimensional 

vectors fi of measurements fik (i=1...M, k=1...n) (such as coordinates, depth, magnitude etc.). The data 

space can be searched for patterns and visualized by using local or remote pattern recognition with 

advanced visualization capabilities. The data space X ={fi} is transformed to a new abstract space F of 

vectors Fj (j=1...M). The coordinates Fjl  (l=1...N) of these vectors represent nonlinear functions of 

measurements Fjl, which are averaged in given space-time windows. This transformation allows for 

quantization and amplification of data and their characteristic features, neglecting both the noise and 

other random components. The new features Fjl form N-dimensional feature space. We use MDS 

procedure (Dzwinel, 1994) for visualizing the multi-dimensional events in 3-D space. This 

transformation allows for a visual inspection of the N-dimensional feature space. The visual analysis 



helps greatly in detecting subtle cluster structures not recognized by classical clustering techniques, 

and selecting the best pattern detection procedure used for data clustering by classifying the 

anonymous data and formulating new hypotheses.  

In the visualization part of our PSE we employ different methods for visualizing earthquake 

clusters depending on the type of data. Earthquake events taken from our synthetic data sets are 

plotted as spheres in 3-dimensional space; two dimensions of position and one dimension of time 

account for the coordinates of this visualization space. Applying color-mapping and radius scaling to 

these spheres allows cluster-code and magnitude classifications to be accounted for as well. In this 

representation, the user can navigate through the clusters by zooming, rotating, and translating the 

clustered data in its 3-dimensional space. Plotting time as a third dimension allows dependencies 

between events to be explored by flying through this static spatio-temporal environment.  

 

 
Figure 4. JMA data from the island of Japan shown at three different time scales. This allows for 
observation of time slice dependencies occurring in the clustered data. From left to right: 6 years, 1 
year, 1 month. 
 

When 3-dimensions of position are available for visualization, as with the real earthquake data 

collected by JMA, a dynamic view needs to be used to incorporate time into the visualization. One 

method we use for creating this type of dynamic visualization is showing clusters at different time-

scales according to defined units of time (year, month, day, etc.). Choosing these different tracks of 

time is like viewing the data through a filter, allowing time-dependencies to be explored relative to the 

scale. We employ another method for showing how clusters form in continuous subsets of time. By 

stepping through the entire range of time at specified intervals, we can see how these clusters are 

formed. This is like viewing a slideshow and watching clusters appear as earthquakes bond with their 

neighbors.  



 
Movie 1: This movie shows time dependant clusters based on the JMA data from Japan visualized by 
WEB-IS1 with the ratio: one year per frame.  
 
Having the idea of earthquake data analysis and visualization we can implement it as an integrated 

computer system. However, first we have to decide how to adapt it as the Problem Solving 

Environment accessible by clients spread all over the world (see Figure 1). 

 

4.  NaradaBrokering in GRID computing 

 

In general, large datasets and high-performance computing resources are distributed across the world. 

When collaboration and sharing of resources are required, a computational GRID infrastructure needs 

to be in place to connect these servers. There must exist protocols available to allow clients to tap into 

these resources and harness their power. Computational grid can be seen as a distributed system of 

“clients”, which consists of either “users” or “resources” and proxies. A GRID can be implemented 

using an event brokering system designed to run on a large network of brokering nodes.  Individually, 

these brokering nodes are competent servers, but when connected to the brokering system, they are 

able to share the weight of client requests in a powerful and efficient manner. Examples of this include 

GRID Resource Brokering (Ferreira et. al., 2002) and NaradaBrokering.  

NaradaBrokering (NB) (2004) is a distributed event brokering system designed to run on a 

large network of cooperating broker nodes. As shown in Figure 5, the framework of this system is 



hierarchical where a broker (server) is part of a cluster of brokers, which is part of super-cluster, and 

the framework continues expanding until all brokers are part of one universal cluster in a tree-like 

structure. Clusters consist of tightly connected brokers with multiple links to brokers from other 

clusters. This allows for selecting alternate communication routes during failures. This type of 

organizational scheme is called a “small world network” or “scale-free network” (Barabási and 

Bonabeau, 2003) where the average communication path length between brokers increases 

logarithmically while the network size increases geometrically. In uncontrolled situations the 

respective growth has exponential character. The “scale-free network” architecture allows NB to 

support large heterogeneous client configurations that can scale to arbitrary size. 
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Figure 5. WEB-IS as a client in a NaradaBrokering network. SD (seismic data), DataC (data servers), 
Synt (synthetic data). SD and Synt publish the data, which are subscribed by WEB-IS server and other 
clients. WEB-IS publishes the results of data analysis and visualization that are retrieved by 
subscribed clients SD and Synt. For simplification we show a Two-Supercluster Structure. In a 
realistic seismic network the communicated clients can be spread over many levels of superclusters. 
However, due to the “small world network” structures of NaradaBrokering, the average 
communication path length between brokers increases only logarithmically. 
   

This type of GRID architecture suits well to the WEB-IS functionality as a PSE for earthquake data 

analysis and as an integrated computational environment for data exchange and common ventures. The 

seismic data centers from the networking point of view represent complex hierarchical cluster 

structure. They are located geographically in the regions of the high seismic activity within heavily 

populated areas of economic importance. Therefore, the seismic data centers create distant 

superclusters of various “density” of computational resources corresponding to the size and 

importance of the regions.  These superclusters are sparse in the sense of computational resources 



devoted for earthquake detection and data acquisition. However, these same structures contain 

important computational, scientific and visualization facilities with strong interest in the analysis of 

earthquake data and earthquake modeling. The efficient interconnection of these sites is of principal 

interest. Due to the “small world network” structure of NB it is possible to select the most efficient 

routing schemes, considerably shortening the average communication path length between brokers.  

Clients need to communicate with NB through a Java Messaging Service (Fox and Pallickara, 

2002) application, which is based on the publish/subscribe model. In this model, clients send requests 

to a distributed network of brokers, who then determine the most capable server to complete the 

request. This messaging system of NB is appropriate to link the clients, both users and resources, 

together.  

Construction of efficient and user friendly Problem Solving Environment requires integration 

of data analysis and visualization software with NB environment, in such a way that it can be easily 

accessed via the Internet.  We created an integrated data interrogation toolkit, which we call WEB-IS 

(Wang et. al. 2004). 

  

5.  The WEB-IS (Integrated System) as a Problem Solving Environment 

 

This WEB-IS toolkit provides three modules which each specialize in distinct forms of visualization 

and data analysis.  We focus here on the first two modules, WEB-IS1 and WEB-IS2.  WEB-IS1 is a 

software tool that allows remote, interactive visualization and analysis of large-scale 3-D data over the 

Internet (Yuen et. al., 2004) through the interaction between client and server.  The second module 

WEB-IS2, which is also based on the client-server paradigm, utilizes the immense visualization 

capabilities of the software package Amira (2004) to provide remote analysis of various types of data 

(Wang et. al., 2003). WEB-IS acts as a PSE through a web portal used to solve problems by 

visualizing and analyzing geophysical datasets, without requiring a full understanding of the 

underlying details in software, hardware and communication (Garbow et. al., 2002; Kadlec et. al., 

2003). 

As shown in Figure 6, the primary goal of WEB-IS in the geosciences is to provide 

middleware that sits between the modeling, data analysis tools and the display systems that local or 

remote users access.  In the case of large and physically distributed datasets, it is necessary to perform 

some preprocessing and then transmit a subset of the data to one or more processes or visualization 

servers to display. The details of where and how the data migrates should be transparent to the user. 

WEB-IS makes available to the end users the capability of interactively exploring their data, even 

though they may not have the necessary resources such as sufficient software, hardware or datasets at 

their local sites. This method of visualization allows users to navigate through their rendered 3-D data 

and analyze for statistics or apply data mining techniques (Grossman et. al., 2001), such as cluster 



analysis (Dzwinel et. al., 2003). Also, utilization of the powerful 3-D visualization package Amira, 

provides the ability to remotely analyze, render, and view large datasets, such as 3-D mantle 

convection and seismic tomography models over the Internet (Wang, 2003).  

 

 
 

Figure 6. The conceptual scheme of WEB-IS functionality 
 

In WEB-IS, multiple clients can harness the power of a large visualization server to supply 3-D image 

rendering and data analysis capabilities. Figure 7 shows the client–server software infrastructure of 

WEB-IS (Integrated System) and how the system allows the client to access data on the server. To the 

client, the process of accessing and manipulating the data appears simple and robust, while the 

middleware takes care of the network communication, security and data preparation.  

A mixture of programming languages went into the design of WEB-IS1 to achieve optimal 

performance, and to provide the highest quality middleware service.  The server utilizes C/C++ for the 

fast performance, Mesa3D library for off-screen rendering of OpenGL worlds, and Python scripts to 

interact with the server machine.  On the client side, WEB-IS appears as a Java Applet, which is 

embedded into a simple HTML web page.  

 



 
Figure 7. WEB-IS Software Scheme: The user interacts with the Java applet (right), which provides 
the client-side GUI and a front-end for all interactions. The server (left) receives requests from the 
client, and performs these processor intensive tasks, returning the results to the client to be displayed. 

 

The WEB-IS1 Client provides the front end Graphical User Interface (GUI) for our 

homegrown earthquake clustering and visualization server. As depicted in Figure 8, the Java applet 

GUI maintains platform independency (Garbow et. al., 2003). Using icons and mouse controls, rather 

than text entry at a command line, the applet lets users productively interact with the system. A remote 

computer visualizes the data off-screen, while the client-side applet merely displays the result. Users 

can manipulate the data by clicking and dragging their mouse over the Server Image. The Navigation 

Panel works like a remote control to the Server Image for creating a selection box and for gathering 

user input on rotating, zooming, and translating the image. In addition, the Clustering & Display 

Controls allow users to manipulate clustering parameters, adjust the axis scales, and broaden or narrow 

the time interval with specified parameters. The Results and Statistics Panel show both numerical 

statistics and a 3-D histogram of the clustered dataset.  As a side note, the 3-D histogram, as well as 

the remote control axis, take advantage of jGL (2004), a Java based OpenGL package, for rendering 

local 3-D worlds.    

While WEB-IS2 shares Amira’s ability to handle many different file types (see (Amira, 2004) 

for more details), we chose to follow a simple data format in WEB-IS1 to keep everything as simple as 

possible. Our first requirement is data must be contained in an ASCII file containing the “.dat” suffix.  

The second specification is data must be singular events (i.e. earthquake events).  The first line of the 

data file is considered to be a “header”, containing a single integer value declaring the file’s 

dimensions (at this point only a value of 4 or 5 will work).  The event data begins on the second line in 

the format X, Y, Z, Time (optional), and Magnitude. The event properties must be readable as float 

(float or int values work), and either tabs or spaces must separate them. As in most visualization 

toolkits, X, Y and Z indicate the physical axis (3-D world) with which the property is associated. The 



Time and Magnitude properties are self-explanatory and are visualized as a visible/invisible event 

depending on the time frame and the event ball size respectively. It is important to note that for 2-D 

datasets which contain Time and Magnitude (i.e. synthetic data), we chose to automatically visualize 

Time on the Z-axis assuming users’ bothered by this approach could reformat their data to contain a 

constant value in the Z column of the dataset.  

 

 

 
 

 
Figure 8 WEB-IS1 (http://boy.msi.umn.edu/web-is1) allows users to navigate through their rendered 
3-D data and interactively analyze the data for statistics or apply data mining techniques, such as 
cluster analysis.  

 

WEB-IS2 acts as an interactive application that allows users on a client machine to control, 

display, and share visual information generated by a remote server running Amira. WEB-IS2 saves 

users from creating their own customized visualization programs by harnessing the visualization 

power of prewritten software.  The server in this client-server scheme is a standard version of Amira, 

manipulated over the Internet by a Java applet. Most of the computational work is performed on the 

server, allowing the client to concentrate on user interface instead of intensive data processing. From 

the perspective of visualization, Amira has already proven to be a very effective tool. Users construct 

programs visually with flow charts of modules that represent tasks or via Tcl (Tool Command 

Language, 2004) scripts.  In both cases, the result is the display of a subset of the original data (see 

Figure 9 below). Furthermore, Amira uses some advanced algorithms that capitalize on the hardware 

available on many of the current commodity graphics cards. Amira has proved to be valuable in 



visualizing geophysical phenomena such as numerical simulations of 3D convection in the Earth’s 

mantle (Dubuffet et. al., 2000; Dubuffet et. al. 2002). 

 

 

 
 

Figure 9. Example of WEB-IS2 in action 

 

The current version of WEB-IS1 (developed by us from the ground up) implements the SOAP 

protocol in a move to create a true web-service providing decentralized clients and servers.   SOAP, or 

Simple Object Access Protocol, is a relatively lightweight, XML based protocol that has no concept of 

a central server, making it ideal for message handling in a distributed computing environment 

(Englander, 2002; Snell et. al. 2002).  Several toolkits and APIs currently exist to make development 

of SOAP/XML services easier, including three utilized by WEB-IS1: gSOAP (2003), Apache SOAP 

(2004) and Apache Axis (2004).  gSOAP, created at Florida State University, was designed to 

optimally bind C/C++ and SOAP, which makes it ideal for server-side use.  Apache SOAP, developed 

by the Apache SOAP community, is an implementation of the SOAP v1.1 and SOAP Messages with 

Attachments specifications for Java.  The follow-on project to Apache SOAP, named Apache Axis, is 

essentially a framework for constructing SOAP processors such as clients and servers.  WEB-IS1 uses 

the Apache Axis API to easily create a SOAP handling client that composes messages based on the 

Apache SOAP API.  Because of the standardization of the SOAP protocol, messages are easily passed 

across platforms and languages.  This has allowed us to retain our multi-language web-service and 

preserve the basic structure and features found in the original WEB-IS1 system.  Unfortunately, 

retaining state using SOAP is very difficult for most uses.  Since only one server may run per port on a 

machine, there is a good possibility that multiple clients will share a single server process.  This can 



potentially be seen as both a problem and a benefit depending on the application.  In the geosciences, 

this sharing allows users to easily collaborate across vast distances (see Figure. 1). Any clustering or 

transformation changes done to the visualization are immediately available to all users connected to 

the same port, and because the client is a Java applet, users can collaborate from any java capable 

web-browsers.  Unfortunately, everyone shares the same data and visualization; this prevents users 

from clustering and visualizing data without interference. 

The conversion of our system to handle SOAP messaging allowed for easy integration of the 

NaradaBrokering (NB) message-oriented middleware (MoM).  A Java proxy designed for passing 

messages into NB sits between the client applet and the NaradaBrokering system.  This proxy listens 

for messages from the server and immediately provides the client with any messages published to a 

requested topic.  Another proxy waits on the server-side for any messages from a client published on 

NB, sending the messages to the port on which the server is connected.  On the client side a Java 

proxy listens to both the WEB-IS1 client and NB, and passes the messages in the correct direction.  

Figure 10 shows a screenshot of the WEB-IS1 system using NB. It is important to note that none of 

the components need to run on the same machine since they all communicate through ports and 

sockets. The proxies are also not needed if the client or server is written to send messages directly to 

NB.  We use them here for simplicity in message passing.   

 

 
 



 
Figure 10. Here we see screenshots of the WEB-IS1 system using NaradaBrokering from both the 
client-side (a) and sever-side (b). 
 

Testing of the NaradaBrokering system has shown that multiple clients, servers, and/or proxies 

receive the same message when subscribed to a common topic.  This property is convenient, but one 

must beware that NaradaBrokering simply passes messages across machines, and it is up to the 

subscriber to handle them correctly.  If a proxy is designed to pass all messages through to a client, 

and the client is not prepared to receive a message, the proxy must have the ability to keep messages 

queued or dispose of them after a timeout period.  Also, since every subscriber receives the same 

message, there is a possibility of distinctly different servers receiving a common message, producing 

different results, and then publishing those results to the same topic as a response.  In a situation such 

as this, a client will receive the result produced by the first responding server, yet the result may not 

coincide with its request. 

Security in Web/GRID Services is a hot topic today, receiving a large amount of attention 

from the research world.  We recognized early that there was a potential security threat posed by 

transferring data to a WEB-IS server for analysis. Since a WEB-IS server must handle remote datasets, 

some form of data upload must be completed before analysis can begin. However, due to the 

requirement for the WEB-IS server to be installed in the root web script directory (cgi-bin), there is a 

possibility that a malicious script could be uploaded causing damage to both hardware and software on 

the server. Unfortunately, unless WEB-IS is deployed on every data server in the world, this threat 

cannot be prevented. We also realized that many server administrators would prefer to minimize the 

number of possible entry points for data on their machines.  Therefore, we chose to prohibit data 



upload via the WEB-IS system, depending instead on other common secure transfer protocols 

typically found on all systems (i.e. Secure FTP (sftp) and Secure Copy (scp)).  This essentially 

minimizes the threat of an attack through the WEB-IS system, and it installs a trust-based security 

where administrators grant explicit permission for users to upload data. Since this also limits the 

functionality of WEB-IS as a global resource for all researchers to use on demand, we provide the 

WEB-IS source code for users to install on their local machines. The source, available on the 

homepage (http://webis.msi.umn.edu/), also leaves open the possibility for users to implement their 

own form of data upload.   

 

6.  Conclusions and Perspectives  

 

In this paper we presented the philosophy and primary engines of our system:  

1. data analysis tools such as pattern recognition software and clustering techniques, 

2. high performance visualization packages, 

3. the NaradaBrokering Grid environment, 

4. WEB-IS integration toolkit. 

We demonstrated that these components are not simply vague ideas or prototypes in the very 

beginning stage of testing. They already exist; they can work both independently and coupled in a 

single special purpose system. This system can be developed creating the backbone of the 

sophisticated computational data acquisition environment, which can be devised for specific needs of 

the geophysical community. Integration of measurement devices and geophysicists must be the 

principal goal for the nearest future.  Equipped with only PDAs or laptops, and working on location in 

unreachable desert terrains with remote data acquisition centers or perhaps just analyzing data in one 

of the many computation facilities located around the globe, geophysicists will be enabled unlimited 

access to data resources spread all over the world.  Specialized computation and visualization facilities 

will empower geophysicists with robust virtual equipment allowing not only for fast in situ 

communication, but also for data visualization, and comparing data obtained in other locations through 

the use of sophisticated pattern recognition software. The reverse interaction of this system, i.e., its 

application for data mining and realization of large geophysical projects must not be underestimated.  

We see the principal goal of our work in contributing to the construction of a global warning 

system, which can be used for prediction of catastrophes such as various types of earthquakes along 

the circum Pacific belt, where there is a great concentration of people. For example, similar 

methodology can be used for tsunami earthquake alerting. Theoretical models of faulting and seismic 

wave propagation, used for the computation of radiated seismic energy from broadband records at 

teleseismic distances (Boatwright and Choy, 1986) can be adapted to the real-time situation when 

neither the depth nor the focal geometry of the source is known accurately. The distance-dependent 

approximation was used in Newman and Okal (1998). By analyzing some singular geophysical 



parameters (such as the energy-to moment ratio Θ (Newman and Okal, 1998)) for regular earthquakes, 

the results obtained from the theoretical models agree well with values computed from available 

source parameters (e.g., as published by the National Earthquake Information Center). It appears 

however that the so called “tsunami earthquakes” - characterized by the significant deficiency of 

moment release at high frequencies - yield the values of Θ considerably different (greater on more 

than 1 unit) than those obtained for the regular earthquakes. Thus Θ value can be used as a suitable 

criterion for discriminating various types of earthquakes in a short duration of time, like an hour.  

However, this hypothesis holds only for a few cases. For, so called, “tsunamigenic earthquakes” this 

difference is not so clear. Moreover, the value of the moment computed on the base of long-period 

seismic waves can be underestimated. For example, analysis of the longest period normal modes of the 

Earth, 0S2 and 0S3, excited by the December 26, 2004 Sumatra earthquake (Stein and Okal, 2004), 

yields an earthquake moment of 1.3×1030 dyn-cm, approximately three times larger than the 4×1029 

dyn-cm measured from long-period surface waves. Therefore, instead of a single-value discrimination 

we recommend using more parameters (dimensions) for detecting tsunami earthquakes. As shown in 

Okal et. al. (2003) and Walker et. al. (1992), one could employ other T-phase characteristics such as 

its duration, seismic moment, and spectral strength or even similar features associated with the S-

phase. 

We believe that the lack of success in predicting earthquakes still comes from the lack of 

communications between researchers and difficulties in free and fast access to the various types of 

data. Therefore, we hope that globalization of computation, data acquisition and visualization 

resources, together with fast access through a scale-free network facilitated by systems such as 

NaradaBrokering, will provide a triumphant solution to this problem. 
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