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ABSTRACT 
 

We analyze the space-time patterns of earthquake occurrence in southern 
California using a new method that treats earthquakes as a phase dynamical system.  The 
system state vector is used to obtain a probability measure for current and future 
earthquake occurrence.  Thousands of statistical tests indicate the method has 
considerable forecast skill.  We emphasize that the method is not a model, and there are 
no unconstrained or free parameters to be determined by fits to training data sets. 
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 Earthquakes strike populated regions without warning, causing great destruction 

and loss of life [1,2].  Very recent examples include the M ~ 7.6  El Salvador event of 

January 13, 2001, in which more than 2000 persons died, and the January 26, 2001 India 

event in which it is expected, at this writing, that more than 20,000 persons have died.  

Despite the fact that the largest earthquakes produce slip of several meters over fault 

areas of as much as 50,000 km2, no reliable precursory phenomena have yet been 

detected [3,4].  It is difficult for most physicists to understand why events of these 

magnitudes are not preceded by at least some detectable, causal process.  Previous efforts 

to identify the signals premonitory to such events have naturally focused on local regions 

near the earthquake source [3-6], and various precursory patterns of seismic activity have 

been proposed [2,5-15].  However, since the hypothesized patterns are localized on the 

eventual source region, the fact that one must know where the event will occur before 

these techniques can be applied is a major drawback to their implementation. 

 Simulations have shown [16,17]  that driven threshold systems such as earthquake 

faults are strongly correlated, mean field systems.  Their dynamics can be understood as 

an example of phase dynamics (�PD�; e.g., ref [16,18,19]).  In PD, the evolution in the 

state of the system between a base year tb and a later time t is characterized by changes in 

the phase angle of a state vector )t,t(S b  that represents the change in average activity 

rate (earthquake occurrence rate) over the interval (tb,t).  Since the mathematical structure 

associated with PD can be mapped into the mathematics of quantum mechanics, 

probability measures in a PD system can be readily defined [16,17,19].  These methods 

are general, and can be used to analyze observed earthquake seismicity in any region. 

 To summarize our results: Using instrumental seismicity data for southern 

California, we find considerable support for the theory that real earthquake fault networks 

are phase dynamical systems.  We construct the change in probability ∆P(x,t1,t2) for 

seismic activity over the time period (t1, t2 > t1, and find anomalous regions of increased 

∆P(x,t1,t2) that are associated with large events, both during the time interval (t1,t2), and 

for future times t > t2.  Thousands of statistical Likelihood ratio tests on well-defined null 

hypotheses indicate that the Phase Dynamical Probability Change (PDPC) index method 

has considerable forecast skill.  Finally, we display a map showing the increase in PDPC 

index ∆P(x,t1,t2) for southern California as a forecast for the ~10 years following 1999. 
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 The applicability of phase dynamics to earthquake systems follows from physical 

arguments as well as simulations [16,17].  Within a seismically active region, the well-

known Gutenberg-Richter scaling relation [1,2] describes the rate of occurrence r(m) of 

earthquakes over a geographic region with area A, and a time interval T, having 

magnitude larger than m, in terms of two parameters, a and b: 

 r(m)  =  10a 10 -b m        (1) 

Here r(m) is number of events per year, per km2 of ground surface area within the scaling 

regime.  Observations indicate that there is a lower cutoff magnitude m < mc for which 

r(mc) = constant, and r(m) < r(mc).  For the earth as whole, the values for the parameters 

that best fit the data for events within the scaling region [1,2] indicate that a ~ -0.5 and b 

~ 1.0.  The value for a differs from that normally quoted in the literature since the 

number of events is scaled by the total area of the geographic region.  For smaller regions 

such as southern California (figure 1), Japan, and New Zealand, similar values for a and b 

are found (see ref [1] for a simple discussion).  We conclude that as A and T increase, 

r(m) tends towards a well-defined, world-wide mean for given m, with a variance that 

decreases towards zero.  The mean is a direct consequence of the steady rate of energy 

input from the earth�s convective plate tectonic engine. 

 Now consider a seismically active geographic region having an area A, and a 

constant overall seismic activity rate r(m).  Construct a spatial coarse-graining by tiling 

the geographical region with N equal size square sub-regions (boxes), with the ith box 

centered on a point defined by the position vector in the dual space ix .  We select the 

scale of the coarse-graining to resolve the large events that we wish to study.  For 

example, if we wish to study earthquakes of magnitude m ≥ 6, we select the linear size 

∆L of each box to be ∆L ~ 10 km; similarly, for m ≥ 5, we select ∆L ~ 1 km, and so forth. 

The earthquakes occurring within A may be distributed arbitrarily among the N boxes, 

thus we define )t,t(S b  such that the projection onto the position vectors ix  is the 

number of earthquakes n(xi, ∆t) in the box at ix  during ∆tb = t -tb, per unit time:  
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From the definition of r(m): 
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Since we are interested in analyzing departures from the steady state, we define a 

normalized activity rate vector )t,t(s b  : 
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where  represents the L2-norm.  )t,t(s b  describes the departure of the normalized 

activity rate over the time period (tb, t) from the overall average rate, )( cmr , within A.  It 

is a vector whose phase angle is a normalized representation of the average activity rate 

during ∆tb at xi.  The Dirac bra-ket t),s(t bix  also represents a probability amplitude.   

 Over a time period (t1,t2), the change from )t,t(s 1b  to )t,t(s 2b  will depend on  

the choice of base year tb.  Since the state vectors )t,t(s b  have all been normalized, they 

should all be treated equally.  In defining the change in state )t,t(s 21∆ , we therefore 

integrate over all base years up to t2, using equal weighting: 
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Phase dynamics implies that probabilities are squares of state vector amplitudes.  Since 

we are interested in the increase of probability above the time dependent background 

probability µB(t1,t2), we first compute: 

 
2

A 21iB )t,t(sd
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∫ ∆≡µ xx       (6) 

The change in probability ∆P(xi,t1,t2) for activity above the background is then: 

 )t,t()t,t(s)t,t,(P 21B

2

21i21i µ−∆≡∆ xx     (7) 

Equations (4)-(7), imply that probability ∆P(xi,t1,t2) is conserved for any (t1,t2): 

 0)t,t,P(d 21iA
=∆∫ xx        (8) 

 To apply these methods to southern California, we must take the region A large 

enough so that A >> ξ2, where ξ is the seismic activity correlation length, estimated to be 



  5 

roughly ξ ~ 200-300 km [20].  Equation (3) can therefore be expected to hold.  In 

southern California the instrumental record of earthquake activity exists only since the 

year 1932, and is complete only for magnitudes m ≥ 3.  Thus in (5), the lower limit of 

integration t0 must be replaced by 1932.  

 We note that there are no free parameters to be determined by fits to data.  There 

are certainly decisions to be made, relative to the time period (t1,t2) of interest, the 

geographic extent of the area A, and the minimum size of the large earthquakes to be 

forecast, the latter determining the spatial coarse-graining scale L.  Similar decisions 

would also be needed for any other method of data analysis, such as taking Fourier 

transforms, or carrying out a Karhunen-Loeve (�Principal Component�) analysis.  Once 

these decisions are made, the method is straightforward and prescribed, and makes use of 

all the data that is consistent with earthquake catalog completeness. 

 The intensity of seismic activity over the years 1932-1991 is shown in Figure 1, 

using a scale size of L ~ 11 km (0.1o at this latitude), since we are interested in 

forecasting events of magnitude m ~ 6 and larger.  Figure 2 is a color-contour plot of 

Log10 ∆P(xi,t1,t2), for locations at which ∆P(xi,t1,t2) > 0,and where t1 = January 1, 1978, 

and t2 = December 31, 1991.  Inverted triangles on this map indicate large events that 

occurred during (t1,t2), circles represent large events that occurred for later  times t > t2.  

The colored anomalies are associated both with activity during the period from t1 to t2 

(inverted triangles), as well as forecasting activity that occurs after t2 (circles).  We 

strongly emphasize that no data were used to construct the colored anomalies in figure 2 

from the time after  December 31, 1991, a date 6 months prior to the June 27, 1992, m ~ 

7.6 Landers earthquake (34o 13’ N Latitude, 116o 26’ W Longitude).    

 Visual inspection of Figure 2 and others like it [21] clearly shows that the method 

has forecast skill, but rigorous statistical testing is needed for quantification.  We carry 

out such testing using standard methods involving statistical Likelihood ratio tests 

[21,22].  We used two types of null hypotheses to test the forecast in Figure 2 as a 

predictor of future activity of large events (circles).  1) We constructed thousands of 

random earthquake catalogs from the observed catalog by using the same total number of 

events, but assigning occurrence times from a uniform probability distribution over the 

years 1932-1991, and distributing them uniformly over the original locations.  This 
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procedure produces a Poisson distribution of events in space with an exponential 

distribution of inter-event times.  Randomizing the catalog in this way destroys whatever 

coherent space-time structure may have existed in the data.   Each catalog is used to 

construct a null hypotheses using a Gaussian density at each coarse-grained point xi, 

whose peak value is ∆P(xi,t1,t2) + µB(t1,t2), the total probability including the background, 

and whose width is the scale size L ~ 11 km.  2) For the second null hypothesis, we used 

the seismic intensity data in Figure 1 directly as a probability density at xi,, as has been 

proposed in the literature [23] for the �standard null hypothesis�.  In figure 3, we show 

computations of a) Log-Likelihoods for 500 random catalogs of the first type 

(histogram); b) the Log-Likelihood value for the seismic intensity map in figure 1 

(vertical dash-dot line); and c) the Log-Likelihood corresponding to the forecast in Figure 

2 (dashed line).  Since larger values of Log-Likelihood indicate a more successful 

hypothesis, we conclude that our method is finding space-time structure in the data 

corresponding to future large events.   

 The diffusive, mean field nature of the dynamics, leads to several important 

predictions: 1) Forecasts such as Figure 2 should convey information for times t 

approximately in the range:  t2 +  (t2 -t1) >  t  >  t2; 2) Anomalies of elevated probability 

having area Ω should persist for a characteristic time τ ∝  Ωη, where η ~ 1 [20]; and 3) 

The dynamics implies that we can compute probabilities using path integral methods 

[20], an approach that we are currently formulating.  Finally, Figure 4 shows a forecast 

for future large events following 1999, based on changes during the years 1989-1999.  

This is the most unbiased test possible.  
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Figure Captions: 

Figure 1.  Relative seismic intensity in southern California for the period 1932 - 

December 31, 1991.  Relative intensity is number of earthquakes scaled by the 

maximum and color scale is linear. 

Figure 2.  Color-contour plot of Log10 ∆P(xi,t1,t2), for locations at which ∆P(xi,t1,t2) > 0.  

Times  t1 = January 1, 1978, and t2 = December 31, 1991.  Values are scaled by 

the maximum and color scale is linear.  Inverted triangles are events that occurred 

from 1978-1991 with 5 < m < 6 (smallest triangles); 6 < m < 7 (intermediate 

triangles); 7 < m  (largest triangles).  Circles are events that occurred from 1992 - 

present, with 5 < m < 6 (smallest circles); 6 < m < 7 (intermediate circles); 7 < m  

(largest circles).   

Figure 3.  Log-Likelihood plots for 500 random catalogs (histogram); for the seismic 

intensity map of figure 1 (dash-dot line); and for the forecast in figure 2 (dashed 

line).  All three methods were scored by the Likelihood test according to how well 

they forecast the events of magnitude m > 6 that occurred on or after January 1, 

1992 (circles). 

Figure 4.  Color-contour plot of Log10 ∆P(xi,t1,t2), for locations at which ∆P(xi,t1,t2) > 0.  

Times  t1 = January 1, 1989, and t2 = December 31, 1999.  Inverted triangles are 

events during 1989-1999. 
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