
 1

Generalization Services on the Web – A Classification and an Initial
Prototype Implementation

Dirk Burghardt, Moritz Neun and Robert Weibel

GIS Division, Department of Geography, University of Zurich

Winterthurerstrasse 190, 8057 Zurich (Switzerland), Fax: +41-1-635 6848
Email: {burg,neun,weibel}@geo.unizh.ch

Abstract Much progress been made in the field of web based cartography through stan-

dards developed by the Open Geospatial Consortium (OGC). While automated ac-
cess and presentation of cartographic data are defined, services for automated gen-
eralization are not yet standardized. This paper aims to show advantages of apply-
ing the service concept to generalization and suggests several classification schemas
of Generalization Services at different levels of granularity. There follows a de-
tailed explanation of a real implemented Generalization Service. It is shown how
software developers can make their generalization functionality available as a ser-
vice and how these services can be accessed dynamically. For the implementation,
the open source Java Unified Mapping Platform (JUMP) was extended to work as a
framework for generalization. Generalization Services could be used in different
application scenarios, for instance as a middleware component between a Web Fea-
ture Service (WFS) and a Web Map Service (WMS), to allow on-the-fly adaptive
zooming, or as an interactive Generalization Services for the production of topog-
raphic maps by national mapping agencies (NMA). They may also allow the devel-
opment of a common research platform, where researchers would have access to a
common generalization framework.

1 Motivation

In recent years cartography has evolved in a new direction with the application of web technolo-
gies and services. As a result of this process maps in the web context are generally are generated
on-demand and on-the-fly, containing more specific and tailor-made information. This contrasts
with the traditional way of map making which focused on the production of static maps that were
designed in advance for general purpose usage (with the prototypical example of topographic
maps). Web cartography can benefit from the standards developed by the Open Geospatial Con-
sortium (OGC) to implement web services for feature access (WFS) and web mapping (WMS).
Obviously, however, the demand for dynamic web map generation has also lead to increased re-
quirements on automated map generalization procedures. Not surprisingly therefore, the OGC has
also expressed interest into “feature generalization services” as part of their OGC Web Services
(OWS) initiative (OGC and ISO, 2002). However, the specification process for such services has
not experienced much progress so far. From another end, the map generalization research com-
munity has started to develop an interest into Generalization Services as well, driven by the de-
sire to develop a common open research platform that would allow testing and sharing of gener-
alization algorithms (Badard and Braun, 2003; Edwardes et. al, 2003). This has been evidenced

 2

through discussions at the meetings of the ICA Commission on Map Generalization and Multiple
Representation in Paris 2003 and Leicester 2004.

There are several advantages to using Generalization Services in a collaborative and distributed
research environment as well as for on-demand map production. First of all, the platform inde-
pendence makes the development independent from the operating system and the hardware used,
which also offers application in a mobile context. Secondly, the service can be integrated in any
software platforms, such as web browsers, GIS or map production software. Last, the service can
be accessed over the internet or on the local machine, the latter however only if the code of the
underlying generalization operations is made available.

The objectives of the proposed paper are two-fold: 1) to present a classification of Generalization
Services, and 2) to report on a prototype implementations of sample Generalization Services, as
well as on experiments that were carried out to assess the feasibility of the approach.

2 Web Services for Spatial Applications and Generalization

2.1 Web Services

In order to enable computers directly to access distributed data and to use services, the concept of
Web Services has been introduced. Software programs – frankly computers – can read web pages
(mostly in HTML), but they can’t understand them. Human beings are able to read a web page
and find the link or the button to click on. To enable computers to do this without the help of a
human user, Web Services make use of machine-processable interface descriptors and of a stan-
dardized language:

A Web Service is a software system designed to support interoperable machine-
to-machine interaction over a network. It has an interface described in a ma-
chine-processable format (specifically WSDL). Other systems interact with the
Web Service in a manner prescribed by its description using SOAP messages,
typically conveyed using HTTP with an XML serialization in conjunction with
other Web-related standards. [W3C (2004)]

The usage of such a Web Service can be either fully automatic within e.g. GIS applications or the
Web Service could be called from the application upon the demand of the user.

2.2 Spatial Web Services

Human-computer Interaction Service
Most Spatial Web Services are understood as data delivery services. Usually they connect to a
geographic database and retrieve information from a database upon request. Examples are catalog
and gazetteer services for data search or Web Mapping Services (WMS) for the visualization of
spatial information (Fitzke et. al, 2004). Common to this kind of services is that they are designed
for end use by humans. Therefore this category is commonly called human-computer interaction
services. The approach represents the view of the Open Geospatial Consortium who have a pri-
mary focus on the end user. The aim is to simplify the exploitation of spatial data and the access

 3

to geo-information by the user at the end of a chain of spatial services. Very often Web-based
Services that are connected to a database can also perform operations upon the data. Examples of
such services include a Web Feature Service (WFS), Web Coverage Service (WCS) or a route
planning service.

Computer-computer Interaction Service
A second main category is pure processing services which receive data and parameters from the
requesting clients and perform operations on them. Possible reasons for this type of services in-
clude, for example, the availability of the algorithm only on the server due to licensing or plat-
form incompatibilities, or also the need of faster calculation power on a super-computer. This
service category reflects the original purpose of Web Services as given in the above definition,
which includes the interoperable interaction between distributed applications, the prerequisite
being a complete automation of processes.

2.3 Application of Service Concepts to Generalization

In general two concepts of Generalization Services seem to have a promising range of applica-
tion. The one and potentially most widely used service would be the generalization or better the
adaptive zooming in Web Map Services. Providing a zoom function is classically the domain of
Multi-Resolution Databases (MRDB). A Generalization Service could be introduced as an add-on
to a WMS or as a middleware between a WMS and the client which produces the desired resolu-
tion out of the available data. This kind of service belongs to the second category of computer-
computer interaction service, which requires fully automated solutions.

The other promising service would be more interactive Generalization Services for GIS users and
for map production in organizations such as national mapping agencies (NMA). In this case the
Generalization Service would provide its functionality and its calculation power to the service
subscribers. It also fulfills the requirements of a common research platform (Edwardes and
Burghardt, 2005), where the researchers want to have access to a common generalization frame-
work. Advantages of such a standalone service would include, for example, the ability to pro-
vide specialized or novel algorithms to the research community without everybody having to
adapt their systems to the specific needs. Furthermore, the possibility exists to write specific al-
gorithms for special computer architectures e.g. clusters, grids or other parallel processing sys-
tems and offering this service to the subscribers.

Figure 1 illustrates the two types of Generalization Services. In the case of zooming only con-
figuration parameters such as the resolution and the bounding box are sent from the client to the
Generalization Service. In the case of a specialized Generalization Service the data would also
have to be sent. In the first case the service knows exactly the type and structure of the data (Le-
hto and Sarjakoski, 2004; Illert and Afflerbach, 2004). In the second case this is a major problem
to handle. Only standardized and valid data can be handled by the Generalization Service.

Additionally, the kind of interaction with such services differs. While the Generalization Service
runs completely automatically in the first instance, the user has (i.e. wants to have) more control
in the second, interactive scenario. These different usage scenarios will be outlined in detail in
section 4.

 4

Figure 1: Two types of Generalization Service: As a middleware (above) or as research platform (below).

3 Characteristics for Generalization Services on the Web

There are several characteristics for Generalization Services using general concepts of Web Ser-
vices. First, the conceptual and implementation characteristics will be outlined. It is shown what a
service oriented architecture is and which techniques are available to offer Generalization Ser-
vices to service consumers, such as human users or cartographic software applications.

3.1 Service-Concept and Component Architecture

A service is an abstract resource that represents a capability of performing various tasks. This
abstract service has to be realized by a concrete agent. Different services can be connected with a
request based communication. This service oriented architecture approach offers the resources
to other users in a network as independent services. Service access is achieved through a stan-
dardized approach. These loosely coupled services offer more flexibility than other system archi-
tectures. In essence, service-oriented architectures represent collections of services communicat-
ing with each other. Communication can be either simple data passing or it could also be two or
more services jointly coordinating some activity. A service represents the endpoint of a connec-
tion. A service has an underlying computer system that manages the client-server connection.
Service invocation is done by a service request to the invokable interface of the service. Upon
successful operation, the service provider returns a service response. Errors have to be handled
with service exceptions. These interactions are independent and interfaces and protocols yield
the underlying infrastructure. The Web Services technology offers these capabilities for service
communication and interfacing.

Services can be used by higher level services and can themselves use the functionality of others.
This is achieved through the n-tier distribution capabilities of Web Services. This structure im-
plies the client/server program model. The processing of a specific application occurs over n ma-
chines across a network. These tiers usually include a data tier, business logic tier, and a presenta-
tion tier. A given machine will perform the specific tasks of a tier. Sometimes multiple tiers can
also reside on one machine but this usually is only used for testing purposes. In that case the re-
mote architecture remains unchanged. N-tier applications have not only the advantages of distrib-

 5

uting computing but additionally any one tier can run on an appropriate processor or operating
system platform and every tier can be updated independently.

The component architecture emerges from object-oriented and internet technologies. The sys-
tems components in a component-based architecture have generic interfaces through which they
advertise their functionalities. This enables the dynamic loading of the components. Components,
software objects encapsulating a set of functionalities, interact with other components. Every
component has an interface which conforms to a defined architecture.

3.2 Conceptual and Technical Characteristics for Web Services in General

Every Web Service is a resource. The Web Service architecture implements a service oriented
architecture using web technologies. The following main characteristics can be defined for all
Web Services:

 platform independence
 service registry
 Web API - interface
 loosely coupled communication

The platform independence of a Web Service is a major advantage. This feature, also referred to
as interoperability, enables a Web Service to be really distributed over many different platforms
and distinguishes Web Services from other technologies such as CORBA or Java RMI. When
browsing the web and accessing services with a browser users expect to be able to see and use a
web page on any platform or operating system. They don’t want to care whether they are using a
Windows, Macintosh or UNIX/Linux machine. Web pages use a common set of standardized
protocols and languages. To achieve this interoperability equally for Web Services already exist-
ing standards have been chosen. Web protocols ensure easy integration of heterogeneous envi-
ronments. The protocol HTTP and the language XML are available for every major platform.

In order to announce the availability of a Web Service and to find Web Services a registry is
needed. The “publish-find-bind” principle describes this functionality. Web Services are regis-
tered (publish) and can be located through a Web Service registry. Service consumers can find
suitable Web Services through a registry. These service consumers may be humans or other ap-
plications. The registry offers a single point access which then gives the exact service endpoint of
the service’s implementation to the service consumer (bind).

The Web API is the interface of a service which can be called from other programs. This inter-
face is a standards based application-to-application programming interface which can be invoked
from nearly any type of program. In order to enable programs to bind an interface automatically,
the capabilities of an interface are shown through self-description. This usually is achieved
through an interface description language (i.e. WSDL). The binding of a Web Service specifies
the protocol and data format used for transmitting messages to the invoked interface.

Web Services are loosely coupled. The systems pass XML messages, usually over the HTTP
protocol, to each other via their Web API. The Web API interface is the abstraction layer which
yields the real communication and makes the connections stable and flexible. The protocol HTTP
and the language XML can transport nearly any type of data. For instance binary arrays can be
converted into ASCII and then packed into an XML document. This approach makes the Web
Service concept very open and usable for many different purposes.

 6

3.3 Advanced Characteristics for Generalization Services

Depending on the usage concept, either as a standalone service (e.g. research platform) or as
middleware, different requirements of service registry and service invocation exist. The middle-
ware concept often needs no registry because mostly it forms a combined system together with
the data source (e.g. WMS). So, in this case the middleware would form some kind of service
endpoint for the data source. In such a case the Generalization Service is bundled with the data
access. The success of Generalization Services as a common research platform or standalone
Generalization Service, however, is very much dependent on the existence of some kind of ser-
vice registry (cf. section 5.1). The service registry has to be the single point access to all avail-
able services. These “Yellow Pages” for Generalization Services must know where the interface
description and the service endpoints of the desired service can be found. The concrete architec-
ture of such a registry will be described later in this paper.

Like the service registry, the service invocation also depends on the usage concept. A middle-
ware concept for the access to generalized data would only need to transfer parameters to the
service while a research platform or a standalone Generalization Service also needs functionality
to upload data. All these concepts can also have different ways of interaction. This can be the
classical human-computer interaction which is based on forms (in web pages) or on application
plug-ins. The computer-computer interaction could also be fully transparent to the user or be hid-
den in a cartographic system without any control or interaction of the user.

In the case of a Generalization Service which supports the upload and treatment of the individual
users’ data there are special requirements for the interface and the encoding of geo-features
with their geometry. In a form-based web page environment with full human interaction transfer
formats such as Shapefiles or GML would be suitable. But they have to respect the format needed
by the service. When using a plug-in in a cartographic application, the communication logic of
the plug-in has to translate the application’s internal concept of geo-features to a common format
which can be understood by the service (cf. section 5.2).

Generalization of more than one feature and complex Generalization Services need two addi-
tional features which are not built into Web Services. These features are the capability to main-
tain the program’s execution state and the support for atomic transactions. Maintaining the
state of the execution of an algorithm is very important in the case when client interaction with
the service at run time is desired. Once the client has uploaded the initial parameters (and possi-
bly data) the service starts the execution of the algorithm. If the algorithm needs additional data,
parameters or user input, a response with the corresponding request is sent back to the client.
While this communication takes place the service has to maintain the already entered informa-
tion, data and the already calculated changes. As the Web Services are based on loosely coupled
state-less communication this has to be accomplished additionally. Technologies for this purpose
such as session management via session IDs or cookies are usually already built into many Web
Servers. The notion of transactions is fully compatible with the transaction concept in database
systems. While executing a complex algorithm on multiple features in one data layer the data set
is only changed if no error occurs. Otherwise a roll-back is done and no changes are committed.
This feature is important to maintain the original data set’s consistency in generalization.

The maintenance of state and the concept of transactions become extremely important when ad-
vanced service control and especially the chaining of several services is desired. The chaining of
different services with their algorithms is one important step towards a “generalizeMap()” opera-

 7

tion which generalizes an entire map and delivers a more or less ready-to-use product. For the use
in middleware systems with the objective of fast display of generalized map objects the steps of
the processing chain would be fully opaque. The quality in this case is less important than speed
and stability. In the case of map production and research service chaining should also include
interaction with the user in order to obtain high quality results. In this case usually the usage con-
cept would be implemented with a plug-in because a form-based solution (e.g. in a browser) does
not offer the flexibility and the support for long-time connections.

4 Categories for Generalization Services

4.1 Categorization Based on OGC/ISO Architecture Model (02-025)

As discussed above the distinction of spatial services according to the involvement of humans has
lead to the categories of human-computer and computer-computer interaction services. The
OGC/ISO architecture model refines these two main service categories with the following subdi-
vision:

 Processing services
 Model/information management services
 Workflow/task management services
 Human interaction services
 Communication services
 System management services

Services belonging to these different categories can be applied usefully to the generalization
process, as we will now show. Processing services encompass services that perform large-scale
computations as they are needed when a generalization process is carried out fully automatically,
for instance, on a complete map image or on generalization sub-tasks which can be completely
separated from each other, such as text placement. Typically processing services do not include
capabilities for providing persistent storage of data. With regard to our application scenarios
processing services are needed to implement on-the-fly generalization, such as adaptive zooming.
Between data access through a Web Feature Service (WFS) and map presentation with the help
of a Web Mapping Service (WMS), the Generalization Service runs completely automatically as
a middleware to adapt information to the screen size of an output device, used symbolization and
map content. In this context performance is very important, so lower quality of the Generalization
Service will be accepted. Lower quality of Generalization Service means only simple selection
and simplification operations are carried out in real time, while more time consuming, context
dependent generalization operations will be omitted. Lower quality maps usually are sufficient
for display on mobile devices where the image loading time is very important for the user’s look-
and-feel and too many details can not be displayed due to limited screen resolution.

The other application scenarios use the Generalization Service as support for interactive map pro-
duction and user controlled semi-automated derivation of multiple representations at smaller
scales. The model and information management services category from the OGC/ISO architec-
ture model can be seen as collection of these kinds of services, which allow the development,
manipulation, and storage of metadata, conceptual schemas, and datasets. For this type of appli-
cation the main control lies on the user side. Workflow services can help to define, invoke, status
and control service chaining. Human interaction services allow interaction during the generaliza-

 8

tion process, for instance, to decide which object classes have to be generalized or selected and to
parameterize Generalization Service operators. The OGC/ISO architecture model suggests two
additional categories, one for communication services to encode and transfer data across net-
works and one for system management services which include, for instance, management of user
access privileges. All these kinds of services can be advantageously combined in a generalization
research platform.

4.2 Default and Advanced Generalization Service Category Based on GML Specification

of Open Geospatial Consortium

The second way of categorizing Generalization Services is based on the OpenGIS® Geography
Markup Language (GML) Implementation Specification, which differentiates between GML core
schema elements and GML application schema elements. Default Generalization Services as one
category deal with GML core schema elements and could be used with any GML dataset. In
many cases, for example when simplifying single area objects (e.g. the geometry of a building) or
line objects (e.g. the geometry of a river or street) application requirements may be simple and
the default generalization behaviors could suffice to meet those requirements. Advanced Gener-
alization Services as the second category encompass services for GML application schema ele-
ments. Application schema elements allow additionally the modeling of objects by means of at-
tributes and object compositions.

Default Generalization Services contain generalization functionality which operates on the micro
level. This means that generalization operations are carried out on single objects, while context
dependency will not be considered. According to Ruas (2000) micro objects generalize them-
selves or react to orders for contextual operations given by (superordinate) meso objects. Using
the typology of McMaster and Shea (1992) the following operators can be applied on single ob-
jects: simplification, smoothing, geometry type change, collapse, enhancement and selection
based on geometry. Default Generalization Services allow the reduction of resolution by means
of a single geometrical operation (e.g. line simplification) and simplified modeling (e.g. center-
line representation of roads and streets).

Advanced Generalization Services consider also attributes, symbolization and spatial context
through neighboring objects. Hence, generalization operations have to deal with groups of ob-
jects, so called meso objects. Meso objects (or meso agents) generalize themselves when they
perform contextual operations (Ruas 2000). Advanced Generalization Services allow to imple-
ment the remaining, contextual generalization operators of the typology by McMaster and Shea
(1992), including context-dependent selection, aggregation, typification, exaggeration and dis-
placement of map objects, taking into account both the geometry as well as semantics and attrib-
utes of the objects involved.

4.3 Hierarchical Categorization

Extending the idea of default and advanced Generalization Services, a hierarchical breakdown
can be made which distinguishes between the following categories

1. Generalization support service (e.g. services for buffering or for creating a topological
data structure, a skeleton or a constrained Delaunay triangulation)

2. Generalization operator services (e.g. services for line simplification, line displacement,
area aggregation)

 9

3. Generalization process services (e.g. services for automated orchestration, services for
evaluation of generalization results)

The first category contains services that should support the generalization process and the gener-
alization operators. Therefore this category represents the lowest level of this hierarchical catego-
rization. Examples are services for creating a topological data structure or services for creating a
constrained Delaunay triangulation. The results of such a service is additional cartographic in-
formation which can be optionally stored also in a Multi-Resolution Database (MRDB). These
kinds of services can be seen as enriching data with respect to the automated generalization proc-
ess. The main goal of such services is to make information explicit, representing common struc-
tural properties such as neighborhood or proximity relations and alignments which can be use-
fully exploited by generalization operations (Neun et al. 2004).

The second service category delivers the functionality of standalone generalization operators.
Several typologies of such generalization operators are suggested for instance by McMaster and
Shea (1992). Examples are services for simplification, smoothing, aggregation, amalgamation,
merging, collapse, refinement, exaggeration, enhancement and displacement. These generaliza-
tion operator services can be further subdivided for point, line and area objects and specialized
depending on object classes. It is obvious that rivers, borders and railway lines have to be gener-
alized in a different way, despite the fact that all are line objects. The generalization operators of
this second service category are offered in an interactive mode, with the user selecting appropri-
ate generalization operators/algorithms as well as setting the control parameters of the algorithms.

The third hierarchy level of generalization process services uses services from lower categories
and encompasses services which allow the control and orchestration of generalization operators.
Examples are the meso agents as described for the advanced Generalization Service category
(Ruas 2000). Automated control of the generalization process presently receives ample attention
as a research topic. Besides agent-based modeling also combinatorial and continuous optimiza-
tion approaches are proposed in the literature. Simulated annealing (Ware et al., 2003) as a com-
binatorial optimization approach allows the selection of generalization operations controlled by
assigning costs to each operation. Continuous optimization approaches include the finite element
method (Højholt, 2000), snakes or elastic beams (Burghardt and Meier, 1997; Bader, 2001;
Galanda and Weibel, 2003) and least-squares adjustment (Harrie, 1999; Sester 2000). The latter
methods are primarily used to control generalization operations of continuous nature, such as
displacement or smoothing. All approaches mentioned so far, however, are still quite a way from
a perfect modeling of the overall map generalization process. In the meantime, an interim mecha-
nism for controlling the generalization process is provided by the three architecture patterns for
service chaining in the OpenGIS® Web Services Architecture (OGC, 03-025) which can be used
depending on purpose and map complexity:

 User defined (transparent) chaining: the human user entirely manages the workflow. For
complex generalization processes for which no adequate process modeling exists yet.

 Workflow-managed (translucent) chaining: the human user invokes a Workflow Man-
agement service that controls the chain and the user is aware of the individual services.
For medium-complexity generalization processes that can be specified as workflows.

 Aggregate service (opaque): the human user invokes a service that carries out the chain,
with the user having no awareness of the individual services. For relatively simple, se-
quential generalization processes.

 10

5 Implementation

The prototype implementations of Generalization Services reported here include examples of
rather simple services (e.g. Douglas-Peucker line simplification, building simplification) where
spatial context is not considered. The objective is to show the feasibility of the service-based ap-
proach and to describe the minimum set of components needed to run the Generalization Services
over the internet. For the implementation of the Generalization Services we use an open source
framework for mapping application called JUMP (http://www.jump-project.org) that delivers
standard functionality for reading and writing files (Shape, GML), as well as modifying and visu-
alizing cartographic data. JUMP is written in Java, which allows easy application service provi-
sion (ASP) over the internet. The usage of the framework’s functions is enabled by including the
JUMP libraries in Java servlets which are running in a servlet engine such as TOMCAT. These
servlets contain algorithms with the generalization logic or controls for external generalization
libraries, respectively.

5.1 Registry for Generalization Services

The central point for accessing and publishing Generalization Services is the registry. Compara-
ble to “yellow pages” the registry has to be used when looking for available generalization func-
tionality. It would make sense for some large independent organization such as the ICA Commis-
sion on Map Generalization and Multiple Representation to host such a registry database.

Figure 2: Registry for Generalization Services

To offer a Generalization Service the following steps have to be performed by the service pro-
vider, for instance by a research group (cf. Figure 2). The first task is to create (a) an interface
description containing the parameters of the Generalization Service and the service endpoint,
which consists of a URL address where the service can be accessed. Once the interface descrip-
tion is published (b) in the registry database the community can access the service.

Clients looking for Generalization Services can use the registry to find (1) available services.
Selecting a desired Generalization Service the client obtains the link (2) to the interface descrip-

 11

tion of the service. Accessing the interface description (3) the user knows the endpoint of the ser-
vice, as well as the number, names and types of the parameters. With this information the client
plug-in can create automatically a user interface for the selected service, allowing the specifica-
tion of generalization parameters. Having a central access point is one advantage of a registry.
Additionally, the registry automatically identifies service endpoints, so there is no active change
needed by the service users if the service provider changes the location of the software on the
server. Finally, the process communication (4) is responsible for the transfer of parameters and
data between user and service provider.

5.2 Process Communication and Feature Metadata (Encoding and Upload)

The two main service concepts (cf. section 2.3) require different ways of communication for the
data input (upload) and the output (download). Figure 3 illustrates three different ways to imple-
ment process communication. The concept of a research platform is either implemented as a
form-based web page in a browser or as a plug-in for mapping software. The browser upload of-
fers only the file upload via HTTP. The selected file is encoded automatically by the browser and
has to be decoded on the server. The browser example offers the possibility to upload and process
Shapefiles. As output in the browser the user can download a newly created Shapefile with the
result of the generalization algorithm.

The implementation as a plug-in on the client GIS offers the possibility to encode the data di-
rectly out of the application. This gives the possibility to choose a better suited format for the
transfer. In the example plug-in, the geo-features are encoded in a GML compatible format di-
rectly into a SOAP message (Simple Object Access Protocol), then transferred to the server. The
use of another format (e.g. a binary format) would also be possible, with the possibilities of
SOAP envelopes and e.g. MIME encoding. The output of the server is in the same format as the
request and can again be decoded on the client and displayed there.

The concept of a middleware layer between the data source and the user (mostly in conjunction
with a browser) introduces a third possibility for getting the data to the Generalization Service. In
this case the client would simply send the URL of the data source (e.g. a WFS) to the Generaliza-
tion Service as a parameter in the call. The server itself would then access the data source, proc-
ess the data and send it back to the user (Sester et. al, 2004).

Figure 3: Three ways to implement process communication

 12

The metadata specification for the geo-features is treated in the following way. Every feature can
have an arbitrary number of attributes. The number, name and type (spatial or non-spatial) of the
attributes needed by the algorithm are specified in the interface description (cf. section 5.3). Gen-
eralization data is always geometrically dominated. This means that every feature has at least one
geometry plus possibly other attributes. The interface of a road generalization algorithm could for
example require a geometry for each road and the road class (highway, major road, etc.). Listing
1 shows an example for such a schema specification. The users of the service would then in their
client select the columns with the geometry and the road class in their local data set. For the data
transfer the client then automatically assigns the name from the schema to the selected column.
So, the server can identify which attributes it can use. Other attributes in a local dataset will sim-
ply be ignored not deleted.

<schema>
 <attribute>
 <name>geometry</name>
 <type>GEOMETRY</type>
 </attribute>
 <attribute>
 <name>class</name>
 <type>STRING</type>
 </attribute>
</schema>

Listing 1: Example feature schema

For the browser upload and the plug-in example the necessary encoder and decoder methods have
been implemented in Java. These classes form the communication framework which can be used
for the client-server communication.

5.3 Service Invocation and Client Implementation

On the client side both an example for the browser based Generalization Service and a plug-in for
the JUMP Unified Mapping Platform have been implemented. Other plug-ins for platforms such
as ArcView® are also planned. The client implements an easy to use GUI (Graphical User Inter-
face) for the service user. The browser example works with standard HTML pages in every major
browser platform. The user accesses such a service through a start page (user authentication with
password can be activated). This start page, containing all available services, is dynamically cre-
ated with information from the service registry (cf. section 5.1). After selecting a particular Gen-
eralization Service the user is presented a new, dynamically created page which allows him/her to
enter the parameters for the algorithm and upload a Shapefile from his/her local system.

The JUMP plug-in does mostly the same as the browser solution but it integrates seamlessly into
the software so that the user does not have to quit the application and even does not necessarily
notice a big difference between using a local or remote algorithm. The plug-in integrates into the
JUMP menu bar. The first time after the installation of the plug-in the user has to enter the URL
of the registry (cf. section 5.1). With this URL the plug-in automatically looks every time it is
started for all available Generalization Services. The result of this query is displayed in a selec-
tion list to the user (see Figure 5).

 13

Figure 5: List of available services (from the Generalization Service registry)

From the list of available services the user selects the desired Generalization Service. The user
then is presented an entry form for the corresponding algorithm’s parameters. The configuration
of all those entry forms is dynamically created from the interface description (cf. section 5.1). An
example of such a simple interface description for the Building Simplification algorithm is shown
in Listing 2. The data format for the interface description is XML. The important parts of the in-
terface description (Listing 2) are highlighted.

<?xml version="1.0" encoding="UTF-8"?>
<webgen>
<name>building generalization</name>
<method>buildingGenNew</method>
<endpoint>http://www.geo.unizh.ch:8080/neun/servlet/GenHandlerXML</endpoint>
<description>This algorithm simplifies all buildings in a layer and returns a layer
containing the resulting buildings!</description>
<config>
 <layer>
 <schema>
 <attribute>
 <name>GEOMETRY</name>
 <type>GEOMETRY</type>
 </attribute>
 </schema>
 </layer>
 <param>
 <name>min edge length</name>
 <type>DOUBLE</type>
 <description>Minimum Edge Length!</description>
 </param>
</config>
</webgen>

Listing 2: The interface description in XML

 14

The entire description is in one XML container. The tag <method> specifies the generalization
algorithm which has to be used on the server and has to be passed to the server proxy. The tag
<endpoint> specifies the URL of the server proxy. The tag <layer> specifies the minimum
schema (metadata) the algorithm needs. In the example (Building Simplification algorithm) only
geometries (<name> and <type>) are needed. Other attributes can also be contained in the layer
but they will be ignored. For another algorithm like road re-classification e.g. a second attribute
indicating the class of the road would be needed. The other parameters which are needed by the
algorithm are indicated by the <param> tag. There can be as many parameters as needed. In the
example there is only one parameter, the minimal edge length (type DOUBLE), needed.

Figure 6: Algorithm interface generated dynamically from an interface description

Figure 6 shows the automatically generated entry form for the Building Simplification algorithm.
After selecting the layer with the geometries and entering the tolerance, the data is transferred to
the server and processed. The resulting geometries are sent back to the client and displayed in a
new layer in JUMP.

The implementation example assumes a near real-time execution of the Generalization Service.
The client is kept in a blocked wait mode. In this case the generalized data can be delivered im-
mediately back to the client. Execution time is limited by client and server timeout settings and
users’ patience. For more time consuming operations, a system which informs the user when the
service is finished would be possible and preferable. So, during the processing of a request the
client would not be blocked and could perform other tasks. This has not been implemented so far,
however. For the middleware concept only the real-time execution is of interest, because the user
usually wants to see the map very quickly. The (simple) algorithms implemented so far have all
performed very fast, so the bottleneck was not the computing time but the network transfer time.
In the middleware concept, assuming a fast connection between data source and Generalization
Service, this is negligible.

 15

6 Conclusion

In an attempt to stimulate the discussion about Generalization Services in the generalization re-
search community this paper explained the minimal requirements for the client and server side
implementation of Generalization Services. It was shown how developers and researchers can
make their generalization functionality available by means of an interface description and how
possible users of these services can find them through a registry database. As an example simple
Generalization Services for line and building simplification were implemented and accessed dy-
namically from the open source Java Unified Mapping Platform. To show the advantages of Gen-
eralization Services two different application scenarios were proposed. The first scenario imple-
ments the processing service as a middleware solution in order to realize on-the-fly generalization
for tasks such as adaptive zooming. The second application scenario focuses on interactive gen-
eralization as support for interactive map production and user controlled semi-automated deriva-
tion of multiple representations at smaller scales.

The limitations of our solution are that no symbolization was considered so far and only context
independent Generalization Services were implemented. Also, there is no user or session man-
agement up to now. This would be needed for longer computations. Further research has to inves-
tigate ways of interacting and chaining of Generalization Services, which is related to the yet
largely unsolved problem of automated orchestration of generalization operators. To take full
advantage of distributed services and grid computation ways have to be found for separating and
distributing generalization tasks. The partitioning of a generalization task based on the identifica-
tion of independent problems (e.g. the generalization of building blocks surrounded by streets) or
the subdivision of the map area with solving boundary problems is imaginable.

Acknowledgements

Research reported in this paper was partially funded by the Swiss NSF through grant no. 20-
101798, project DEGEN. We are grateful to Alistair Edwardes for helpful comments on the pa-
per.

References

Badard, T., and A. Braun. 2003. OXYGENE: An open framework for the deployment of geo-

graphic web services. In: Proc of the 21st Int. Cartographic Conf.,Durban, South Africa.
(CD-ROM).

Bader, M. 2001. Energy Minimization Methods for Feature Displacement in Map Generalization.

Doctoral Thesis, Department of Geography, University of Zurich, Switzerland.

Burghardt, D. and S. Meier. 1997. Cartographic Displacement Using the Snakes Concept. In:

Förstner, W., and L. Plümer (eds), Semantic Modeling for the Acquisition of Topografic In-
formation from Images and Maps, Birkhäuser Verlag, 59-71.

 16

Edwardes, A., D. Burghardt, M. Bobzien, L. Harrie, L. Lehto, T. Reichenbacher, M. Sester and
R. Weibel. 2003. Map Generalisation Technology: Addressing the need for a common re-
search platform. In: Proceedings of 21st International Cartographic Conference. Durban,
South Africa. (CD-ROM)

Edwardes, A. and D. Burghardt. 2005. Experiments to build an open generalisation system. In:

W. Mackaness, A. Ruas and T. Sarjakoski (eds), Challenges in the Portrayal of Geographic
Information: Issues of Generalisation and Multi Scale Representation..

Fitzke, J., K. Greve, M. Müller, A. Poth. 2004. Building SDIs with Free Software – the deegree

project. In: Proc. 7th Conf. Global Spatial Data Infrastructure (Bangalore, India).

Galanda, M. and R. Weibel. 2003. Using an Energy Minimization Technique for Polygon Gener-

alization. Cartography and Geographic Information Science, 30(3): 259-275.

GML. 2005. OpenGIS® Geography Markup Language (GML) Implementation Specification

http://www.opengis.org/techno/implementation.htm (accessed 01/2005).

Harrie, L. 1999. The Constraint Method for Solving Spatial Conflicts in Cartographic Generaliza-

tion. Cartography and Geographic Information Science, 26(1): 55-69.

He, Hao. 2003. What is Service-Oriented Architecture? http://webservices.xml.com/pub/a/ws/

2003/09/30/soa.html

Højholt, P. 2000. Solving Space Conflicts in Map Generalization: Using a Finite Element

Method. Cartography and Geographic Information Science, 27(1): 65-73.

Illert, A. and S. Afflerbach. 2004. Global schema specification. GiMoDig-project, IST-2000-

30090, Deliverable D5.3.1, Public EC report, 35 pgs., http://gimodig.fgi.fi/deliverables.php
(accessed 01/2005)

JUMP. 2005. JUMP Pilot Project – Fostering the Development of the JUMP GIS Platform.

http:// www.jump-project.org; http://jump-pilot.sourceforge.net/index.php (accessed 01/2005).

Lehto, L., and T. Sarjakoski. 2004. An Open Service Architecture For Mobile Cartographic Ap-

plications. In: G. Gartner (ed.), Location Based Services & TeleCartography, Proceedings of
the Symposium 2004, Vienna University of Technology, January 28-29, 2004, Vienna, 141-
145.

McMaster, R., and S. Shea. 1992. Generalization in Digital Cartography. Washington D.C: As-

sociation of American Geographers.

Neun, M., R. Weibel and D. Burghardt. 2004. Data Enrichment for Adaptive Generalisation. In:

ICA Workshop on Generalisation and Multiple Representation (Leicester), available from
http://ica.ign.fr/

OGC and ISO. 2002. The OpenGIS™ Abstract Specification, Topic 12: OpenGIS Service Archi-

tecture, Version 4.3. Abstract Specification OGC 02-112. Also available as ISO/DIS 19119 –
Geographic Information Services.

 17

Ruas, A. 2000. The Roles of Meso Objects for Generalisation. In: Proceedings 9th Symposium on

Spatial Data Handling (Beijing, China): 3b50-3b63

Sester, M. 2000. Generalization Based on Least-squares Adjustment. In: International Archives

of Photogrammetry and Remote Sensing, Vol. XXXIII, Part B4, Amsterdam, 931-938.

Sester, M., L. T. Sarjakoski, L. Harrie, M. Hampe, T. Koivula, T. Sarjakoski, L. Lehto, B. Elias,

A.-M. Nivala, and H. Stigmar. 2004. Real-time Generalisation and Multiple Representation in
the GiMoDig Mobile Service. GiMoDig-project, IST-2000-30090, Deliverables D7.1.1*,
D7.2.1* and D7.3.1, Public EC report, 151 pgs. http://gimodig.fgi.fi/deliverables.php (ac-
cessed 01/2005)

Vivid Solutions. 2004. JTS Topology Suite and JTS Conflation Suite, http://www.vividsolutions.

com/ (accessed 01/2005)

Ware, J.M., C.B. Jones and N. Thomas. 2003. Automated Map Generalization with Multiple Op-

erators: A Simulated Annealing Approach. International Journal of Geographical Informa-
tion Science, 17(8): 743-769.

W3C. 2005. Web Services Architecture. http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

(accessed 01/2005)

WFS. 2005. OpenGIS® Web Feature Service Interfaces Implementation Specification.

http://www.opengis.org/techno/implementation.htm (accessed 01/2005)

WMS. 2005. OpenGIS® Web Map Service Interfaces Implementation Specification.

http://www.opengis.org/techno/implementation.htm (accessed 01/2005)

