
Research Article

Performance-improving techniques in web-based GIS#

CHAOWEI (PHIL) YANG*{{, DAVID W. WONG{{, RUIXIN YANG{{,

MENAS KAFATOS{{ and QI LI§

{Earth Systems and GeoInformation Sciences, School of Computational Sciences,

George Mason University, Fairfax, VA 22030, USA

{Center for Earth Observing and Space Research, George Mason University, Fairfax,

VA 22030, USA

§Institute of RS & GIS, Peking University, Beijing, 100871, PR China

(Received 3 January 2003; in final form 12 November 2004)

WebGIS (also known as web-based GIS and Internet GIS) denotes a type of

Geographic Information System (GIS), whose client is implemented in a Web

browser. WebGISs have been developed and used extensively in real-world

applications. However, when such a complex web-based system involves the

dissemination of large volumes of data and/or massive user interactions, its

performance can become an issue. In this paper, we first identify several major

potential performance problems with WebGIS. Then, we discuss several possible

techniques to improve the performance. These techniques include the use of

pyramids and hash indices on the server side to handle large images. To resolve

server-side conflicts originating from concurrent massive access and user

interactions, we suggest clustering and multithreading techniques. Multi-

threading is also used to break down the long sequential, layer-based data

access to concurrent data access on the client side. Caching is suggested as a

means to enhance concurrent data access for the same datasets on both the server

and the client sides. The technique of client-side dynamic data requests is used to

improve data transmission. Compressed binary representation is implemented on

both sides to reduce transmission volume. We also compare the performance of a

prototype WebGIS with and without these techniques.

Keywords: WebGIS; performance; pyramid; hash index; multithread; cluster;

cache; dynamic data request

1. Introduction

The fast-paced development of GIS has triggered some researchers (Sui and

Goodchild 2001) to reconsider the fundamental essence of GIS and its social

implications. GIS has been widely used in various types of business, government and

university projects. For instance, in North American alone, the value of the GIS

market will increase from $1.4 billion in 2001 to $2.0 billion in 2004 even in a slow

economy (Rogul 2003). Rogul also points out that one of the reasons for this

continued expansion is that GIS is finding new markets on the Internet. Today, GIS

serves as a means of communication, conveying information and knowledge to the

*Corresponding author. Email: cyang3@gmu.edu
#Methods described and relevant implementation are patent – pending.

International Journal of Geographical Information Science

Vol. 19, No. 3, March 2005, 319–342

International Journal of Geographical Information Science
ISSN 1365-8816 print/ISSN 1362-3087 online # 2005 Taylor & Francis Ltd

http://www.tandf.co.uk/journals
DOI: 10.1080/13658810412331280202

public. Sui and Goodchild (2001) suggest using the term ‘media’ to describe GIS.

This booming trend of GIS is potentially attributable to many, but at least two

primary factors: the building of the Spatial Data Infrastructure (SDI) worldwide,

and the dazzling development of computing technology and information technology

in general.

During the past decade or so, the construction of SDI has proliferated

geographically across all levels, from the National SDI in the US (www.fgdc.gov/)

to the Global SDI (www.gsdi.org/), and the local SDI, including the states (e.g.

http://www.vgin.state.va.us/, for the Virginia Geographic Information Network)

and counties (e.g. www.loudoun.gov/omagi/index.htm, for the Loudoun County in

Virginia). In the US, the building of the NSDI has involved almost every department

of the federal government (www.whitehouse.gov/omb/circulars/a016/a016_rev.html).

Large volumes of geographic data, which are valuable to various organizations, have

been accumulated mostly in a traditional hierarchical manner: objects and their

related attributes are collected and classified according to different themes or layers,

and different layers are overlain to produce a specific map, as illustrated in figure 1a.

In order to fully utilize the available spatial data efficiently and effectively, GIS has to

play a critical role, not just in disseminating the raw data, but also in providing

information and offering value-added services to potential users.

However, in order to utilize and access the valuable data, GIS-enabled

environments have to be available to the public. The fast development of the

Internet, especially the World Wide Web (WWW) and wireless communication,

provides an ideal platform to empower the general public with the GIS technology

through WebGIS (Plewe 1997, Peng and Tsou 2003) and Location Based Service

Figure 1. Hierarchical organizations of data. (a) Hierarchical organization of geographic
data. (b) A pyramid structure of image data.

320 C. Yang et al.

(LBS) (http://www.openls.org/). The geospatial enablement of our everyday tools,

e.g. cars and phones, has provided the general public channels to access GIS

environments almost anywhere and anytime (Cowen 1994, Koeppel 2001). These

developments, facilitated by the general advancement of computing technology,

have equipped us to share data and information through SDI and different types of

distributed systems. In all diverse systems, the common vital units are the computing

components, which handle the access, processing, and visualization of the

geographic information, and the interactions between users and data. Therefore, a

distributed GIS can be abstractly organized into different computing units, which

are themselves connected through various types of networks (coaxial cable, optical

fiber, satellite), and represented by the client/server computing model suggested by

many scholars (Kenneth and Kirvan 1997, Peng 1999, Yang 2000). According to

different roles, a typical system broadly consists of three parts: the client, server and

network. The client interacts with the users and performs certain computing

functions on spatial data. The server supplies data and information, and performs

some value-added services to a client. The network hosts the transmission of

information between the client and server.

Among various types of network GIS, including the LBS, WebGIS is the most

extensively developed and widely used. It has accompanied the rapid development of

the WWW during the past decade. Many Internet users have experience using

WebGIS. Mapquest (http://www.mapquest.com/), Terraserver (http://www.terraser-

ver.com/), weather forecast (http://www.weather.com/), and many other WebGISs

have been widely used for online route selection, city planning (Deng 2000),

environmental exploration (Dragicenvic 2000), watersheds management (Kelly

2001), land-use planning (Bogner et al. 2001), road/rail construction (Barthello and

Pollack 2001, Slater 2002), business analysis (Shen 2001), airport construction

(Galinao and Brennan 2002), and data integration and dissemination (Eichelberger

2001, Takatsuka and Gahegan 2002), just to name a few applications. To give the

user a better view of the data or information, 3D visualization (Coors and Flick

1998), Virtual Reality Markup Language (VRML) (Huang and Lin 2001), and

multimedia (Grønbæk 2002) have also been integrated into certain WebGIS.

Some scholars suggest that WebGIS should include spatial analysis capability, not

just web mapping and data delivery. Following this argument, for example, ArcIMS

may be regarded as a WebGIS, while TerraServer may not. However, the simple

web mapping function contributes to the popularization of WebGIS. All these

systems require similar techniques to improve performance. Therefore, we also refer

to MapQuest, TerraServer and other web-mapping systems and data portals (e.g.,

www.geodata.gov) as WebGISs in this paper.

While WebGIS is gaining in popularity, dissemination of voluminous and

heterogeneous data becomes a challenge, as the Internet bandwidth is not limit-

less. To handle this challenge, two important issues should be considered: (1) share

and interoperate the heterogeneous data among different systems, different

communities, and different users (Buehler and McKee 1998); and (2) improve the

system performance so that data are delivered to the users within a reasonable

time span. The OpenGIS Consortium (OGC) (http://www.opengis.org/) and the

Technical Committee 211 of the International Organization of Standards

(http://www.iso.org/iso/en/stdsdevelopment/tc/tclist/TechnicalCommitteeDetailPage.

TechnicalCommitteeDetail?COMMID54637) were established to address the first

issue by providing a series of standardized interface specifications to allow different

Performance-improving techniques in web-based GIS 321

components of the Performance-improving techniques in web-based GSI system,

including data, to support interoperability. Although the second issue has been

addressed by various suggestions, research on the performance of WebGIS still

has two major limitations: (1) most methods focus on only one aspect of the

performance problem; and (2) most methods do not consider how the hierarchical

structure of map, layer, object, and attribute may affect performance. In this paper,

we propose a set of solutions to provide an improved treatment on WebGIS

performance.

This paper is organized into several sections. In section 2, we review related

research on improving the performance of WebGIS, and discuss different methods

to improve the performance of individual components, as well as the overall system

performance. In section 3, we discuss the use of pyramid and hash indices for

handling large image data management and transmission problems. In section 4, we

outline multithread and cluster techniques, which are used to deal with the problem

of concurrent access and to improve client-side interactive performance. In section 5,

we propose using the methods of caching and dynamic transmission to improve the

interactive performance. In section 6, we suggest using binary data compression to

improve the transmission performance by reducing data transmission volume.

Finally, in section 7, we compare the performance of a prototype WebGIS with and

without the methods proposed in this paper.

2. Related works

WebGIS focuses on how to allocate spatial data, both raster and vector (Goodchild

1992), in a client–server-based web platform, as well as on how to allocate functions

to different system components in processing these data to satisfy users’ needs (Yang

2000). Our review includes three parts: raster data transmission, vector data

transmission, and other performance-related computing techniques used in the

client–server model.

2.1 Raster data

To handle raster data transmission, useful solutions can be borrowed from research

and applications in image transmission in computer science. For instance, the

progressive raster transmission method has been frequently suggested

(Rauschenbach and Schumann 1999, Srinivas et al. 1999). The basic idea of

progressive transmission is to use image compression techniques to gradually extract

and transmit raster data. After the compressed image is transmitted to the client, the

image is gradually reconstructed on the client side. The simplest progressive raster

transmission method is to randomly extract and transmit the image without

following a systematic algorithmic process. More sophisticated methods for

progressive raster transmission could be based on image-compression techniques

(Rauschenbach and Schumann 1999, Srinivas et al. 1999), such as the widely used

Joint Photographic Experts Group (JPEG) method (Kern and Carswell 1994),

various wavelet methods (Morlet and Grossman 1984, Wu et al. 2002), fractal

methods (Barclay,1989), or a combination of the above methods (Zhao and Yuan

1996, Davis 1998). Because of their complexity and their computing requirements,

the progressive methods do not have the flexibility to handle the transmission of

large volume and variable size images efficiently in the WebGIS environment, but

are ideal for transmitting fixed-size images on the Internet. However, the

322 C. Yang et al.

fundamental methods of image compression can still be used to reduce the overall

image transmission size.

A relatively large image can first be extracted into different levels of detail to

construct a hierarchical or pyramid structure. In each hierarchical layer, the image is

further cut into pieces or tiles, which are logically connected through their respective

coordinates. Then, the image data are transmitted in a load-on-demand manner, i.e.

only the data of interest, as requested by the user, are combined from the respective

tiles and transmitted to the client side (Coors and Flick 1998, Barclay et al. 1999,

Wei et al. 1999, Chen et al. 2000, Yang et al. 2000, Tu et al. 2001). TerraServer uses

this method to assist the SQL Server to manage images (Barclay et al. 1999), but this

approach is not widely applicable because most WebGISs are not specifically

designed with SQL Server. ArcGIS also adopt the pyramid technique in handling

big images, but the pyramid is built on the fly every time a large image is accessed.

This approach of constructing an instant pyramid is not suitable for managing

images on WebGIS because the response time will be too long if the pyramid is

constructed for every access. Therefore, a strategy for managing a permanent

pyramid is needed. In this paper, we further develop this method and propose a hash

index method to manage a pyramid to improve performance.

Some scholars suggest adopting tile pre-fetching and caching techniques to

improve raster data transmission (Chen et al. 2000, Kang et al. 2001, Tu et al. 2001).

To cache is to temporarily keep loaded data for future re-uses, while pre-fetching is

to obtain and cache data in advance, when the data are expected to be used later.

Cached data are used at least once, but pre-fetched data may never be used.

Unfortunately, this combined method is effective for raster data only, and the

complex nature of WebGIS involves the handling of both raster and vector data, as

well as the support of spatial analysis, in the ideal situation. Moreover, users will

request raster images in a relatively random manner and therefore, the pre-fetching

technique will not be efficient and effective in handling random requests. Therefore,

caching, rather than pre-fetching or both, will be one of the performance-improving

techniques discussed in this paper.

2.2 Vector data

The progressive transmission technique could also be used for vector data, but the

process is different from that applied to raster data in the hierarchical pyramid

structure. Vector data are extracted using cartographic principles to construct the

multi-level or multi-layer structure, instead of using the simple resampling process

for raster data. Hoppe (1996) proposed a mesh scheme that marked a milestone for

vector progressive transmission. By slightly modifying the topology of the input

mesh, Baja et al. (1999) achieved a higher compression ratio for transmitting

Triangulated Irregular Network (TIN) data. Floriani et al. (1998) proposed an

encoding structure to improve the efficiency of progressive transmission. Bertolotto

and Egenhofer (2001) proposed a model to generate multiple map representations

and a set of generalization operators. Buttenfield (2002) introduced an algorithm

that transmits vector coordinates at progressive levels of resolution, preserving

geometric and topologic properties. These processes perform atomic topological

changes on the vector map to achieve a better transmission performance, preserve

the topology of the spatial data, and are best for transmitting single-layer maps.

However, they do not take into account the de facto hierarchical geographic data

Performance-improving techniques in web-based GIS 323

organization of map, layer, object, or attribute. Therefore, they cannot be used

generically to handle the heterogeneous data sets in a WebGIS environment.

Another technique for improving the performance of vector data transmission is

indexing. Indexing techniques have been widely studied mainly from two

perspectives: spatial object, attribute-based thematic indexing and spatial indexing

(Worboys 1995). Thematic indexing is the process of indexing attributes such as

address, postcode, phone number, feature name and other attributes, such that

attribute data can be efficiently processed using popular commercial databases

(McCurley 2001). The R-tree index method has also been used for thematic indexing

(Chen et al. 2000). Spatial indexing is more complex than thematic indexing, and can

be classified into two general categories: hierarchical access indexes, such as R-tree

(Guttman 1984) and Quad-tree (Samet 1984), and hash indexes, such as Grid-files

and R-files (Kwon et al. 2002). R-tree utilizes the concept of a feature’s Minimum

Bounding Box (Guttman 1984), the minimum rectangle which contains the feature.

There are several extensions of R-tree, such as R*-tree, suggested by Beckmann

et al. (1990) to deal with points and rectangles, and R+-tree, proposed by Sellis et al.

(1984) to allow dynamic indexing. To support the multi-level data structure,

Reactive-tree (Oosterom 1991), PR-file (Becker et al. 1991) and Multi-scale Hilbert

R-tree (Edward and Kevin 2002) have been proposed.

These spatial and thematic index research efforts provide a basis for implementing

vector data indexing. The indexing methods mentioned above could be adopted on

the client and/or server side to improve the access to vector data. Thus, the primary

focus of this paper is on dynamically allocating vector data between the server and

client, and related computing methods.

2.3 Other computing techniques

Kang et al. (2001) and Tu et al. (2001) have used pre-fetching and caching

techniques for raster data transmission in systems exclusively handling raster data.

In a WebGIS, which involves both raster and vector data, caching could be used not

only for transmitting data, but also for allocating data between client and server,

especially for metadata and fundamental layer information. Multithreading

techniques have also been suggested to improve the performance by processing

more than one task simultaneously (Chen et al. 2000). This technique, in fact, is very

useful for handling server-side concurrent access, as well as to improve client-side

interactive capabilities. When a server is opened to the public, many users may

access the server simultaneously. In this potentially massive access situation, the

system may also be required to adopt cluster techniques for multiple servers to serve

the users to ensure reliability and to improve the overall performance (Yang 2000).

2.4 A system solution

Based upon the client–server environment in WebGIS, we propose a set of

techniques that can be used together to improve the system-wide performance of a

WebGIS. The techniques of pyramid and hash indexing are used for managing large

image datasets on the server side, while well-developed R-tree indexing techniques,

details of which are beyond the scope of this paper, could be used for indexing

vector data. Multithread and dynamic request methods are used for handling users’

concurrent access, as well as client-side concurrent data requests. A caching

technique is used for keeping some information on the client side based on the

324 C. Yang et al.

submitted dynamic requests. Binary compression technique is used to reduce the

transmission volume of data. The following sections provide a detailed description

of each of these techniques, except the R-tree indexing methods, and demonstrate

how they can enhance the performance of WebGIS.

3. Pyramid technique and hash index

On the client side of a WebGIS, hardware specifications often restrict the size of an

image viewed by users. For example, modern desktops and laptops use 10246768 or

128061024 resolution with 15–21 inches of display in general, and MapQuest even

restricts the size to 5006500 and 3566250 for a better performance (http://

www.mapquest.com). It is almost always the case that the entire image is much

larger than these restricted display sizes. For instance, if the data set is a 1 m

resolution image of a county with an area of approximately 50 km650 km, the

image size should be 50 000650 000, which cannot be displayed by an ordinary

monitor. In order to provide faster access to different parts of the entire image from

the restricted window, we propose using both the pyramid and cut-and-hash

indexing technique.

A pyramid, also called a hierarchy (Tu et al. 2001), is constructed by generating

different abstraction levels of the original data through resampling (figure 1b). For

example, we can generate an image of 10 000610 000 by resampling the original

50 000650 000 image based on a 565 resampling scheme. By further resampling the

reduced image based on a 565 reduction, we can obtain an image with only

200062000 pixels. It is much faster to display and transmit this reduced 200062000

image for an overview of the original image than to process the original

50 000650 000 pixels.

A pyramid consists of multi-scale replicated images of the original one. When a

client requests data at a given scale, the server will search the required data from the

level which has a scale closest to that requested, instead of searching the original

high-resolution data directly. For example, in figure 1b, suppose the three images in

the pyramid are in the scale of 1:100 000, 1:20 000, and 1:4000, respectively. When

the client requests an image of 1: 25 000 in scale, the server generates the requested

image from the 1:20 000 image instead of from the original 1:4000 image, which is 25

times larger. The use of the pyramid technique in this manner can reduce access time

by extracting data from a smaller cartographic scale image already stored in the

pyramid instead of the original one, especially when there is a large difference

between the requested scale level and the original scale. When more detailed data are

needed, or when it becomes necessary to access the original image, a better access

speed can be achieved by accessing the smaller piece of the original data, if the

original data are cut into smaller pieces (Yang et al. 2000). In this circumstance, a

restricted area of the image, instead of the entire image, is accessed. If the smaller-

piece images are managed and accessed efficiently with effective strategies, the

performance of the system will be improved tremendously.

Implementation strategies for image cutting and pyramid construction have to

deal with three issues: determining the size of the cut pieces, finding the related

pieces efficiently, and identifying a proper number of levels that should be used for

constructing the pyramid layers. To derive solutions to these issues, the procedure

for accessing a pyramid is critical. Given that a pyramid is built for an image, four

steps are involved in accessing the data. The first step is to determine the target level

at which the data will be extracted by comparing the requested scale with different

Performance-improving techniques in web-based GIS 325

scales already stored in the pyramid. The second step is to find related pieces at the

target level by using coordinate information. The third step is to combine these

related pieces to form an image, which may have a spatial extent larger than the

requested area. The final step is to cut the combined image to match the requested

area and, if necessary, resample the cut image to the requested scale level. These

steps are illustrated in figure 2.

Suppose the requested data have dimensions H6W with scale S, and bounded by

(X1, Y1) and (X2, Y2), as illustrated in figure 3; a pyramid is constructed with a

uniform distribution of scale levels (e.g. 1:1 000 000, 1:100 000, 1:10 000, 1:1000,

etc.). Each piece of the image has a dimension of H96W9. The original image has a

scale S0 and is bounded by the coordinates (X, Y), (X9, Y9). Suppose the pyramid

has n levels, and let Si denote the scale at the ith level. Images at different scale levels

Figure 2. Procedure for data access using the pyramid and cut method.

Figure 3. Locating pieces from a pyramid level.

326 C. Yang et al.

in the pyramid could be arranged in a descending or ascending order. The first step

in the data access procedure is to find the appropriate level m with scale S. This can

be accomplished by a bisectional search procedure based on the descending or

ascending order. It is possible that no layer in the pyramid has the scale of exactly S,

and therefore the goal is to identify the two layers such that their scales are in the

relation of Sm,S(Sm+1. In this case, the larger scale image will be used to provide a

better display of the data.

In the second step, related pieces will be located by their coordinate information.

The coordinates of all pieces need to be compared at level m in the pyramid with

coordinates of the requested data. When the number of image pieces is not very

large, the coordinates of all pieces can be evaluated, and thus the related pieces can

be identified. When the number of pieces at each level becomes very large (and

unfortunately, this is often the case), searching through all pieces with every request

from the clients will be too time-consuming and unmanageable. A Hash index

method can be used to handle this problem.

Assume that the uniformly cut data pieces have the same dimension H96W9 and

different coordinates (xCori1, yCorj1) and (xCori + 1, yCorj + 1), where i and j are

integers referring to the horizontal and vertical sequence of pieces, and the

maximum values of i and j in a certain level are k and h, respectively. Therefore,

there are k6h pieces at a level, as illustrated in figure 3. Each of these pieces is

assigned the name i–j.ext, where i and j refer to the location of the piece at the given

level, and ext could be jpg, tiff, and bmp, etc. Therefore, the location of the piece

and its coordinates are coded into the name of the data file. The coordinates of each

piece could be computed according to equation 1. Given the requested data

coordinates (X1, Y1) and (X2, Y2), we can compute (i1, j1) and (i2, j2) according to

equation (3), which itself is derived from equation (2). Equation (2) is the formal

expression for identifying a spatial overlap condition. After deriving (i1, j1) and (i2,

j2) from equation (3), the results are used to locate data pieces, which intersect with

the requested area. These data pieces or files are selected for future processing.

xCori1~Xz X 0{Xð Þ=k|i

yCorj1~Yz Y 0{Yð Þ=h|j

xCori1z1~Xz X 0{Xð Þ=k| iz1ð Þ
yCorj1z1~Yz Y 0{Yð Þ=h| jz1ð Þ
i~0, 1, 2, . . . k{1
j~0, 1, 2, . . . h{1

8
>>>>>><

>>>>>>:

ð1Þ

xCori2z1~Xz X 0{Xð Þ=k| i2z1ð Þ > X2 > xCori2~Xz X 0{Xð Þ=k|i2
yCorj2z1~Yz Y 0{Yð Þ=h|(j2z1) > Y2 > yCorj2~Yz Y 0{Yð Þ=h|j2
xCori1~Xz X 0{Xð Þ=k|i1 < X1 < xCori1z1~Xz X 0{Xð Þ=k| i1z1ð Þ
yCorj1~Yz Y 0{Yð Þ=h|j1 < Y1 < yCorj1z1~Yz Y 0{Yð Þ=h| j1z1ð Þ

8
>><

>>:

ð2Þ

i1~t X1{Xð Þ|k= X 0{Xð Þs
j1~t Y1{Yð Þ|h= Y 0{Yð Þs
i2~q X2{Xð Þ|k= X 0{Xð Þr
j2~q Y2{Yð Þ|h= Y 0{Yð Þr

8
>><

>>:

ð3Þ

Instead of searching through the entire level and comparing each coordinate of

the cut pieces, we could find the required pieces directly from i1, j1, i2, j2, and the

Performance-improving techniques in web-based GIS 327

associated file names with equation (3), which serves as the Hash function for

locating the appropriate pieces. After all required pieces are identified, they can be

combined and then cut according to the requested area. Resampling may be

required too if the combined image does not have the same scale as the required

data. The process of combining and cutting images can be performed efficiently with

existing methods provided by many image-processing modules.

In the entire process, the most time-consuming components are to identify the

appropriate scale level and to find related pieces. The efficiency of these two

processes can be improved tremendously by using bisection search and hash

indexing as described above. The response time then becomes a function of the

number of pieces required and the scale difference between the combined piece and

the required image. The ideal situation is that we can store the data at any level the

client requests. However, we do not have infinite storage space to maintain data

from all possible scale levels. Therefore, to achieve a better performance as well as a

balance on storage capability and data volume, we suggest that the cut pieces should

have a dimension one to two times the size of the image or data display on the client

side (Yang et al. 2000). In terms of the number of layers to be constructed in the

pyramid, we have experimented with different scale ratios and found that using a

scale ratio of 1:9 to extract layers to form the pyramid can achieve a reasonable

performance. More formal analysis is required in the future to determine the most

optimal scale ratio to construct the layers in the pyramid for raster data.

4. Cluster and multithread

Centralized or desktop GIS software includes many complex functions. To

implement and integrate these GIS functions in a distributed environment,

Component Technologies, such as Common Object Request Broker Architecture

(CORBA) and Component Object Model (COM), can be used (Yang 2000). A

WebGIS should provide an efficient environment for clients and servers to

communicate intensively such that services requested by the users can be completed

within a reasonable time. The communication between servers and clients, and

related GIS function components in each side of the network are illustrated in

figure 4.

Traditionally, the procedure for processing a user’s request involving multiple

data layers, raster and/or vector, takes the following steps: (1) When the client

Figure 4. Processing functions in WebGIS.

328 C. Yang et al.

receives a request from the user, the client performs a spatial search on the client side

to identify which spatial datasets are required. (2) Within the selected data extent, a

thorough search by data layer is performed to check whether the client side has the

requested data layer cached. If the client side does have the data layer, then there is

no need to fetch the data from the server. (3) If the client side does not have the

requested data layer, the client will then submit a data request to the server, asking

for the requested data. (4) The server will conduct a spatial search to locate the data.

(5) After identifying the data layer, the server sends the data back to the client. 6)

The system returns to the second step until all layers are found and transmitted. If a

traditional single-thread process is adopted, a user cannot initiate a subsequent

layer-data request before the former-layer data are received. If the request involves

many searches and data layers, the process will become very time-consuming and

may not be completed within a reasonable response time. This in turn will be a great

frustration to users. Furthermore, when many clients access the same server

simultaneously, the sequential process described above will be too slow to respond

adequately to requests from multiple clients. The increasing number of clients may

rapidly reach the bottleneck of the system with any given system architecture.

These problems related to responding to requests from multiple clients can be

handled more efficiently by using cluster and multithread techniques (Solomon and

Rankins 1997). A major advantage of using the multithread technique is illustrated

in figure 5a. When a single thread server is used to process m processes, the time

required to finish the entire process is

Xm

i~1

ti

where ti is the time required for process i. If multithreading is used, these m processes

can be concurrently performed in m threads, and the time required to finish all m

processes will be t5max {t1, t2, …, tm}.

Some computing processes, such as locating a disk, reading a file, numerical

computation, transferring memory, etc., are executed in different parts of a

computer system. These different processes can be executed concurrently if different

processes are not interlaced, i.e. different threads could be processed in a parallel

fashion. But when the client requests reach a certain level, the multithread technique

may reach its limit. One simple option is to increase the computing capability for

Figure 5. Adoption of multithread and cluster in WebGIS. (a) Multithread server in
WebGIS. (b) Cluster in WebGIS.

Performance-improving techniques in web-based GIS 329

that single server. However, this option will be dependent upon the current scientific
and technological status of computing. Another viable option is to adopt the cluster

technique.

Instead of using a single server, a cluster adopts multiple servers to support

concurrent client accesses, which are distributed to different servers within a cluster.

In addition, each server can use multithread techniques to process concurrent client

requests, as illustrated in figure 5b. The National Geographic’s Map Machine

(http://plasma.nationalgeographic.com/mapmachine/index.html) uses this techni-

que. When the client sends requests to the port server connected to the Internet,
it channels all the process requests and responses. The port server can respond to

more than one request at a time by allocating one thread to one request with

multiple threads handling multiple requests. The port server will redirect requests to

another multithread server for processing when the first multithread server reaches

its capacity. A WebGIS server should be equipped with flexible capacity to serve

concurrent requests by using cluster and multithread system configurations on the

server side. Given this system architecture, performance of the WebGIS can be

maintained or enhanced by upgrading the computers or adding a number of servers
to meet the growth of concurrent accesses as needed. Therefore, this is a scalable

solution that can accommodate the future growth in demand.

On the client side, a user often issues a request that involves many processes and

accesses, and they can be accomplished sequentially. However, some of these

processes or accesses could be performed independently without affecting each

other. Then, the multithread technique can also be used to improve the performance

on the client side. Given a request of ‘zoom in’ to a 10-layer map, the request may

invoke 10 independent server accesses to the 10 layers. These 10 data access requests
can be sent to the server at the same time through multithreading. As a result, using

the multithreading technique can reduce the access time to possibly 1/10th of the

required sequential access time in this specific example. Therefore, we adopt

multithreading technique to send requests for different raster and vector layers

simultaneously to the server.

5. Caching and dynamic data request

As illustrated in figure 6, when a request is issued, a WebGIS client will first examine

whether the requested data are on the client. Then, the data request will be sent to

the server only if the data are not on the client side. If the data are on the client side,

the access will, of course, be much faster compared with the access across the

Figure 6. Cache and dynamic data request.

330 C. Yang et al.

Internet from the server. Having some data residing temporarily on the client may

also meet the need of subsequent data requests. Therefore, it will increase the

efficiency of data access if some data are kept on the client by caching them in order

to reduce the number of client requests sent to the server. Whenever data are needed,

the client will first check whether the data are already available on the client side

before sending a new request to the server. In a dynamic request and caching system,
two issues need to be considered: what content should be cached and for how long?

Caching data on the client side can reduce the load on network transmission and

server processing time, and thus improve the overall system performance. Ideally,

data are required to be sent only once if all the data are duplicated on the client side.

But this is impossible in most cases because the data sets may be too large to be

completely cached on the client side. Therefore, based upon the user’s interest or the

frequently accessed data as reflected by coordinates, spatial data defined by these

coordinates are cached for a certain duration before they are replaced by other data,

which meet the more current needs of the user.

Frequently needed data should be cached to allow the system to respond as

quickly as possible. Whether this technique will be effective or not is largely
dependent on the specific applications. In general, basic data layers with a relatively

small volume, such as the county boundary data for a state, should always be cached

as a static layer. It should be loaded first and only once. Some frequently used data

which are larger in volume, such as the district boundary data of the entire world,

could be cached as needed. Some data which are not frequently used and have a

small volume, such as the school data inside a county, could be cached once they are

loaded. If a data set is not important (which has to be defined by the specific

application environment) and with a large volume such as image background data,
these data should not be cached. These scenarios are summarized in table 1 and can

be implemented as options in a flexible function in the setup of a WebGIS. The

system administrator or developer can customize the caching strategies based upon

the data volume and characteristics of the data in the specific applications.

When many users access the system concurrently, the system should also cache

certain frequently accessed data in the RAM on the server side to reduce the data

access time from the permanent devices every time a data request is received. The

first two strategies in table 1, therefore, can also be used for server-side caching. The

third strategy also be used but requires an intelligent management of the server
caching process.

6. Binary format and compression

The volume of transmitted data on the network greatly affects the performance of a

distributed system. Our discussion in section 3 on pyramid and Hash indexing

techniques can speed up primarily the handling of raster or image data on a

WebGIS, and OGC has suggested a set of standards for the transmission of images

Table 1. Cache strategy at client side for different datasets.

Cache strategy Use Volume Cache Architecture

Load at start-up and always cache Frequent Small Static storage
Load once and always cache Infrequent Small Semi-static cache
Load as needed and cache as needed Frequent Large Dynamic cache
Load as needed but never cache Infrequent Large No cache

Performance-improving techniques in web-based GIS 331

in its Web Mapping Testbed (WMT) (http://www.opengis.org/datasheets/

Dat04WMT2.000127.htm). In the WMT specification, OGC allows developers to

decide which format to use for raster data. Users have many options, including the

various compression technologies for raster data, such as gif and jpg file formats. In

respect to vector data, OGC has proposed the Geography Markup Language

(GML) for the transmission of data on the network. GML is a milestone for the

interoperability of feature-based GIS data because it explicitly represents

geographical data by using tags to mark objects and related information. But its

performance is rather inferior because the data volume may increase by two- to

threefold whenever GML is used.

In general, the two de facto data transmission formats are text-based and binary-

based, and the transmission of compressed data can be regarded as the third method

for comparison purposes. We take GML3.0 from OGC (2003) as a text-based data

format, and the shapefile (ESRI 1998) as a binary-based format. Shapefile is a

vector data file format used by ESRI primarily for its ArcView software package.

The data in a shapefile are organized by records, each of which represents an object

or feature in a GIS data layer or theme. All vector coordinate data are stored as

binary data in a .shp file. To compress the binary shapefile, we can use the relative-

value-compression method (ESRI 1997), which is based on the principle that vector

data are stored as points, and consecutive points have minor differences in

coordinates. Thus, the compression process records the first point’s coordinate and

stores only the difference in coordinates between the previous and subsequent

points.

A set of data sets, which include points, lines and polygons, are randomly chosen

to compare the data volume of these three different data storage and transmission

methods. The results are shown in figure 7. The volume of the compressed format is

the smallest as expected. Therefore, the compressed format is ideal and logical to be

used to reduce the transmission volume over the Internet. We implemented the

Figure 7. Data volume of three different formats from a set of Canadian Data (the ‘ca’
prefix stands for Canada) (Source: ArcGIS Data&Maps CD).

332 C. Yang et al.

compression component on the server side and the decompression component on

the client side to improve the performance of WebGIS.

7. Performance comparison

When various performance-improving techniques are adopted, the simple client–

server distributed architecture can then be modified to become a relatively complex

architecture (Yang and Li 2001) as illustrated in figure 8. In this modified and

improved architecture, the cache, dynamic data request, and multithread techniques

are implemented on the client side. The multithread, cache, pyramid, and cluster

techniques are implemented on the server side. In addition, the data compression

technique is used to compress data at the server and decompress data at the client to

reduce the volume of data transmission. More information about the techniques and

related problems, as well as implementation locations, is given in table 2.

Figure 8. Performance-improving architecture of WebGIS.

Table 2. Performance-improving techniques.

Techniques Problem addressed Implementation

Pyramid, Cut, Hash index Large image manage and publish Server
Cache Client user interact time and server data

access time
Client/Server

Dynamic request Client user data access time Client
Cluster Concurrent user access conflict Server
Multithread Concurrent user access and client user

interaction
Server/Client

Binary compression Network transmission load: Compress at
Server and decompress at client

Server/Client

Performance-improving techniques in web-based GIS 333

This relatively complex architecture is used in developing a prototype WebGIS

(The CyberGIS Studio 1999, Yang 2000). The prototype is COM-based software

developed using Visual C++ and Visual Basic (VB). The client GUI of the prototype

is illustrated in figure 9. The performance of this WebGIS software is significantly

improved using the relatively complex architecture. Figure 10 shows the detailed

architecture used to develop the prototype: the client is an ActiveX control based

upon VB. The server is a COM-based windows service using VC++. Each rectangle

with small circle/line pairs attached is a component or ActiveX control. A small circle

denotes the interface provided by the component to be called by other components.

An arrow line denotes the interface–call relationship. In figure 10, User Interaction,

Client Coordination, and Data Request on the client side adopt the multithread

technique to ensure user interaction and data request parallelization. Client

Coordination also controls the Cache, Data Decompression, and dynamic data

request in the Map Management component. On the server side, Image Organization

adopts the pyramid/cut/hash-index method. Server Coordination and Storage Data

Access are multithread-enabled to ensure fast responses to concurrent users. The

server also adopts the cluster technique to facilitate concurrent massive access.

In this section, we compare the performance of the prototype with and without

different aforementioned techniques in several operations, including large image

handling, client multi-layer accessing, client caching, two-computer clustering, and

multi-user concurrent accessing. We use the same server and client configurations in

the comparison. The servers have the following configuration: a 1.7 GHz Pentium 4

CPU, 1 Gb of RAM, and a 7200 rpm hard disk. The client configuration has the

following parameters: 1.0 GHz Pentium III CPU, 256 Mb of RAM. The network

speed is 10 Mbps.

Figure 9. Client GUI of the WebGIS prototype.

334 C. Yang et al.

7.1 Large image handling

Different types of image data with different sizes are used in this part of the
comparison. These data are 100 kbyte Moderate Resolution Imaging

Spectroradiometer data (MODIS), 2.4 Mbyte Landsat Thematic Mapper data

(TM), 79.3 Mbyte IKONOS data, 329 Mbyte Digital Orthophoto Quadrangles data

(DOQ), and 1.2 Gbyte airborne photos. We organized these data in two different

ways: (1) a single image and (2) the pyramid, hash-indexed organization introduced

in section 3. The response times for accessing different images organized according

to the two different ways are recorded. As illustrated in figure 11a, the second data

organization method (pyramid with Hash index and cut) outperforms the first as the
size of the data increases. In fact, the response times of the second method in

handling all images are relatively stable for images of different sizes. Even with the

Figure 10. Architecture overview of the WebGIS prototype.

Performance-improving techniques in web-based GIS 335

Figure 11. Response time of the WebGIS prototype with or without performance improving
techniques. (a) Response time for handling different images of different data volume with or
without the image-handling techniques. The response time of AP is too long to display on the
same chart. (b) Client response time of multilayer accessing with or without multithread. (c)
Client response time of multilayer access with different number of caching and without
caching. (d) Server response time to concurrent users’ access with three different settings:
without multithreads, with multithreads, with multithreads and a two-computer cluster.

336 C. Yang et al.

1.2 Gbytes of aerial photo data, the performance of the second method does not

degrade significantly when compared with the handling of small images. Clearly, the

first method has difficulty in handling the large images, especially the aerial photos

within a reasonable time. Therefore, figure 11a does not show the result of using the

first method to handle the aerial photos. Apparently, the performance of the second

method is relatively independent of the data size, while the performance of the first

method is inversely related to the size of the data.

7.2 Multi-layer vector data accessing

Geographic information is organized as layers in a hierarchical framework as shown

in figure 1a. Normally, a WebGIS will organize the data into different layers, access

these layers individually on the server side, and present the data layers on the client

side. Whenever the client changes the display area or resolution, the operation will

invoke requests to the multi-layer data sets. This common operation requires

frequent access to each layer residing on the server. Therefore, the response time of

the server will greatly affect the performance of WebGIS. We compare the

performance of this multi-layer accessing process in the prototype with the

multithread enabled and disabled. The data sets used in the comparison for this

section and section 7.3 are found in the world data set of ArcGIS Data & Maps CDs

provided by ESRI. They are geogrid—55 kbyte, cities—70 kbyte, world—30–141

kbyte, lakes—177 kbyte, drainage—299 kbyte, country—391 kbyte, rivers—464

kbyte, and latlong—547 kbyte, a total of eight layers. As illustrated in figure 11b, the

response time for the multithread-enabled system increases much slower than that

without the multithread technique, when the number of layers requested increases.

Cache can also be used to reduce transmission time to improve the system

performance. When one layer is cached, no transmission through the network is

required when the layer is requested subsequently. The more layers are cached, the

more transmission time will be saved, as shown in figure 11c.

7.3 Multi-user concurrent accessing

It is likely that many users will access the same WebGIS application when it is

opened to the public. The ability to respond to many users simultaneously within a

reasonable time is critical from a pragmatic perspective. We compare the

performance of multi-user concurrent access between the multithreads-enabled

server and the server with a single thread. The multi-user concurrent access is

generated at the client side automatically by issuing multiple data requests, and only

four layers are requested for each user access. Results are shown in figure 11d. When

the number of concurrent users increases, the response time of the single-thread

server increases dramatically, while the response time of the multithread-enabled

server increases at a much slower pace. When the number of concurrent users

exceeds eight, the single-thread server response exceeds 7 s, which may not be

acceptable to some users, while the multithreads server still functions very well.

When the cluster technique is added onto the multithreads server, as show in

figure 11d, it further improves the performance of the system especially when the

number of concurrent users increases. Moreover, for a given time-out value set for a

system, adopting the cluster technique can help to support a larger number of users.

For example, the single thread server can support two users with a time-out of two

Performance-improving techniques in web-based GIS 337

seconds, while the multithread server can support five users, and the two-computer

cluster can support up to nine users, as illustrated in figure 11d.

8. Conclusions

This paper discussed the use of several methods in enhancing the performance of

WebGIS. We also demonstrated that using these techniques increases system

performance substantially. The pyramid-hash index improves the efficiency of

publishing large images. Cluster and multithread methods can increase the efficiency

to handle massive concurrent accesses to the servers. Cache and dynamic data

management are used to improve client-side interactive performance. The binary

and compression techniques are suggested to reduce the data transmission volume.

Using the prototype system, this paper has also demonstrated that the system

adopting these techniques has significantly out-performed the same system without

these techniques in handling raster and multi-layer vector data, and in

accommodating massive access.

Therefore, the techniques discussed in this paper can be used in the design and

development of WebGIS to enhance performance. These techniques will be

especially critical in the deployment of large-scale data dissemination projects.

Adopting these techniques and handling those implementation issues appropriately

can ensure that the system meets the current demand (CEOSR 2002), as well as

future demand, which most likely will increase due to the proliferation of the use of

spatial data in all aspects of our ‘digital’ or ‘electronic’ society. These techniques can

also be used for constructing geospatial information service and interoperable

systems for sharing vast amount of geospatial data, such as the services provided by

the Geospatial One-Stop Portal (http://www.geodata.gov/).

Our emphases in this paper so far are on the significant performance problems

one may encounter during the process of building a WebGIS. These problems are

mostly software- or hardware-oriented. Performance of a WebGIS is also related to

other issues, such as data contents and formats. Multimedia data, for instance, will

require special treatments in order to be transmitted efficiently. Research and

development in computer science in general, and in the distributed computing

environment in particular, will provide some innovative methods to improve the

performance of WebGIS. For example, the newly developed wavelets compression

method and JPEG 2000 format (http://www.jpeg.org/CDs15444.html) can be used

to further reduce data volume.

While our discussions focused mainly on spatial data handling in a client–server

environment, ‘true’ GIS on the web should also support more sophisticated GIS

functions and spatial analytical functions (Yang et al. 1999). The performance of

such full-scale GIS will definitely be a concern. Specific geospatial methods and

functions developed by geographic information scientists will be required for

implementation in a distributed manner efficiently and with superior performance.

For instance, real-time traffic information is required for intelligent transportation

systems. One may select optimized routes based upon the real-time traffic informa-

tion. In order to improve the performance of the real-time systems, road network

and related traffic information have to be organized in an efficient manner to

support the complex spatial analytical methods. In a distributed and cooperative

spatial analysis environment, such as the ‘data to models’ and ‘data to

interpretation’ analyses in the mid-ocean ridge research (Wright et al. 2003), it

will be necessary to investigate how to improve the performance to support

338 C. Yang et al.

distributed model-based spatial analysis. Some issues to be considered include where

the model should reside and operate, where the model data are stored, and in

what formats. The performance issue will become even more complicated when

heterogeneous systems, such as remote sensing, GIS, and GPS are included (Xue

et al. 2002). We expect these issues to be be on the future research agenda of

WebGIS.

Acknowledgements

Comments provided by Professor Harvey Miller, the North American Editor of

IJGIS, and the three anonymous reviewers are gratefully acknowledged.

References
BAJA, C.L., PASCUCCI, V. and ZHUANG, G., 1999, Single resolution compression of arbitrary

triangular meshes with properties, In Proceedings of IEEE Data Compression

Conference’99 (Snowbird, UT: IEEE), pp. 247–256.

BARCLAY, T., GRAY, J. and SLUTZ, D., 1999, Microsoft TerraServer: A Spatial Data

Warehouse, Microsoft Technical Report, http://research.microsoft.com/users/

Tbarclay/MicrosoftTerraServer_TechnicalReport.doc

BARNSLEY, M., 1989, Fractals Everywhere (San Diego, CA: Academic Press).

BARTHELLO, M. and POLLACK, J., 2001, WebGIS for road/rail conditions and rapid routing.

In 14th Annual Geographic Information Science Conference (Baltimore, MD: AAG).

BECKER, B., SIX, H.-W. and WIDMAYER, P., 1991, Spatial priority search: An access technique

for scaleless maps. In Proceedings of ACM SIGMOD (Denver, CO: ACM),

pp. 128–137.

BECKMANN, N., KRIEGEL, H.P., SCHNEIDER, R. and SEEGER, B., 1990, The R*-tree: an

efficient and robust access method for points and rectangles. In Proceedings of ACM

SIGMOD International Conference on Management of Data (Atlantic City, NJ:

ACM), pp. 322–331.

BERTOLOTTO, M. and EGENHOFER, M.J., 2001, Progressive transmission of vector data over

the World Wide Web. GeoInformatica, 5, pp. 345–373.

BOGNER, D., DABERNING, M. and KOREN, G., 2001, Assessment of agricultural land use in

urban regions as a decision support system using WebGIS. In 4th AGILE Conference

(Brno, Czech Republic: AGILE).

BUEHLER, K. and MCKEE, L., 1998, The OpenGIS Guide, 3rd ed., http://www.opengis.org/

techno/guide/guide/Guide980629.rtf.

BUTTENFIELD, B.P., 2002, Transmitting vector geospatial data across the Internet. In

Geographic Information Science—Second International Conference GIScience 2002,

M. Egenhofer and D. Mark (Eds.), Lecture Notes in Computer Science Vol. 2478

(Berlin: Springer), pp. 51–64.

CEOSR, 2002, VAccess-MAGIC (Virginia Access & Mid-Atlantic Geospatial Information

Consortium) Annual Report (Fairfax, VA: George Mason University).

CHEN, S., WANG, X., RISHE, N. and WEISS, M.A., 2000, A high-performance Web-based

system design for spatial data access. In Proceedings of the Eighth ACM Symposium

on Advances in Geographic Information Systems (Washington, DC: ACM), pp. 33–38.

COORS, V. and FLICK, S., 1998, Integrating levels of detail I a Web-based 3D GIS. In

Proceedings of the Sixth ACM International Symposium on Advances in Geographic

Information Systems (Washington, DC: ACM), pp. 40–45.

COWEN, D.J., 1994, The importance of GIS for the average person. In Proceedings of First

Federal Geographic Technology Conference (Washington DC: National Research

Council), pp. 7–11.

DAVIS, G., 1998, A wavelet-based analysis of fractal image compression. IEEE Transactions

on Image Processing, 7, pp. 141–154.

Performance-improving techniques in web-based GIS 339

DENG, W., 2000, WebGIS—A new way for public participation in city planning. In GIS’2000,

13–16 March 2000, Toronto, Ontario.

DRAGICENVIC, S., 2000, Environmental data exploration: The web GIS approach. In

GIS’2000, 13–16 March 2000, Toronto, Ontario.

EDWARD, P.F.C. and KEVIN, K.W.C., 2002, On multi-scale display of geometric objects.

International Journal on Data and Knowledge Engineering, 40, pp. 91–119.

EICHELBERGER, P., 2001, Chester County, Pennsylvania WebGIS: An improved data

approach. In 14th Annual Geographic Information Science Conference (Baltimore,

MD: AAG).

ESRI, 1997, Getting Started with SDE, An ESRI White Paper.

ESRI, 1998, ESRI Shapefile Technical Description, An ESRI White Paper, http://

www.esri.com/library/whitepapers/pdfs/shapefile.pdf.

FLORIANI, L.D., MAGILLO, P. and PUPPO, E., 1998, Efficient implementation of multi-

triangulations. In Proceedings of IEEE Visualization ’98 (Research Triangle Park, NC:

IEEE), pp. 43–50.

GALINAO, B. and BRENNAN, C., 2002, Power to the people! A Web-based GIS provides a

public-involvement tool for airport development. GeoWorld, 15, pp. 32–35.

GOODCHILD, M.F., 1992, Geographical data modeling. Computers and Geosciences, 18,

pp. 401–408.

GRØNBÆK, K., VESTERGAARD, P.P. and ØRBÆK, P., 2002, Towards geo-spatial hyper-

media: Concepts and prototype implementation. In Proceedings of the Thirteenth

ACM Conference on Hypertext and Hypermedia (College Park, MD: ACM),

pp. 117–126.

GUTTMAN, A., 1984, R-trees: A dynamic index structure for spatial searching. In Proceedings

of the ACM SIGMOD International Conference on Management of Data (Boston,

MA: ACN), pp. 47–54.

HOPPE, H., 1996, Progressive meshes. In Proceedings of SIGGRAPH’96 (New York: ACM),

pp. 99–108.

HUANG, B., JIANG, B. and LIN, H., 2001, An integration of GIS, virtual reality and the

Internet for visualization, analysis and exploration of spatial data. International

Journal of Geographic Information Science, 15, pp. 439–456.

KANG, Y.-K., KIM, K.-C. and KIM, Y.-S., 2001, Probability-based tile pre-fetching and cache

replacement algorithms for web geographical information systems. In Proceedings of

ADBIS’2001 (Vilnius, Lithuania: ACM), pp. 127–140.

KELLY, M., 2001, WebGIS for watersheds: Developing applications and resources for

watershed planning and conservation. In Coastal Geotools 2001 (Charleston, SC:

NOAA).

KENNETH, E.F. and KIRVAN, A.P., 1997, WebGIS, NCGIA Core Curriculum in GIScience,

http://www.ncgia.ucsb.edu/giscc/units/u133/u133.html.

KERN, P. and CARSWELL, J.D., 1994, An investigation into the use of JPEG image

compression for digital photogrammetry: Does the compression of images affect

measurement accuracy? In Proceedings of EGIS’94, Paris, pp. 694–701.

KOEPPEL, I., 2001, GIS extended to the wireless & internet world, http://www.esri.com/news/

arcnews/winter0001articles/gisextended.html

KWON, J.-H. and YOON, Y.-I., 2002, Efficient access technique using levelized data in web-

based GIS. In Proceedings of WAIM’2002 (Beijing: Springer), pp. 64–71.

MCCURLEY, K.S., 2001, Geospatial mapping and navigation of the Web. In Proceedings of

ACM 10th Conference on World Wide Web (New York: ACM), pp. 221–229.

MORLET, J. and GROSSMAN, A., 1984, Decomposition of Hardy functions into square

integrable wavelets of constant shape. SIAM Journal on Mathematical Analysis, 15,

pp. 723–736.

OGC, 2003, Geography Markup Language (GML) v3.0, OGC Document Number: 00-029,

http://www.opengis.org/techno/documents/02-023r4.pdf

340 C. Yang et al.

OOSTEROM, P.V., 1991, The reactive-tree: A storage structure for a seamless, scaleless

geographic database. In Proceedings of Auto-Carto’10 (Baltimore, MD: ACSM-

ASPRS), pp. 393–407.

PENG, Z.R., 1999, An assessment framework for the development of Internet GIS.

Environment and Planning B—Planning & Design, 26, pp. 117–132.

PENG, Z.R. and TSOU, M.H., 2003, Internet GIS: Distributed geographic information services

for the Internet and wireless networks, pp. 2–5 (Hoboken, NJ: Wiley).

PLEWE, B., 1997, GIS Online: Information Retrieval, Mapping, and the Internet, pp. 6–14

(Santa Fe, NM: OnWord Press).

RAUSCHENBACH, U. and SCHUMANN, H., 1999, Demand-driven image transmission with

levels of detail and regions of interest. Computers and Graphics, 23, pp. 857–866.

ROGUL, D., 2003, Geographical Information (GIS) Market Trends, Faulkner

Information Services, http://www.faulkner.com/products/faulknerlibrary/pdf/

00016293.pdf

SAMET, H., 1984, The quadtree and related hierarchical data structure. ACM Computing

Surveys, 16, pp. 187–260.

SELLIS, T., ROUSSOPOULOS, N. and FALOUTSOS, C., 1984, The R+-tree: A dynamic index for

multidimensional objects. In Proceedings of the 13th International Conference on

VLDB (Singapore: Morgan Kaufmann), pp. 507–518.

SHEN, G., 2001, WebGIS tools for online spatial data exploration and analysis in business.

WebNet Journal (United States), 2, pp. 16–53.

SLATER, S., 2002, Queensland a princely GIS. Geoworld, 15, pp. 42–45.

SOLOMON, D. and RANKINGS, R., 1997, Microsoft SQL Server 6.5 Unleashed, pp. 1–15

(Indianapolis, IN: Sams).

SRINIVAS, B.S., LADNER, R., AZIZOGLU, M. and RISKIN, E.A., 1999, Progressive transmission

of image using MAP detection over channels with memory. IEEE Transactions on

Image Processing, 8, pp. 462–475.

SUI, D.Z. and GOODCHILD, M.F., 2001, GIS as media. International Journal of Geographic

Information Science, 15, pp. 387–390.

TAKATSUKA, M. and GAHEGAN, M.N., 2002, Exploratory geospatial analysis using

GeoVISTA Studio: From a desktop to the Web. In Proceedings of the Second

International Conference on Web Information Systems Engineering (Kyoto, Japan:

IEEE), pp. 92–101.

The CyberGIS Studio, 1999, WebGIS System Development Document, Research Report 97-

759-04, Peking University.

TU, S.R., HE, X., LI, X. and RATCLIFF, J.J., 2001, A systematic approach to reduction of user-

perceived response time for GIS Web services. In Proceedings of the Ninth ACM

International Symposium on Advances in Geographic Information System (Washington,

DC: ACM), pp. 47–52.

WEI, Z., OH, Y., LEE, J., KIM, J., PARK, D., LEE, Y. and BAE, H., 1999, Efficient spatial data

transmission in Web-based GIS. In Proceedings of the 2nd WIDM (Kansas, MO:

ACM), pp. 38–42.

WORBOYS, M.F., 1995, GIS: A Computing Perspective (London: Taylor & Francis).

WRIGHT, D.J., O’DEA, E., CUSHING, J.B., CUNY, J.E. and TOOMEY, D.R., 2003, Why Web

GIS may not be enough: A case study with the virtual research vessel. Marine

Geodesy, 26, pp. 73–86.

WU, J., AMARATUNGA, K. and CHITRADOH, R., 2002, Design of distributed interactive online

geographic information system viewer using wavelets. Journal of Computing in Civil

Engineering, 16, pp. 115–123.

XUE, Y., CRACKNELL, A.P. and GUO, H.D., Telegeoprocessing: the integration of remote

sensing, Geographic Information System (GIS), Global Positioning System (GPS)

and telecommunication. International Journal of Remote Sensing, 23, pp. 1851–1893.

YANG, C., 2000, Theory, Techniques and Implementation Methods of WebGIS, Unpublished

Ph.D. dissertation (Beijing: Peking University) (in Chinese).

Performance-improving techniques in web-based GIS 341

YANG, C. and LI, Q., 2001, Research on Web publishing of spatial information. Acta

Scientiarum Naturalium Universitatis Pekinensis, 37, pp. 413–420 (in Chinese).

YANG, C., LI, Q., CHENG, J., QI, R., HUANG, L. and ZHANG, D., 2000, Research and

implementation on Web publishing of remotely sensed images. Journal of Remote

Sensing, 4, pp. 71–75 (in Chinese).

YANG, C., LI, Q. and WANG, J., 1999, Research on distribution of spatial object relation

computation. Chinese Journal of Image and Graphics, 4, pp. 331–335 (in Chinese).

ZHAO, Y. and YUAN, B., 1996, A hybrid image compression scheme combining block-based

fractal coding and DCT. Signal Processing: Image Communication, 8, pp. 73–78.

342 Performance-improving techniques in web-based GIS

