
Grid Technology Overview and Status

Geoffrey Fox1,2, Alex Ho2, Marlon Pierce1

1 Community Grids Laboratory, Indiana University
2 Anabas Inc.
June 7, 2005

1 Introduction.. 1
2 What is a Grid? .. 1
3 Grid Technologies and Capabilities... 5

3.1 Background... 5
3.2 Portal Development: ... 7
3.3 Web Service Grids Architecture ... 8
3.4 Workflow .. 9
3.5 Notification ... 9
3.6 Fault Tolerance ... 10
3.7 Management.. 10
3.8 Data and Meta-data ... 10
3.9 Streams and High Performance Transport.. 11
3.10 Security ... 12
3.11 Computing Services .. 13
3.12 Network Grid Services.. 13
3.13 Collaborative Grids... 13

4 Grids of Grids .. 14

1 Introduction
This white paper summarizes the current state of Grid technologies [Foster99A]
[Foster2004A] [GGF-A] [Berman03A] [GapAnalysis] with particular attention to their
possible relevance to DoD applications. In Section 2, we describe different types of Grids
and contrast their use and implementation with clusters and massively parallel systems. A
more extensive survey of such styles of Grids can be found in [GapAnalysis]. Section 3
summarizes the technologies divided into different classes. Section 4 describes the
concept of “Grids of Grids” that is analogous to the well known “System of Systems”.
This concept expresses a hierarchical system model where we do not build a single
monolithic system or grid but rather stitch together a system from component subsystems
or subgrids that need not be architecturally homogeneous.

The review is reasonably general but there are particular comments on the work of
Anabas Inc. and the Community Grids Laboratory as these highlight particular prototype
opportunities. There is also special references to some existing DoD related Grid
activities such as the work linking HLA and Web service technologies [XMSF1].

2 What is a Grid?
Here we try to distinguish four related networked systems

 Grid Technology Overview for DoD 8/6/2005 1

1) Classic Massively Parallel Machine such as the IBM SP series. These are a
networked collection of nodes with a custom high performance network whose
aggregate bandwidth scales proportionally to the number of nodes. The latency
for small internode messages is a few microseconds. Good performance on many
parallel applications requires ratio of communication times to calculation times
that is not much larger than 10 to ensure low communication overheads
[Dongarra02A]. The small messages are common in many cases and the low
latency is needed to get good efficiency in this case.

2) Typical cluster which is similar to an MPP but constructed from commodity
components with usually competitive node performance and bandwidth but often
substantially poorer latency in the 100-1000 microsecond range.

3) Computing Grid is a distributed system of networked computers which can be

very heterogeneous; in particular parallel machines and clusters can be nodes of a
Grid. Another well-known case is the “Desktop Grid” consisting of “all the
desktop machines” either in an Enterprise (the Condor model [Condor]) or in the
world (the SETI@Home model [SETI]). Grids are heterogeneous in both
computing nodes and networking and can have inter-node latencies of 100-1000
milliseconds as is typical of wide area networks. A geographically localized Grid
could have inter-node latencies of around a millisecond. Computing Grids grant
remote users the privilege to directly access computing resources.

Database Database

Closely Coupled Compute Nodes

Analysis and
Visualization

Repositories
Federated Databases

Sensor Nets
Streaming Data

Loosely Coupled
Filters

Fig. 1: Information Grid with Sensors, Satellites, databases, high performance
computers, clusters and filters (independent machines)

4) Information Grid shown in fig. 1 is a network of computers, data repositories
(both file and database) and sensors. Information grids are characterized by their
use of metadata models and services to describe, organize, and provide controlled
access to scientific data and resources [GapAnalysis]. Metadata is simply “data
about resources” and may be used to describe a) characteristics of large
permanent scientific data sets; b) ephemeral information such as computing loads
on HPC systems; c) feeds for streaming data; and d) information about groups,
individuals, projects, and so forth. A related problem in this area is “data

 Grid Technology Overview for DoD 8/6/2005 2

provenance” or “intellectual property” descriptions [myGrid-D]. This is used to
describe who created or owns a particular piece of data, how was it created, what
assumptions were made, what is the quality of the data, and so forth. Information
Grids will be a focus of this paper and will be more fully described in subsequent
sections. The term data grids [Venugopal05A] is often used and this sometimes
refers to what we call information grids and sometimes to computing grids like
that for particle physics [LCG] which were termed compute/file grids in
[GapAnalysis] as they emphasized large scale computing on data placed in files
rather than the streaming sensor or database model associated with information
Grids.

Each of the four networked systems described above has applications for which they
are suited and those for which they are less well optimized. The suitability can reflect
either functionality and/or cost performance. For example, only class 1) can
efficiently execute many parallel applications. On the other hand, the cost per
“floating point operation” of class 2) is perhaps half that of class 1) (MPP’s) and
Grids can usually offer the very best cost performance of all. However this
computational performance can only be realized on problems not needing the low
latency synchronization and system integration only available in MPP’s. This implies
that Grids for example cannot easily realize the dream of meta-computing – linking
multiple sites together as a single supercomputer – unless the problems can be
decomposed into essentially independent tasks. There is not only the problem of very
high network latencies (up to 100,000 larger than that of an MPP) but the
administratively hard problem of co-scheduling – reserving large blocks of time
simultaneously on geographically and administratively distinct machines. There are
two important application scenarios where Computing Grids are very appropriate
a) The unmanaged or managed Desktop Grid where one has a very large set of

related jobs which run independently on a pool of desktop class computers. This
is familiar from “idle cycle stealing” projects like SETI@Home and in the
managed case where the particle physics community expects to keep tens of
thousands of computers running continuously each analyzing separate events
from CERN’s Large Hadron Collider LHC [Condor] [EDG-A] [LCG]. This Grid
is arranged hierarchically with central, “national” and “university-level” tiers
sharing the load roughly equally. The Grid components are typically each a large
cluster. Note this particular application involves substantial data management
problems as in full operation around the year 2010 the LHC will produce 10’s of
petabytes of data per year. This data will demand substantial network bandwidth
but typically be staged ahead of time and have a traditional file-based computing
structure as opposed to database model of Information Grids.

b) The seamless access capability illustrated by the Gateway project from PET
[Haupt03A]. Here there is a Grid containing multiple simulation engines and one
provides a portal enables submission of a given job at one of the Grid-enabled
nodes. As well technology to standardize job entry, staging of files between nodes
and client is typically supported in such systems. Further one provides a uniform
link to machine and job status information in fashion familiar from the NPACI

 Grid Technology Overview for DoD 8/6/2005 3

HotPage resource [HotPage]. Unicore is perhaps the best known seamless access
project [Unicore-A].

There is a related application category which bridges computing and information
Grids.
c) Pipelined Grid resources are an important case as they illustrate the main reason

why Information Grids are less sensitive to latency than Computing Grids.
Information can typically be streamed from sensors or data repositories so that
after a small start-up delay, the large WAN latency is irrelevant. The simplest
case of this is a Data/Sensor/Instrument source feeding a computer which itself
feeds a user analysis and visualization station. Several early Grid successes fell
into this class [Laszewski02A].

HPC
Simulation

Data Filter

Data Filter

Da
ta

Fi
lte

r

Data
Filter

Data
Filter

Distributed Filters
massage data
For simulation

Other

Grid

an
d W

eb

Serv
ice

s

Analysis
Control

Visualize

Hybrid Information and Computing Grids

Grid

Fig. 2

Information Grids are well illustrated by the Virtual Observatory and Bioinformatics
examples

d) Virtual Observatories (VObs) are set up in many fields based around real-time
sensors [iVOA]. The initial example comes from astronomy where for example
the NVO (National Virtual Observatory) allows access to the results of many
different physical observatories linking optical, radio and infrared data. This leads
to a new approach to such fields stressing the integration and comparison of
results from different data-gathering projects. Earth and environmental science are
setting up similar VObs’s combining sensor nets, satellites and data repositories
as illustrated in fig. 1. A Grid is natural for such applications because not only are
the original data-gathering instruments distributed but typically major telescopes
each have their own specialized data archive which are also scattered around the
world. As a measure of the complexity of an astronomical VObs, this academic
field currently has some 10,000 users and 200 repositories worldwide.

e) Bioinformatics has spawned several Grid projects which provide access for the
researcher to the growing number of databases in the field. These summarize the
results of experiments of many different types and perhaps smaller in volume but

 Grid Technology Overview for DoD 8/6/2005 4

much more demanding in the curation requirements [Curation-A] to ensure
databases record high quality data. EBI (European Bioinformatics Institute) [EBI]
and NCBI (National Center for Biotechnology Information) [NCBI are major
organizations providing many of the important databases. As well as the
heterogeneous data, this field requires dynamic use of filters (such as the well
known BLAST Gene sequence optimizer) which fetch data from the Grid
databases and deliver results to the researcher. Virtual observatories also mix Grid
computing and data access with image processing as a typical application. In this
case each filtering is of the Desktop Grid class as one needs to run multiple
instances of the filter on many different data selections.

f) Computational chemistry is facing many of the same requirements as
bioinformatics. The traditional journal publication approach is far too slow for
publishing data to the chemistry community, so distributed data base systems are
being developed to house this information. Such data has many metadata
requirements, such as who created it and how, where are the associated scientific
articles describing the experiment or calculation, and so forth. Such metadata
types are termed data provenance, or pedigree. Chemistry information grids also
require community curation and annotation. Particular data sets may be “blessed”
at some future time, or conversely may be labeled by other researchers as being of
dubious quality. The DOE’s Collaboratory for Multiscaled Chemical Science
(CMCS) is an example of one such project [CMCS].

We have identified four classes of networked computing resources; classic MPP’s,
clusters, Computing Grids and Information Grids. All are important components in a high
performance computing environment and have different application categories where
they excel. MPP’s and clusters are aimed at tightly coupled problems decomposed with
classic parallel computing software and algorithms. These are essential parts of most
Grids but the greatest opportunity for Grids is not linking several such supercomputers in
real time but rather using one such simulation engine driven by a distributed collection of
filters and data resources. This leads to a hybrid Grid architecture shown in fig. 2.

IBM has announced major Grid and Autonomic (robust, self healing and self-adaptive)
computing initiatives addressing such problems [Horn01A].

3 Grid Technologies and Capabilities

3.1 Background
The Grid field is moving very rapidly and unlike say early Globus (GT2) systems current
Grids [Foster04A] [Berman03A] are built in terms of Web services exchanging
messages. The Globus Toolkit (GT2) is now replaced by the major new GT4 release
[Globus-GT4]. The Grid architecture can be contrasted with collaboration systems that
are built in terms of an event bus that shares state changes in distributed entities; we
explore this analogy more deeply in the Collaborative Grid subsection below. Our
analysis builds on our own innovative Grid architecture research [Berman03A]
[WSGrids], [Aktas04A] which gives us our own leading edge technologies and a good
understanding of best practice internationally. Our many activities in the Global Grid

 Grid Technology Overview for DoD 8/6/2005 5

Forum also gives us useful insights [GGF-A]. We also note our detailed report
[GapAnalysis] summarizing the experiences of the UK e-Science project [UKeS-A] in
using existing Grid systems such as that from the Globus team.

Several US government agencies have major Grid initiatives including the Information
Power Grid from NASA [IPG] and the Science Grid from DoE [Johnston03A]. These
two initial activities are no longer active but for example NIH now has several major
Grid projects in the cancer [caBIG] and biomedical research [BIRN] areas. NSF is
pursuing a Cyberinfrastructure initiative which embodies the Grid technical vision
described here combined with the model of science and engineering comprised of
collaborative interdisciplinary distributed teams [NSF03A] – the Collaboratory concept
introduced by Bill Wulf over a decade ago [Wulf89]. The e-Science project in the United
Kingdom has this vision with a particular emphasis on information Grids and has made
substantial progress with pilot projects and aims at “production deployment” in 2006. In
this spirit, they have proposed a new OMII (Open Middleware Infrastructure Institute)
worldwide collaboration [OMII] to coordinate key software architectures and
implementations [GapAnalysis]. Grids are being pursued actively across the world with
Europe and Asia very active. China for example has several Grids with both research and
commercial applications.

Grids have a layered “service architecture” where services are similar to the older
distributed object model but with a looser coupling allowing greater robustness and better
scaling. The difference (or not) between distributed objects and services is hotly debated

and is discussed further in several places including [WSGrids] and [Vogels03A]. The
Remote Procedure Call (RPC) at the heart of Java (RMI) and CORBA is replaced by a
simpler asynchronous messaging model in Grids and Web services

Portal
ServicesJSR168 Portlets

Grid
Service1

XMSF RTI
Bridge

Grid
Service2
HPCMO
Gateway

Grid
Service4
Sensor
(Net)

HLA
Federation

e.g. SAFIRE

Grid
Service5

XMSF RTI
Bridge

HLA Federate

Grid
Service3
OGC Map
Service

Grid
Service6

Discovery

Grid
Service7

Visualization

Aggregation/Customization Portal

Resource Level

Grid Messaging Infrastructure

Figure 3: Grid Enhanced XMSF based Modeling and Simulation System with
Clients, Portal, Grid Services and Resources including HLA/DIS subsystems

 Grid Technology Overview for DoD 8/6/2005 6

This section provides an overview of Grid technologies divided into service areas with a
nominal DoD Grid illustrated in fig. 3.

3.2 Portal Development:
The area of Grid Portals has made excellent progress and is relatively well understood.
Portals and their associated services provide the user access to the available Grid services
and allow both support of seamless access discussed in [Fox05E] and the construction of
problem solving environments [Haupt03A] [Fox03A]. The use of handheld devices as the
user interface is part of universal access features of current portal work [Oh03A]. One
has multiple Web Services with user-facing ports – each producing a fragment of a user
interface. These fragments are integrated into full user interfaces by the portal containers
summarized below in Table 1. There are two critical interoperability standards. The Java
JSR-168 portlet specification defines how each Web service user interface fragment is
defined in the container. The Web service for remote portlets specification defines the
protocol by which the user-facing web service ports interact with the client or container
[WSRP]. The Community Grids Lab (CGL) has developed numerous portal systems,
many in collaboration with a broad Grid community [Gannon04A]. CGL’s work includes
the following:

a) The Gateway Portal system was developed and deployed at Wright Patterson Air
Force Base (at ASC MSRC) and at Aberdeen Proving Grounds (ARL MSRC).
This portal system, compliant with DOD security, supported job submission, batch
script generation for specific applications (such as ANSYS), file management
(uploading, downloading). See [Pierce02A] [Gateway] for more information.

b) We developed the DOD Online Knowledge Center OKC prototype system, which
introduced the use of the portlet architecture in DOD environments. We also
developed an XML and JMS based messaging system, which we used to build
newsgroups, citation management systems, and RIB-compatible [RIB] metadata
management systems [Aydin03A] [Balsoy02A].

c) The QuakeSim Portal is being developed for NASA JPL to support earthquake
modeling and simulation codes. QuakeSim pioneered the use of both Portlets and
Web Services for computational portal building. See [Quakesim] for project
information. The portal is available from [QuakesimCGL] and described in Ref
[Aktas04A].

d) CGL leads the Open Grid Computing Environments (OGCE) project [OGCE].
This NSF-funded consortium of six universities produces general purpose, reusable
portal components (portlets) for computational grid portals.

e) We have developed collaboration portlets especially for audio-video conferencing
[GlobalMMCS] and integrated both hand held and desktop clients into this
architecture [Oh03A].

In building DoD portals, we suggest a portlet architectures as clients to remote Grid
Services, as followed in our QuakeSim and OGCE projects. The portlet approach allows
computing portals to be built out of reusable components. These components’ displays
may be customized and component access may be controlled through a portlet container.

 Grid Technology Overview for DoD 8/6/2005 7

Portlets may be reused between different containers, so an investment of time and effort
to a particular vendor’s product does not tie one to that vendor in the long term. Table 1
gives a list of compliant containers. Important links are [GridSphere] [Jetspeed] [uPortal]

Container
Vendor

JSR 168
Compatibility

WSRP
Compatibility

Stable Release Open
Source

uPortal Yes Yes Yes, 2.4.1 Yes
GridSphere Yes No Yes, 2.0.x Yes
Sakai No Yes Yes, 1.x Yes
Jetspeed1 No No Yes, 1.5 Yes
Jetspeed2 Yes No No (in

development)
Yes

eXoPlatform Yes No No, but 1.0
Release Candidate
Available

Yes

IBM
WebSphere
Portal

Yes Yes Yes, 5.0 No

Sun Java
System Portal
Server

Yes Yes Yes, 6.0 No

BEA
WebLogic
Portal

Yes Yes Yes, 8.1 No

Oracle
Application
Server Portal

Yes Yes Yes, 9 No

Table 1: Leading Portal Containers and their status and standards compliance

We can expect Grid portal and workflow technologies to be the implementation vehicle
of choice for future Problem Solving Environments.

3.3 Web Service Grids Architecture
Currently there is general agreement that Grids [Foster04A] {Berman03A] should be
built on top of Web Services but some significant differences and uncertainties in
detailed implementation both from fundamental architectural principles and pragmatic
strategy [WSGrids]. At the lowest level there are a suite of specifications commonly
called the WS-* and these include areas like the basic WSDL and SOAP, Security,
Reliable messaging, notification, transactions, workflow and state. There are some 60
often overlapping WS-* specifications proposed in the last few years, but so far only
about 10% of these have been included in the influential WS-I [WS-I] interoperability
profiles in a stark reminder of the rapid change and uncertainty in field. These
specifications implicitly define a core Web Service and hence Grid architecture on which
one builds higher level services. One can naturally define 3 service layers; WS-* core
level [Ferguson03A] [Weerawarana05A], followed by an intermediate level of generally
useful services covering areas such as data, jobs, execution and management where

 Grid Technology Overview for DoD 8/6/2005 8

critical aspects of the Grid emerge. The WS-RF Resource Framework [WSRF] from the
Grid community lies in the WS-* lowest level and has been adopted by the important
Globus system [Globus-A]. The third service layer consists of application specific
services such as those dedicated to DoD specific applications like GridHLA. We need to
choose both the architecture (selection of WS specifications) and implementations of the
lowest and the intermediate level. The GGF OGSA working group is defining this
intermediate level in great detail [OGSA] [OGSA-Globus]. The pragmatic WS-I+
approach [WSGrids] allows one to add new features – such as those in WSRF after their
specification is complete and their value is clear to community. WS-I+ includes WS-
Addressing [WSA] and WS-Eventing [WSE] (expected to become building block of WS-
Notification [WSN]) which are key to WSRF. Recently the “two-core” approach to Grids
has emerged [Fox05B]; this recognizes that there will inevitably be multiple some
incompatible Web Service approaches and one should build higher level services in a
way that is compatible with different low-level implementations. Note WS-I+ provides a
Profile for best practice Grids that only uses conventional Web service specifications and
this links well to goal of XMSF [XMSF1] to define HLA Web Service profiles for DoD
Grids.

3.4 Workflow
Grid workflow captures “programming the Web or Grid” and encompasses a broad range
of approaches with names like “Service Orchestration”, “Service or Process
Coordination”, “Service Conversation”, “Web or Grid Scripting”, “Application
Integration”, or “Software Bus”. It is an area of active research with different approaches
emphasizing control flow, scheduling and/or dataflow. The workshop at GGF10 is a good
summary of current best practice [workflow] with a comprehensive recent review in
[Yu05A]. There is some consensus that although its use for dataflow is problematical,
one should build upon BPEL [BPEL4WS] [activeBPEL] – the industry supported Web
Service standard for which open source implementations are being developed [OMII].
This was based on [WSFL]. Important dataflow technologies are the Kepler [Kepler] and
Triana [Triana-A] projects while Pegasus and Chimera from the Globus-Condor
collaboration address the scheduling style of workflow [Pegasus] [Chimera]. Taverna
from the myGrid project successfully integrates control and workflow [myGrid-B]. The
HPSearch project from Indiana University supports workflow efficiently from a familiar
scripting environment [HPSearch] [Gadgil04A]. An important issue for Grid integration
with HLA will be melding the workflow ideas from the Grid with the federation ideas
from HLA. Workflow technologies have wide applicability stretching from RTI-like
systems, application code coupling and support of problem solving environments.

3.5 Notification
WSDL and SOAP are the basis of Grids built as distributed service systems. One can
then build more sophisticated capabilities, such as notification, events, reliability, etc.
These are defined by additional pieces of information in the SOAP XML message but
these specifications need sophisticated enhancements to the Web Service software stack
[Fox05A]. CGL has developed a messaging infrastructure NaradaBrokering, to manage
these Web Service messages [NaradaBrokering]. The UK OMII [OMII] Grid open
source software development project has endorsed our work and chosen NaradaBrokering

 Grid Technology Overview for DoD 8/6/2005 9

to implement the Web Service notification specifications WS-Eventing, Notification
[WSE] [WSN] as well as the reliable messaging standards [WS-RM] [WS-Reliability].
We note that one can view WS-Eventing and WS-Notification as playing a similar role to
MQ-Series [MQSeries] in Enterprise software and the Java Message Service [JMS] in
distributed Java systems. WS-Eventing is similar to the core component – Base
Notification – in WS-Notification and lacks the explicit topics and broker specification of
the full WS-Notification standard. We expect notification to be important in DoD Grids
as it supports active Data sources and robust subscription models. The same notification
architecture underlies the publish-subscribe collaboration architecture pioneered by
Anabas [Anabas] and the Community Grids Laboratory [GlobalMMCS].

3.6 Fault Tolerance
The area of fault tolerance for Grids and Web Services is still at an early stage with the
most mature work corresponding to the WS-Reliability [WS-Reliability] and WS-
ReliableMessaging [WS-RM] specifications for end-to-end messaging reliable delivery.
These can be though of as implementing TCP-style retransmission protocols at the Web
service message as opposed to the packet level. As mentioned already these standards are
supported by NaradaBrokering and in fact using asynchronous publish-subscribe
semantics is a system development paradigm that is intrinsically more fault tolerant than
direct service-service messaging. Thus one can achieve many of these fault tolerance
qualities by binding SOAP to a transport like JMS, MQ-Series or NaradaBrokering that
supports publish-subscribe mechanisms.

More generally the concept of Autonomic Computing [Horn01A] captures a broader
view of fault tolerance and there are natural mechanisms – for example heartbeat
message services and replicated services that are being explored.

3.7 Management
The management of Web Services is understood to be very important and current
specifications include WS-DM (Distributed Management) from OASIS and WS-
Management from DMTF and Microsoft [WS-DM] [WS-Man].. A research
implementation of this will be available from Indiana University using the HPSearch
[HPSearch] scripting environment built on NaradaBrokering. There are also several
commercial implementations of both standards. The breadth of applicability of these
specifications is not yet clear with WS-Management being a broad set of protocols to
allow Web Services to engage other electronic resources while WS-DM includes many
detailed resource properties like lifetime. One application envisaged for these capabilities
is the automatic loading of software (say Linux for a PC!) from a repository into a
particular resource.

3.8 Data and Meta-data
This is a very active part of the Global Grid Forum with OGSA-DAI [OGSA-DAI]
developing a powerful Grid service view of the federation of multiple disparate
databases. Equally important is the meta-data area which stretches from the system level
registry where UDDI [UDDI] is endorsed by WS-I+ to the application level where the
Semantic Grid captures work on XML databases, lightweight protocols such as WS-

 Grid Technology Overview for DoD 8/6/2005 10

Context [WS-Context] and the Semantic Web [SemanticWeb] [SemanticGrid]. These
latter technologies are particularly promising in developing ontologies allowing one to
reason about the federation or linkage of services and there is already substantial interest
in the HLA community in this area [Tolk04A] [Blais04A]. The Semantic Grid provides
tools and architectures for annotation, search, reasoning about and access to Grid meta-
data [SemanticGrid]. This includes a wide range of important capabilities from
descriptions of particular services to information about the status of computers and jobs.
The growing use of XML and standards based on this format will increase the importance
of Semantic Grid metadata architectures.

Much DoD data comes from sensors and is tackled by a combination of database and the
streaming technology described below.

3.9 Streams and High Performance Transport
GlobalMMCS has pioneered the use of a hybrid approach to messaging. SOAP in its
conventional XML representation is used for all control messages while for high volume
streams we use [Fox04A] high performance protocols [W3CBinaryXML]
[MSBinaryXML] consistent with the SOAP Infoset [SOAPInfoset1] [SOAPInfoset2]. In
particular we are able to support a simple low overhead enhancement of RTP to transport
all audio/video streams. NaradaBrokering queues messages on all messaging links if
necessary (to throttle back stream) or requested (to archive stream for replay in
collaboration systems). Message queuing uses a combination of in-memory buffers,
MySQL databases and flat files. Robustness of the in-memory queues is addressed by the
disk storage and replication on different brokers. Robustness of disk storage is addressed
using conventional methods (RAID and distributed replication) for this medium.
NaradaBrokering is currently being re-engineered [Fox05A] so that it can be deployed
transparently as handlers for Web Service infrastructure like Axis [Axis]. By using
NaradaBrokering or similar technology as a transport and representation handler one can
move between the binary and classic angle-bracketed representations of SOAP messages
without content loss. Efficient binary representations of XML Infosets have been
developed including SOAP Message Transmission Optimization Mechanism (MTOM)
[MTOM] and XML-binary Optimized Packing (XOP) [XOP]. We are developing
schemes which allow two endpoints to first negotiate the best-available transport and then
proceed to use it for transfers. To accommodate legacy systems that do not use the XML
format, the Data Format Description Language (DFDL) [DFDL] is an XML-based
language that describes the structure of binary and character-encoded files and data
streams so that their format, structure, and metadata can be exposed. This can also be
used in tandem while transferring binary data using SOAP. The NaradaBrokering
substrate incorporates support for several transport protocols (including parallel TCP)
that can be leveraged to provide high performance transfers of such large binary data.
Since the substrate allows new transport protocols to be plugged in rather easily, support
for newer transport schemes can easily be incorporated. Our work here will provide
support for both high-performance, high volume data transport as well as data upload and
delivery for Web-enabled devices. The substrate will also incorporate a caching scheme
which would be suitable for supporting high-performance distributed (HLA) simulations.

 Grid Technology Overview for DoD 8/6/2005 11

The caching scheme will be used in reducing database access times while retrieving
simulation events that will be delivered reliably to participating entities.

There has already been interesting work in the DoD community on high performance
XML [XSBC] with an architecture similar to ours developed by Pullen [Moen03A] with
the XOM system developed at the C3I center at George Mason University [XOM] and an
approach based on BEEP used by Web Enabled RTI from SAIC [XMSF3] [Pullen04A]
[Morse04A].

3.10 Security
Security is particularly important for heterogeneous distributed systems and essential for
e-commerce and of course DoD applications of Grid (Web Service) technologies. Grids
require an extension of the traditional transport level security systems (such as SSL).
Transport level security insures safe transmission of messages between two set endpoints.
Grids on the other hand may need to pass messages through several intermediate hosts
and may need to send messages to more than one end point. Grids thus require message-
level security in addition to simple, point to point transport level security mechanisms.
Current Public Key and Kerberos capabilities for authentication and authorization may be
implemented in a message-based Web Service security model whose message-based
model has advantages over previous connection-based schemes. This integration of Grid
and Web Service security is still a “work in progress” and our approach should be fully
compatible with any approaches that emerge. WS-Security [WS-Security] is expected to
be the overall framework with WS-SecureConversation [WS-SC] used for streaming. We
expect progress in areas like linking the Globus delegation model with Shibboleth
[Shibboleth] and Web Services with key problems being fine grained authorization and
support of trust across multiple services (workflow) and for the long time periods that a
Grid application might last. NaradaBrokering has a security model [Pallickara03A]
compatible with this emerging Web service model

Data

Fig. 4: Technology Components of a Computing Grid

1: Job Management Service
(Grid Service Interface to user or program client)

2: Schedule and control Execution

1: Plan Execution 4: Job Submittal

Remote Grid ServiceRemote Grid Service

6: File and
Storage
Access

3: Access to Remote Computers

Data
7: Cache

Data
Replicas

5: Data Transfer

10: Job
Status

8: Virtual
Data

9: Grid MPI

 Grid Technology Overview for DoD 8/6/2005 12

3.11 Computing Services
There are a suite of important services associated with the myriad of activities associated
with running a job. These are sketched in fig. 4, and are comprised of the many services
needed to support distributed computing models. As well as scheduling, planning and job
submission familiar from Condor [Condor] and Globus [Globus-A], one needs caching
and file management combined of course with the three services described above. File
services include Grid flavors of shared file systems (“GridNFS”) and of data transport
(GridFTP).

3.12 Network Grid Services
Network Services including monitoring, reservation and routing have not received so
much attention but should become in future Grids as we need high performance
deployment respecting security, resilience and reliability issues. NaradaBrokering
integrates network performance information into its Grid messaging routing algorithms
and the GGF has a working group NM-WG setting XML standards for network
performance data [GGF-A]. The field is reviewed in more detail in [GapAnalysis] but is
not discussed further here as there is little Grid specific work in the field.

3.13 Collaborative Grids
Collaboration or the sharing of Web services unifies areas such as Access Grid
[AccessGrid] and Peer-to-peer networks. Rapid progress is being made and we can again
expect greater security and robustness to result for all collaboration tools. Grids, e-
Science and CyberInfrastructure are often discussed in terms of virtual organizations
(VO) where asynchronous and synchronous collaboration are essential to support VO’s.
An integration of Grid, peer-to-peer, Web service and collaboration environments was
explained in chapter 18 of [Berman03A]. A key idea is that one can make Web (and
hence Grid) services collaborative rather straightforwardly as their state can only be
changed by input messages and the current state is only defined by output messages. This
led to the concept of shared input-port and shared output-port collaborative services.

Anabas originally developed some of the core ideas in this area building the first
collaboration environment [Anabas] supported by general purpose publish/subscribe
infrastructure – initially the Java Message Service [JMS]. It was found that this
introduced only a few millisecond overhead that was negligible and allowed a much more
general flexible approach to collaboration than that in well known commercial products
like Webex and Placeware or the open source VNC [Groove] [JXTA] [Centra]
[Placeware] [WebEx] [Interwise] [VNC]. State change events are published by the
“master” client to a topic and collaborating clients subscribe. Later CGL designed a
sophisticated messaging environment, NaradaBrokering [NaradaBrokering], that offered
key new capabilities including support for JMS and JXTA programming APIs,
compatibility with Web services, fault tolerance and support of multiple protocols
including both TCP, parallel TCP and UDP in the same publish-subscribe framework.
Anabas is now using NaradaBrokering in its application specific products. The UDP
transport is used in the GlobalMMCS project [GlobalMMCS] which builds a service

 Grid Technology Overview for DoD 8/6/2005 13

oriented audio-video conferencing system around NaradaBrokering. GlobalMMCS
supports both Access Grid and VRVS clients [AccessGrid] [VRVS]. CGL is studying
integration of GlobalMMCS with CEE from AFRL [McQuay04] [CEE00] and
KnowledgeKinetics [KK] in a project funded through Ball Aerospace. The use of CGL
XGSP technology (XML General Session Protocol) to support dynamic collaborative
environment with multiple roles is very promising [XGSP].

4 Grids of Grids
In [GofG], we introduced the concept of Grids of Grids of Simple Services”. Here we
review and extend this and show how it can address several issues of importance to DoD
including the “right sizing of services”, “an architecture for dealing with legacy systems”
and a “strategy for modularizing the design and implementation of systems (grids)”.

Consider any (software) problem you like and imagine how it would look in a traditional
approach of a decade or so ago. One would get monolithic chunks of software in some
language like C++ or ADA. This would be divided into methods or subroutines and we
would be instructed to build it in modular fashions using libraries and well defined
interfaces. As technologies developed we added new languages like Java and better
software engineering processes which still however focused on modularity within a
chunk of software divided into objects and/or components. For example you will find this
software structure if you inspect well known open source projects such as Linux or the
Java at the Apache site [Apache] . One can convert such code into services by specifying
each of interfaces in XML and providing a Web Service wrapper. This activity is
important for jump starting our collection of services but I would view it as only
appropriate for legacy systems and a less than optimal approach to new software systems.
For example looking at the many different Apache projects, one will find many related
but different implementations of common subservices like security, file access and user
profile. Building a system combining several projects would often require an integrated
approach to common services like security. This would be relatively easy if the
implementation of each subservice like security was a separate Grid service with well
defined message-based interfaces. However with traditional approach, the typical
subservice can have an external message-based interface but unfortunately in addition
many internal method linkages to other parts of the software chunk where typically it is
hard to serialize the arguments. Thus subservices like security cannot be extracted from
the glob and it is very hard to use components such traditional software systems even if
they run excellently with service interfaces.

The above discussion allows us to identify a strategy for defining what we term simple
services. Start by examining the different capabilities of one’s systems. Services are
distributed components that have distinct functionality – especially functionality that is
usefully shared among different uses. Services must be able to achieve acceptable
performance when implemented with message based interfaces and distributed platforms.
There is an inevitable difference in overhead between message and method based
interactions; messages could experience 100’s of milliseconds in network latency while
the internal method calls have a fraction of a millisecond overhead. We define simple
services as those that are as small as possible given the performance implications from

 Grid Technology Overview for DoD 8/6/2005 14

the decomposition. Such simple services are then the unit for which one uses traditional
programming models and languages. This is the proposed strategy for “right-sizing”
services.

Overlay
and Compose
Grids of Grids

Methods Services Functional Grids

CPUs Clusters Compute
Resource Grids

MPPs

Databases Federated
Databases

Sensor Sensor Nets

Data
Resource Grids

Fig. 5: Composing Functionality and Resources in the Grid of Grids

In fig. 5, we suggest a packaging and coupling approach that generalizes and distributes
that familiar from the traditional software hierarchy:
lines of code methods (subroutines) objects (programs) packages (libraries).
A single simple service is the smallest grid but we can integrate like simple services into
library grids. These sub-grids are then composed into a complete “Grid of Grids”
implementing the full system. Fig. 5 shows how database, sensors and compute nodes
(abstracted as simple services representing “simple resources”) can be federated,
networked and clustered into larger units.

 Grid Technology Overview for DoD 8/6/2005 15

DoD Services
and Filters

Physical Network

Registry Metadata

Flood Services
and Filters

Flood CIGrid NCOW Grid… Electricity
CIGrid …

Data Access/Storage

Security WorkflowNotification Messaging

Portals Visualization GridCollaboration Grid

Sensor Grid Compute GridGIS Grid

Fig. 6: Critical Infrastructure (CI) Grids built in composite fashion
and linked to an NCOW (GiG) Grid

Core Grid Services

As a particular example of a Grid of Grids, Fig. 6 illustrates how one can share
component Grids between critical infrastructure applications and DoD’s NCOW
[Fox05D]. The Department of Homeland Security has identified critical infrastructures
that include Agriculture and Food, Water, Health, Industrial and Defense Base,
Telecommunications, Energy, Transportation, Banking and Finance, Chemical Industry
and Hazardous Materials, Postal and Shipping. The critical atomic Grids in this case
include those for sensors, GIS, visualization, computing and collaboration. We also need
of course the core Grid shown at the bottom of the figure with services like security,
notification and meta-data. These atomic Grids can be re-used as shown in figure 6 in all
critical infrastructure Grids and illustrate the important interoperability principles with
which Grids are built. These CI(Critical Infrastructure) Grids are in turn customized,
composed and overlaid with other Grids (such as weather, census data) for different CI
communities. This way one generates Grids aimed at Public Health, Emergency
Response (Command and Control) or Crisis Grids, Infrastructure Planning, Education
(schools) and Training (of managers and first responders). Clearly the Grid of Grids
concept can be applied recursively and dynamically.

 Grid Technology Overview for DoD 8/6/2005 16

Fig. 7: Mediation and Transformation in a
Grid of Grids and Simple Services

Po
rt

Po
rt

Port PortInternal
Interfaces

Subgrid or service

Po
rt

Po
rt

Port PortInternal
Interfaces

Subgrid or service

Po
rt

Po
rt

Port PortInternal
Interfaces

Subgrid or service

Messaging

Mediation and
Transformation
Services

External facing
Interfaces

Note that both simple services and grids interact with the outside environment through
messages and these messages are the only way to both impact and learn about the service
or grid. For Web service based grids these messages are defined by the WSDL – where
for grids this WSDL is the concatenation of the WSDL of all its external interfaces. Note
that in this view all that counts are “outward facing” interfaces. Internal interfaces need
not be specified to use a given grid. In particular these internal interfaces could use
different flavors of Web service specification or totally different technology – methods,
Java RMI, CORBA etc. Examples of different Web service flavors are WSRF or WS-I+
based systems [WSRF] [WSGrids] or more simply the two flavors of reliable messaging
in [WS-Reliability] and [WS-RM]. If we assume that we use a message-oriented-
middleware (MOM) implementation then all messages entering a particular simple
service or grid is explicitly handled and can be transformed to confirm to the internal
conventions of this grid as illustrated in fig. 7. This gives us a clear strategy for legacy
systems – one identifies their outward facing Grid interfaces, defines in WSDL and
builds a set of transformations that map between the system-wide Grid standards and
those used internally. The same idea can be used to build virtual private grids
generalizing VPN’s to grid systems [Fox04B] and so ensuring particular security policies
within a given subgrid. More generally support of hierarchically constructed grids of
heterogeneous components gives a robust software engineering strategy with a modular
software model.

 Grid Technology Overview for DoD 8/6/2005 17

	Background
	Portal Development:
	Web Service Grids Architecture
	Workflow
	Notification
	Fault Tolerance
	Management
	Data and Meta-data
	Streams and High Performance Transport
	Security
	Computing Services
	Network Grid Services
	Collaborative Grids

