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1 Introduction 
This white paper summarizes the current state of Grid technologies [Foster99A] 
[Foster2004A] [GGF-A] [Berman03A] [GapAnalysis] with particular attention to their 
possible relevance to DoD applications. In Section 2, we describe different types of Grids 
and contrast their use and implementation with clusters and massively parallel systems. A 
more extensive survey of  such styles of Grids can be found in [GapAnalysis]. Section 3 
summarizes the technologies divided into different classes. Section 4 describes the 
concept of “Grids of Grids” that is analogous to the well known “System of Systems”. 
This concept expresses a hierarchical system model where we do not build a single 
monolithic system or grid but rather stitch together a system from component subsystems 
or subgrids that need not be architecturally homogeneous. 
 
The review is reasonably general but there are particular comments on the work of 
Anabas Inc. and the Community Grids Laboratory as these highlight particular prototype 
opportunities. There is also special references to some existing DoD related Grid 
activities such as the work linking HLA and Web service technologies [XMSF1]. 

2 What is a Grid? 
Here we try to distinguish four related networked systems 
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1) Classic Massively Parallel Machine such as the IBM SP series. These are a 
networked collection of nodes with a custom high performance network whose 
aggregate bandwidth scales proportionally to the number of nodes. The latency 
for small internode messages is a few microseconds. Good performance on many 
parallel applications requires ratio of communication times to calculation times 
that is not much larger than 10 to ensure low communication overheads 
[Dongarra02A]. The small messages are common in many cases and the low 
latency is needed to get good efficiency in this case. 

2) Typical cluster which is similar to an MPP but constructed from commodity 
components with usually competitive node performance and bandwidth but often 
substantially poorer latency in the 100-1000 microsecond range.  

3) Computing Grid is a distributed system of networked computers which can be 

very heterogeneous; in particular parallel machines and clusters can be nodes of a 
Grid. Another well-known case is the “Desktop Grid” consisting of “all the 
desktop machines” either in an Enterprise (the Condor model [Condor]) or in the 
world (the SETI@Home model [SETI]). Grids are heterogeneous in both 
computing nodes and networking and can have inter-node latencies of 100-1000 
milliseconds as is typical of wide area networks. A geographically localized Grid 
could have inter-node latencies of around a millisecond.  Computing Grids grant 
remote users the privilege to directly access computing resources.   

Database Database

Closely Coupled Compute Nodes

Analysis and 
Visualization

Repositories
Federated Databases

Sensor Nets
Streaming Data

Loosely Coupled 
Filters

Fig. 1: Information Grid with Sensors, Satellites, databases, high performance
computers, clusters and filters (independent machines)

4) Information Grid shown in fig. 1 is a network of computers, data repositories 
(both file and database) and sensors. Information grids are characterized by their 
use of metadata models and services to describe, organize, and provide controlled 
access to scientific data and resources [GapAnalysis]. Metadata is simply “data 
about resources” and may be used to describe a) characteristics of large 
permanent scientific data sets; b) ephemeral information such as computing loads 
on HPC systems; c) feeds for streaming data; and d) information about groups, 
individuals, projects, and so forth.  A related problem in this area is “data 
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provenance” or “intellectual property” descriptions [myGrid-D].  This is used to 
describe who created or owns a particular piece of data, how was it created, what 
assumptions were made, what is the quality of the data, and so forth. Information 
Grids will be a focus of this paper and will be more fully described in subsequent 
sections. The term data grids [Venugopal05A] is often used and this sometimes 
refers to what we call information grids and sometimes to computing grids like 
that for particle physics [LCG] which were termed compute/file grids in 
[GapAnalysis] as they emphasized large scale computing on data placed in files 
rather than the streaming sensor or database model associated with information 
Grids. 

 
Each of the four networked systems described above has applications for which they 
are suited and those for which they are less well optimized. The suitability can reflect 
either functionality and/or cost performance. For example, only class 1) can 
efficiently execute many parallel applications. On the other hand, the cost per 
“floating point operation” of class 2) is perhaps half that of class 1) (MPP’s) and 
Grids can usually offer the very best cost performance of all. However this 
computational performance can only be realized on problems not needing the low 
latency synchronization and system integration only available in MPP’s. This implies 
that Grids for example cannot easily realize the dream of meta-computing – linking 
multiple sites together as a single supercomputer – unless the problems can be 
decomposed into essentially independent tasks. There is not only the problem of very 
high network latencies (up to 100,000 larger than that of an MPP) but the 
administratively hard problem of co-scheduling – reserving large blocks of time 
simultaneously on geographically and administratively distinct machines. There are 
two important application scenarios where Computing Grids are very appropriate 
a) The unmanaged or managed Desktop Grid where one has a very large set of 

related jobs which run independently on a pool of desktop class computers. This 
is familiar from “idle cycle stealing” projects like SETI@Home and in the 
managed case where the particle physics community expects to keep tens of 
thousands of computers running continuously each analyzing separate events 
from CERN’s Large Hadron Collider LHC [Condor] [EDG-A] [LCG]. This Grid 
is arranged hierarchically with central, “national” and “university-level” tiers 
sharing the load roughly equally. The Grid components are typically each a large 
cluster. Note this particular application involves substantial data management 
problems as in full operation around the year 2010 the LHC will produce 10’s of 
petabytes of data per year. This data will demand substantial network bandwidth 
but typically be staged ahead of time and have a traditional file-based computing 
structure as opposed to database model of Information Grids. 

b) The seamless access capability illustrated by the Gateway project from PET 
[Haupt03A]. Here there is a Grid containing multiple simulation engines and one 
provides a portal enables submission of a given job at one of the Grid-enabled 
nodes. As well technology to standardize job entry, staging of files between nodes 
and client is typically supported in such systems. Further one provides a uniform 
link to machine and job status information in fashion familiar from the NPACI 
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HotPage resource [HotPage]. Unicore is perhaps the best known seamless access 
project [Unicore-A]. 

 
There is a related application category which bridges computing and information 
Grids.  
c) Pipelined Grid resources are an important case as they illustrate the main reason 

why Information Grids are less sensitive to latency than Computing Grids. 
Information can typically be streamed from sensors or data repositories so that 
after a small start-up delay, the large WAN latency is irrelevant. The simplest 
case of this is a Data/Sensor/Instrument source feeding a computer which itself 
feeds a user analysis and visualization station. Several early Grid successes fell 
into this class [Laszewski02A]. 
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Information Grids are well illustrated by the Virtual Observatory and Bioinformatics 
examples 

d) Virtual Observatories (VObs) are set up in many fields based around real-time 
sensors [iVOA]. The initial example comes from astronomy where for example 
the NVO (National Virtual Observatory) allows access to the results of many 
different physical observatories linking optical, radio and infrared data. This leads 
to a new approach to such fields stressing the integration and comparison of 
results from different data-gathering projects. Earth and environmental science are 
setting up similar VObs’s combining sensor nets, satellites and data repositories 
as illustrated in fig. 1. A Grid is natural for such applications because not only are 
the original data-gathering instruments distributed but typically major telescopes 
each have their own specialized data archive which are also scattered around the 
world. As a measure of the complexity of an astronomical VObs, this academic 
field currently has some 10,000 users and 200 repositories worldwide. 

e) Bioinformatics has spawned several Grid projects which provide access for the 
researcher to the growing number of databases in the field. These summarize the 
results of experiments of many different types and perhaps smaller in volume but 
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much more demanding in the curation requirements [Curation-A] to ensure 
databases record high quality data. EBI (European Bioinformatics Institute) [EBI] 
and NCBI (National Center for Biotechnology Information) [NCBI are major 
organizations providing many of the important databases. As well as the 
heterogeneous data, this field requires dynamic use of filters (such as the well 
known BLAST Gene sequence optimizer) which fetch data from the Grid 
databases and deliver results to the researcher. Virtual observatories also mix Grid 
computing and data access with image processing as a typical application. In this 
case each filtering is of the Desktop Grid class as one needs to run multiple 
instances of the filter on many different data selections. 

f) Computational chemistry is facing many of the same requirements as 
bioinformatics.  The traditional journal publication approach is far too slow for 
publishing data to the chemistry community, so distributed data base systems are 
being developed to house this information.  Such data has many metadata 
requirements, such as who created it and how, where are the associated scientific 
articles describing the experiment or calculation, and so forth. Such metadata 
types are termed data provenance, or pedigree.  Chemistry information grids also 
require community curation and annotation.  Particular data sets may be “blessed” 
at some future time, or conversely may be labeled by other researchers as being of 
dubious quality.  The DOE’s Collaboratory for Multiscaled Chemical Science 
(CMCS) is an example of one such project [CMCS]. 

 
We have identified four classes of networked computing resources; classic MPP’s, 
clusters, Computing Grids and Information Grids. All are important components in a high 
performance computing environment and have different application categories where 
they excel. MPP’s and clusters are aimed at tightly coupled problems decomposed with 
classic parallel computing software and algorithms. These are essential parts of most 
Grids but the greatest opportunity for Grids is not linking several such supercomputers in 
real time but rather using one such simulation engine driven by a distributed collection of 
filters and data resources. This leads to a hybrid Grid architecture shown in fig. 2.  
  
IBM has announced major Grid and Autonomic (robust, self healing and self-adaptive) 
computing initiatives addressing such problems [Horn01A]. 

3 Grid Technologies and Capabilities 

3.1 Background  
The Grid field is moving very rapidly and unlike say early Globus (GT2) systems current 
Grids [Foster04A] [Berman03A] are built in terms of Web services exchanging 
messages. The Globus Toolkit (GT2) is now replaced by the major new GT4 release 
[Globus-GT4]. The Grid architecture can be contrasted with collaboration systems that 
are built in terms of an event bus that shares state changes in distributed entities; we 
explore this analogy more deeply in the Collaborative Grid subsection below. Our 
analysis builds on our own innovative Grid architecture research [Berman03A] 
[WSGrids], [Aktas04A] which gives us our own leading edge technologies and a good 
understanding of best practice internationally. Our many activities in the Global Grid 
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Forum also gives us useful insights [GGF-A]. We also note our detailed report 
[GapAnalysis] summarizing the experiences of the UK e-Science project [UKeS-A] in 
using existing Grid systems such as that from the Globus team.  
 
Several US government agencies have major Grid initiatives including the Information 
Power Grid from NASA [IPG] and the Science Grid from DoE [Johnston03A]. These 
two initial activities are no longer active but for example NIH now has several major 
Grid projects in the cancer [caBIG] and biomedical research [BIRN] areas. NSF is 
pursuing a Cyberinfrastructure initiative which embodies the Grid technical vision 
described here combined with the model of science and engineering comprised of 
collaborative interdisciplinary distributed teams [NSF03A] – the Collaboratory concept 
introduced by Bill Wulf over a decade ago [Wulf89]. The e-Science project in the United 
Kingdom has this vision with a particular emphasis on information Grids and has made 
substantial progress with pilot projects and aims at “production deployment” in 2006. In 
this spirit, they have proposed a new OMII (Open Middleware Infrastructure Institute) 
worldwide collaboration [OMII] to coordinate key software architectures and 
implementations [GapAnalysis]. Grids are being pursued actively across the world with 
Europe and Asia very active. China for example has several Grids with both research and 
commercial applications. 
  
Grids have a layered “service architecture” where services are similar to the older 
distributed object model but with a looser coupling allowing greater robustness and better 
scaling. The difference (or not) between distributed objects and services is hotly debated 

and is discussed further in several places including [WSGrids] and [Vogels03A]. The 
Remote Procedure Call (RPC) at the heart of Java (RMI) and CORBA is replaced by a 
simpler asynchronous messaging model in Grids and Web services 
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This section provides an overview of Grid technologies divided into service areas with a 
nominal DoD Grid illustrated in fig. 3. 

3.2 Portal Development:  
The area of Grid Portals has made excellent progress and is relatively well understood. 
Portals and their associated services provide the user access to the available Grid services 
and allow both support of seamless access discussed in [Fox05E] and the construction of 
problem solving environments [Haupt03A] [Fox03A]. The use of handheld devices as the 
user interface is part of universal access features of current portal work [Oh03A]. One 
has multiple Web Services with user-facing ports – each producing a fragment of a user 
interface. These fragments are integrated into full user interfaces by the portal containers 
summarized below in Table 1. There are two critical interoperability standards. The Java 
JSR-168 portlet specification defines how each Web service user interface fragment is 
defined in the container. The Web service for remote portlets specification defines the 
protocol by which the user-facing web service ports interact with the client or container 
[WSRP]. The Community Grids Lab (CGL) has developed numerous portal systems, 
many in collaboration with a broad Grid community [Gannon04A]. CGL’s work includes 
the following:  
 

a) The Gateway Portal system was developed and deployed at Wright Patterson Air 
Force Base (at ASC MSRC) and at Aberdeen Proving Grounds (ARL MSRC).  
This portal system, compliant with DOD security, supported job submission, batch 
script generation for specific applications (such as ANSYS), file management 
(uploading, downloading). See [Pierce02A] [Gateway] for more information.   

b) We developed the DOD Online Knowledge Center OKC prototype system, which 
introduced the use of the portlet architecture in DOD environments.  We also 
developed an XML and JMS based messaging system, which we used to build 
newsgroups, citation management systems, and RIB-compatible [RIB] metadata 
management systems [Aydin03A] [Balsoy02A]. 

c) The QuakeSim Portal is being developed for NASA JPL to support earthquake 
modeling and simulation codes.  QuakeSim pioneered the use of both Portlets and 
Web Services for computational portal building.  See [Quakesim] for project 
information.  The portal is available from [QuakesimCGL] and described in Ref 
[Aktas04A]. 

d) CGL leads the Open Grid Computing Environments (OGCE) project [OGCE].  
This NSF-funded consortium of six universities produces general purpose, reusable 
portal components (portlets) for computational grid portals. 

e) We have developed collaboration portlets especially for audio-video conferencing 
[GlobalMMCS] and integrated both hand held and desktop clients into this 
architecture [Oh03A]. 

 
 
In building DoD portals, we suggest a portlet architectures as clients to remote Grid 
Services, as followed in our QuakeSim and OGCE projects.  The portlet approach allows 
computing portals to be built out of reusable components. These components’ displays 
may be customized and component access may be controlled through a portlet container.  
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Portlets may be reused between different containers, so an investment of time and effort 
to a particular vendor’s product does not tie one to that vendor in the long term.  Table 1 
gives a list of compliant containers. Important links are [GridSphere] [Jetspeed] [uPortal] 
 
Container 
Vendor 

JSR 168 
Compatibility 

WSRP 
Compatibility 

Stable Release Open 
Source 

uPortal Yes Yes Yes, 2.4.1 Yes 
GridSphere Yes No Yes, 2.0.x Yes 
Sakai No Yes Yes, 1.x Yes 
Jetspeed1 No No Yes, 1.5 Yes 
Jetspeed2 Yes No No (in 

development) 
Yes 

eXoPlatform Yes No No, but 1.0 
Release Candidate 
Available 

Yes 

IBM 
WebSphere 
Portal 

Yes Yes Yes, 5.0 No 

Sun Java 
System Portal 
Server 

Yes Yes Yes, 6.0 No 

BEA 
WebLogic 
Portal 

Yes Yes Yes, 8.1 No 

Oracle 
Application 
Server Portal 

Yes Yes Yes, 9 No 

Table 1: Leading Portal Containers and their status and standards compliance 
 
We can expect Grid portal and workflow technologies to be the implementation vehicle 
of choice for future Problem Solving Environments. 

3.3 Web Service Grids Architecture 
Currently there is general agreement that Grids [Foster04A] {Berman03A] should be 
built on top of Web Services but some significant differences and uncertainties in 
detailed implementation both from fundamental architectural principles and pragmatic 
strategy [WSGrids]. At the lowest level there are a suite of specifications commonly 
called the WS-* and these include areas like the basic WSDL and SOAP, Security, 
Reliable messaging, notification, transactions, workflow and state. There are some 60 
often overlapping WS-* specifications proposed in the last few years, but so far only 
about 10% of these have been included in the influential WS-I [WS-I] interoperability 
profiles in a stark reminder of the rapid change and uncertainty in field. These 
specifications implicitly define a core Web Service and hence Grid architecture on which 
one builds higher level services. One can naturally define 3 service layers; WS-* core 
level [Ferguson03A] [Weerawarana05A], followed by an intermediate level of generally 
useful services covering areas such as data, jobs, execution and management where 
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critical aspects of the Grid emerge. The WS-RF Resource Framework [WSRF] from the 
Grid community lies in the WS-* lowest level and has been adopted by the important 
Globus system [Globus-A]. The third service layer consists of application specific 
services such as those dedicated to DoD specific applications like GridHLA. We need to 
choose both the architecture (selection of WS specifications) and implementations of the 
lowest and the intermediate level. The GGF OGSA working group is defining this 
intermediate level in great detail [OGSA] [OGSA-Globus]. The pragmatic WS-I+ 
approach [WSGrids] allows one to add new features – such as those in WSRF after their 
specification is complete and their value is clear to community. WS-I+ includes WS-
Addressing [WSA] and WS-Eventing [WSE] (expected to become building block of WS-
Notification [WSN]) which are key to WSRF. Recently the “two-core” approach to Grids 
has emerged [Fox05B]; this recognizes that there will inevitably be multiple some 
incompatible Web Service approaches and one should build higher level services in a  
way that is compatible with different low-level implementations. Note WS-I+ provides a 
Profile for best practice Grids that only uses conventional Web service specifications and 
this links well to goal of XMSF [XMSF1] to define HLA Web Service profiles for DoD 
Grids. 

3.4 Workflow 
Grid workflow captures “programming the Web or Grid” and encompasses a broad range 
of approaches with names like “Service Orchestration”, “Service or Process 
Coordination”, “Service Conversation”, “Web or Grid Scripting”, “Application 
Integration”, or “Software Bus”. It is an area of active research with different approaches 
emphasizing control flow, scheduling and/or dataflow. The workshop at GGF10 is a good 
summary of current best practice [workflow] with a comprehensive recent review in 
[Yu05A]. There is some consensus that although its use for dataflow is problematical, 
one should build upon BPEL [BPEL4WS] [activeBPEL] – the industry supported Web 
Service standard for which open source implementations are being developed [OMII]. 
This was based on [WSFL]. Important dataflow technologies are the Kepler [Kepler] and 
Triana [Triana-A] projects while Pegasus and Chimera from the Globus-Condor 
collaboration address the scheduling style of workflow [Pegasus] [Chimera]. Taverna 
from the myGrid project successfully integrates control and workflow [myGrid-B]. The 
HPSearch project from Indiana University supports workflow efficiently from a familiar 
scripting environment [HPSearch] [Gadgil04A]. An important issue for Grid integration 
with HLA will be melding the workflow ideas from the Grid with the federation ideas 
from HLA. Workflow technologies have wide applicability stretching from RTI-like 
systems, application code coupling and support of problem solving environments. 

3.5 Notification 
WSDL and SOAP are the basis of Grids built as distributed service systems.  One can 
then build more sophisticated capabilities, such as notification, events, reliability, etc.  
These are defined by additional pieces of information in the SOAP XML message but 
these specifications need sophisticated enhancements to the Web Service software stack 
[Fox05A].  CGL has developed a messaging infrastructure NaradaBrokering, to manage 
these Web Service messages [NaradaBrokering].  The UK OMII [OMII] Grid open 
source software development project has endorsed our work and chosen NaradaBrokering 
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to implement the Web Service notification specifications WS-Eventing, Notification 
[WSE] [WSN] as well as the reliable messaging standards [WS-RM] [WS-Reliability]. 
We note that one can view WS-Eventing and WS-Notification as playing a similar role to 
MQ-Series [MQSeries] in Enterprise software and the Java Message Service [JMS] in 
distributed Java systems. WS-Eventing is similar to the core component – Base 
Notification – in WS-Notification and lacks the explicit topics and broker specification of 
the full WS-Notification standard. We expect notification to be important in DoD Grids 
as it supports active Data sources and robust subscription models. The same notification 
architecture underlies the publish-subscribe collaboration architecture pioneered by 
Anabas [Anabas] and the Community Grids Laboratory [GlobalMMCS]. 

3.6 Fault Tolerance 
The area of fault tolerance for Grids and Web Services is still at an early stage with the 
most mature work corresponding to the WS-Reliability [WS-Reliability] and WS-
ReliableMessaging [WS-RM] specifications for end-to-end messaging reliable delivery. 
These can be though of as implementing TCP-style retransmission protocols at the Web 
service message as opposed to the packet level. As mentioned already these standards are 
supported by NaradaBrokering and in fact using asynchronous publish-subscribe 
semantics is a system development paradigm that is intrinsically more fault tolerant than 
direct service-service messaging. Thus one can achieve many of these fault tolerance 
qualities by binding SOAP to a transport like JMS, MQ-Series or NaradaBrokering that 
supports publish-subscribe mechanisms. 
 
More generally the concept of Autonomic Computing [Horn01A] captures a broader 
view of fault tolerance and there are natural mechanisms – for example heartbeat 
message services and replicated services that are being explored. 

3.7 Management  
The management of Web Services is understood to be very important and current 
specifications include WS-DM (Distributed Management) from OASIS and WS-
Management from DMTF and Microsoft [WS-DM] [WS-Man].. A research 
implementation of this will be available from Indiana University using the HPSearch 
[HPSearch] scripting environment built on NaradaBrokering. There are also several 
commercial implementations of both standards. The breadth of applicability of these 
specifications is not yet clear with WS-Management being a broad set of protocols to 
allow Web Services to engage other electronic resources while WS-DM includes many 
detailed resource properties like lifetime. One application envisaged for these capabilities 
is the automatic loading of software (say Linux for a PC!) from a repository into a 
particular resource. 

3.8 Data and Meta-data 
This is a very active part of the Global Grid Forum with OGSA-DAI [OGSA-DAI] 
developing a powerful Grid service view of the federation of multiple disparate 
databases. Equally important is the meta-data area which stretches from the system level 
registry where UDDI [UDDI] is endorsed by WS-I+ to the application level where the 
Semantic Grid captures work on XML databases, lightweight protocols such as WS-
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Context [WS-Context] and the Semantic Web [SemanticWeb] [SemanticGrid]. These 
latter technologies are particularly promising in developing ontologies allowing one to 
reason about the federation or linkage of services and there is already substantial interest 
in the HLA community in this area [Tolk04A] [Blais04A]. The Semantic Grid  provides 
tools and architectures for annotation, search, reasoning about and access to Grid meta-
data [SemanticGrid]. This includes a wide range of important capabilities from 
descriptions of particular services to information about the status of computers and jobs. 
The growing use of XML and standards based on this format will increase the importance 
of Semantic Grid metadata architectures. 
 
Much DoD data comes from sensors and is tackled by a combination of database and the 
streaming technology described below. 

3.9 Streams and High Performance Transport 
GlobalMMCS has pioneered the use of a hybrid approach to messaging. SOAP in its 
conventional XML representation is used for all control messages while for high volume 
streams we use [Fox04A] high performance protocols [W3CBinaryXML] 
[MSBinaryXML] consistent with the SOAP Infoset [SOAPInfoset1] [SOAPInfoset2]. In 
particular we are able to support a simple low overhead enhancement of RTP to transport 
all audio/video streams. NaradaBrokering queues messages on all messaging links if 
necessary (to throttle back stream) or requested (to archive stream for replay in 
collaboration systems). Message queuing uses a combination of in-memory buffers, 
MySQL databases and flat files. Robustness of the in-memory queues is addressed by the 
disk storage and replication on different brokers. Robustness of disk storage is addressed 
using conventional methods (RAID and distributed replication) for this medium. 
NaradaBrokering is currently being re-engineered [Fox05A] so that it can be deployed 
transparently as handlers for Web Service infrastructure like Axis [Axis]. By using 
NaradaBrokering or similar technology as a transport and representation handler one can 
move between the binary and classic angle-bracketed representations of SOAP messages 
without content loss. Efficient binary representations of XML Infosets have been 
developed including SOAP Message Transmission Optimization Mechanism (MTOM) 
[MTOM] and XML-binary Optimized Packing (XOP) [XOP]. We are developing 
schemes which allow two endpoints to first negotiate the best-available transport and then 
proceed to use it for transfers. To accommodate legacy systems that do not use the XML 
format, the Data Format Description Language (DFDL) [DFDL] is an XML-based 
language that describes the structure of binary and character-encoded files and data 
streams so that their format, structure, and metadata can be exposed. This can also be 
used in tandem while transferring binary data using SOAP. The NaradaBrokering 
substrate incorporates support for several transport protocols (including parallel TCP) 
that can be leveraged to provide high performance transfers of such large binary data. 
Since the substrate allows new transport protocols to be plugged in rather easily, support 
for newer transport schemes can easily be incorporated. Our work here will provide 
support for both high-performance, high volume data transport as well as data upload and 
delivery for Web-enabled devices. The substrate will also incorporate a caching scheme 
which would be suitable for supporting high-performance distributed (HLA) simulations. 
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The caching scheme will be used in reducing database access times while retrieving 
simulation events that will be delivered reliably to participating entities. 
 
There has already been interesting work in the DoD community on high performance 
XML [XSBC] with an architecture similar to ours developed by Pullen [Moen03A] with 
the XOM system developed at the C3I center at George Mason University [XOM] and an 
approach based on BEEP used by Web Enabled RTI from SAIC [XMSF3] [Pullen04A] 
[Morse04A]. 

3.10 Security 
Security is particularly important for heterogeneous distributed systems and essential for 
e-commerce and of course DoD applications of Grid (Web Service) technologies.  Grids 
require an extension of the traditional transport level security systems (such as SSL).  
Transport level security insures safe transmission of messages between two set endpoints.  
Grids on the other hand may need to pass messages through several intermediate hosts 
and may need to send messages to more than one end point. Grids thus require message-
level security in addition to simple, point to point transport level security mechanisms. 
Current Public Key and Kerberos capabilities for authentication and authorization may be 
implemented in a message-based Web Service security model whose message-based 
model has advantages over previous connection-based schemes.  This integration of Grid 
and Web Service security is still a “work in progress” and our approach should be fully 
compatible with any approaches that emerge. WS-Security [WS-Security] is expected to 
be the overall framework with WS-SecureConversation [WS-SC] used for streaming. We 
expect progress in areas like linking the Globus delegation model with Shibboleth 
[Shibboleth] and Web Services with key problems being fine grained authorization and 
support of trust across multiple services (workflow) and for the long time periods that a 
Grid application might last. NaradaBrokering has a security model [Pallickara03A] 
compatible with this emerging Web service model 
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Fig. 4: Technology Components of a Computing Grid
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3.11 Computing Services 
There are a suite of important services associated with the myriad of activities associated 
with running a job. These are sketched in fig. 4, and are comprised of the many services 
needed to support distributed computing models. As well as scheduling, planning and job 
submission familiar from Condor [Condor] and Globus [Globus-A], one needs caching 
and file management combined of course with the three services described above. File 
services include Grid flavors of shared file systems (“GridNFS”) and of data transport 
(GridFTP). 

3.12 Network Grid Services  
Network Services including monitoring, reservation and routing have not received so 
much attention but should become in future Grids as we need high performance 
deployment respecting security, resilience and reliability issues. NaradaBrokering 
integrates network performance information into its Grid messaging routing algorithms 
and the GGF has a working group NM-WG setting XML standards for network 
performance data [GGF-A]. The field is reviewed in more detail in [GapAnalysis] but is 
not discussed further here as there is little Grid specific work in the field.  

3.13 Collaborative Grids 
Collaboration or the sharing of Web services unifies areas such as Access Grid 
[AccessGrid] and Peer-to-peer networks. Rapid progress is being made and we can again 
expect greater security and robustness to result for all collaboration tools. Grids, e-
Science and CyberInfrastructure are often discussed in terms of virtual organizations 
(VO) where asynchronous and synchronous collaboration are essential to support VO’s.  
An integration of Grid, peer-to-peer, Web service and collaboration environments was 
explained in chapter 18 of [Berman03A]. A key idea is that one can make Web (and 
hence Grid) services collaborative rather straightforwardly as their state can only be 
changed by input messages and the current state is only defined by output messages. This 
led to the concept of shared input-port and shared output-port collaborative services. 
 
Anabas originally developed some of the core ideas in this area building the first 
collaboration environment [Anabas] supported by general purpose publish/subscribe 
infrastructure – initially the Java Message Service [JMS]. It was found that this 
introduced only a few millisecond overhead that was negligible and allowed a much more 
general flexible approach to collaboration than that in well known commercial products 
like Webex and Placeware or the open source VNC [Groove] [JXTA] [Centra] 
[Placeware] [WebEx] [Interwise] [VNC]. State change events are published by the 
“master” client to a topic and collaborating clients subscribe. Later CGL designed a 
sophisticated messaging environment, NaradaBrokering [NaradaBrokering], that offered 
key new capabilities including support for JMS and JXTA programming APIs, 
compatibility with Web services, fault tolerance and support of multiple protocols 
including both TCP, parallel TCP and UDP in the same publish-subscribe framework. 
Anabas is now using NaradaBrokering in its application specific products. The UDP 
transport is used in the GlobalMMCS project [GlobalMMCS] which builds a service 
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oriented audio-video conferencing system around NaradaBrokering. GlobalMMCS 
supports both Access Grid and VRVS clients [AccessGrid] [VRVS]. CGL is studying 
integration of GlobalMMCS with CEE from AFRL [McQuay04] [CEE00] and 
KnowledgeKinetics [KK] in a project funded through Ball Aerospace. The use of CGL 
XGSP technology (XML General Session Protocol) to support dynamic collaborative 
environment with multiple roles is very promising [XGSP].  

4 Grids of Grids 
In [GofG], we introduced the concept of Grids of Grids of Simple Services”. Here we 
review and extend this and show how it can address several issues of importance to DoD 
including the “right sizing of services”, “an architecture for dealing with legacy systems” 
and a “strategy for modularizing the design and implementation of systems (grids)”. 
 
Consider any (software) problem you like and imagine how it would look in a traditional 
approach of a decade or so ago. One would get monolithic chunks of software in some 
language like C++ or ADA. This would be divided into methods or subroutines and we 
would be instructed to build it in modular fashions using libraries and well defined 
interfaces. As technologies developed we added new languages like Java and better 
software engineering processes which still however focused on modularity within a 
chunk of software divided into objects and/or components. For example you will find this 
software structure if you inspect well known open source projects such as Linux or the 
Java at the Apache site [Apache] . One can convert such code into services by specifying 
each of interfaces in XML and providing a Web Service wrapper. This activity is 
important for jump starting our collection of services but I would view it as only 
appropriate for legacy systems and a less than optimal approach to new software systems. 
For example looking at the many different Apache projects, one will find many related 
but different implementations of common subservices like security, file access and user 
profile. Building a system combining several projects would often require an integrated 
approach to common services like security. This would be relatively easy if the 
implementation of each subservice like security was a separate Grid service with well 
defined message-based interfaces. However with traditional approach, the typical 
subservice can have an external message-based interface but unfortunately in addition 
many internal method linkages to other parts of the software chunk where typically it is 
hard to serialize the arguments. Thus subservices like security cannot be extracted from 
the glob and it is very hard to use components such traditional software systems even if 
they run excellently with service interfaces.  
 
The above discussion allows us to identify a strategy for defining what we term simple 
services. Start by examining the different capabilities of one’s systems. Services are 
distributed components that have distinct functionality – especially functionality that is 
usefully shared among different uses. Services must be able to achieve acceptable 
performance when implemented with message based interfaces and distributed platforms. 
There is an inevitable difference in overhead between message and method based 
interactions; messages could experience 100’s of milliseconds in network latency while 
the internal method calls have a fraction of a millisecond overhead. We define simple 
services as those that are as small as possible given the performance implications from 
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the decomposition. Such simple services are then the unit for which one uses traditional 
programming models and languages. This is the proposed strategy for “right-sizing” 
services. 
 

Overlay
and Compose
Grids of Grids

Methods Services Functional Grids

CPUs Clusters Compute
Resource Grids

MPPs

Databases Federated
Databases

Sensor Sensor Nets

Data
Resource Grids

Fig. 5: Composing Functionality and Resources in the Grid of Grids

In fig. 5, we suggest a packaging and coupling approach that generalizes and distributes 
that familiar from the traditional software hierarchy:  
lines of code  methods (subroutines)  objects (programs)  packages (libraries).  
A single simple service is the smallest grid but we can integrate like simple services into 
library grids. These sub-grids are then composed into a complete “Grid of Grids” 
implementing the full system. Fig. 5 shows how database, sensors and compute nodes 
(abstracted as simple services representing “simple resources”) can be federated, 
networked and clustered into larger units. 
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As a particular example of a Grid of Grids, Fig. 6 illustrates how one can share 
component Grids between critical infrastructure applications and DoD’s NCOW 
[Fox05D]. The Department of Homeland Security has identified critical infrastructures 
that include Agriculture and Food, Water, Health, Industrial and Defense Base, 
Telecommunications, Energy, Transportation, Banking and Finance, Chemical Industry 
and Hazardous Materials, Postal and Shipping. The critical atomic Grids in this case 
include those for sensors, GIS, visualization, computing and collaboration. We also need 
of course the core Grid shown at the bottom of the figure with services like security, 
notification and meta-data. These atomic Grids can be re-used as shown in figure 6 in all 
critical infrastructure Grids and illustrate the important interoperability principles with 
which Grids are built. These CI(Critical Infrastructure) Grids are in turn customized, 
composed and overlaid with other Grids (such as weather, census data) for different  CI 
communities. This way one generates Grids aimed at Public Health, Emergency 
Response (Command and Control) or Crisis Grids, Infrastructure Planning, Education 
(schools) and Training (of managers and first responders). Clearly the Grid of Grids 
concept can be applied recursively and dynamically. 
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Fig. 7: Mediation and Transformation in a 
Grid of Grids and Simple Services
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Note that both simple services and grids interact with the outside environment through 
messages and these messages are the only way to both impact and learn about the service 
or grid. For Web service based grids these messages are defined by the WSDL – where 
for grids this WSDL is the concatenation of the WSDL of all its external interfaces. Note 
that in this view all that counts are “outward facing” interfaces. Internal interfaces need 
not be specified to use a given grid. In particular these internal interfaces could use 
different flavors of Web service specification or totally different technology – methods, 
Java RMI, CORBA etc. Examples of different Web service flavors are WSRF or WS-I+ 
based systems [WSRF] [WSGrids] or more simply the two flavors of reliable messaging 
in [WS-Reliability] and [WS-RM]. If we assume that we use a message-oriented-
middleware (MOM) implementation then all messages entering a particular simple 
service or grid is explicitly handled and can be transformed to confirm to the internal 
conventions of this grid as illustrated in fig. 7. This gives us a clear strategy for legacy 
systems – one identifies their outward facing Grid interfaces, defines in WSDL and 
builds a set of transformations that map between the system-wide Grid standards and 
those used internally. The same idea can be used to build virtual private grids 
generalizing VPN’s to grid systems [Fox04B] and so ensuring particular security policies 
within a given subgrid. More generally support of hierarchically constructed grids of 
heterogeneous components gives a robust software engineering strategy with a modular 
software model. 
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