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 In 1906 the great San Francisco earthquake and fire destroyed much of  
the city. As we approach the 100 year anniversary of this event, a critical concern 
is the hazard posed by another such earthquake.  In this paper we examine the 
assumptions presently used to compute the probability of occurrence of these 
earthquakes.  We also present the results of a numerical simulation of interacting 
faults on the San Andreas system.  Called Virtual California, this simulation can 
be used to compute the times, locations and magnitudes of simulated earthquakes 
on the San Andreas fault in the vicinity of San Francisco.  Of particular 
importance are new results for the statistical distribution of interval times 
between great earthquakes, results that are difficult or impossible to obtain from 
a purely field-based approach. 
 
  The great San Francisco earthquake (18 April 1906) and subsequent fires killed 

more than 3,000 persons, and destroyed much of the city leaving 225,000 out of 

400,000 inhabitants homeless. The 1906 earthquake occurred on a 470  km segment of 

the San Andreas fault that runs from the San Juan Bautista north to Cape Mendocino 
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(Fig. 1) and is estimated to have had a moment magnitude 7 9m ≈ .  (1).   Observations 

of surface displacements across the fault were in the range 2 0 5 0. − .  m (2).  As we 

approach the hundredth anniversary of the great San Francisco earthquake, a timely 

question is the extent of the hazard posed by another such event, and how this hazard 

may be estimated.   

 

 The San Andreas fault is the major boundary between the Pacific and North 

American plates, which move past each other at an average rate of 49  mm yr 1−  (3), 

implying that to accumulate 2 0 5 0. − .  m of displacement, 40 100−  years are needed. 

One of the simplest hypotheses for the recurrence of great earthquakes in the San 

Francisco area is that they will occur at approximately these 40 100−  year time 

intervals. This would indicate that the next earthquake may be imminent. However, 

there are two problems with this simple “periodic” hypothesis. The first is that it is now 

recognized that only a fraction of the relative displacement between the plates occurs 

on the San Andreas fault proper. The remaining displacement occurs on other faults in 

the San Andreas system, which in northern California is primarily in the east San 

Francisco Bay region, on the Hayward and Calaveras faults (see Fig. 1). Hall et al. (4) 

concluded that the mean displacement rate on just the northern part of the San Andreas 

Fault is closer to 24  mm yr 1− . With the periodic hypothesis this would imply 

recurrence intervals of 80  to 200  years.  

 

 The second and more serious problem with the periodic hypothesis involves the 

existence of complex interactions between the San Andreas Fault and other adjacent 

faults. It is now recognized (5-7) that these interactions lead to chaotic and complex 

non-periodic behavior so that exact predictions of the future evolution of the system are 
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not possible. Only probabilistic hazard forecasts can be made.  For the past fifteen years 

a purely statistical approach has been used by the Working Group on California 

Earthquake Probabilities (WGCEP) (8-11) to make risk assessments for northern 

California. Their statistical approach is a complex, collaborative  process that uses 

observational data describing earthquake slips, lengths, creep rates and other 

information on regional faults as inputs to a San Francisco Bay Regional fault model.   

Using their forecast algorithm, the WGCEP (11) found that the conditional probability 

for earthquakes having 6 7M ≥ .  during the 30 year period 2002–2031 is 18.2%.  

 

 As described in the WGCEP (11) report, the critical assumption in computing 

the hazard probability is the choice of probability distribution, or renewal model. In 

their study, distributions the WGCEP (11) utilized include the Brownian passage time 

(BPT); the log normal; the Poisson; and the empirical model (a variation on the Poisson 

model).  The means and standard deviations of the distributions for event times on the 

fault segments were constrained by geological and seismological observations.  

 

Virtual California 

 In this paper, we present the results of a topologically realistic numerical 

simulation of earthquake occurrence on the San Andreas fault in the vicinity of San 

Francisco.  This simulation, called Virtual California, includes fault system physics 

such as the complex elastic interactions between faults in the system, as well as friction 

laws developed with insights from laboratory experiments and field data.  

Simulation-based approaches to forecasting and prediction of natural phenomena have 

been used with considerable success for weather and climate. When carried out on a 

global scale these simulations are referred to as General Circulation Models (12,13). 
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Turbulent phenomena are represented by parameterizations of the dynamics, and the 

equations are typically solved over spatial grids having length scales of tens to 

hundreds of kilometers. Although even simple forms of the fluid dynamics equations 

are known to display chaotic behavior (5), general circulation models have repeatedly 

shown their value. In many cases ensemble forecasts are carried out, which use 

simulations computed using multiple models to test the robustness of the forecasts.  

 

 The Virtual California simulation, originally developed by Rundle (14), 

includes stress accumulation and release, as well as stress interactions between the San 

Andreas and other adjacent faults. The model is based on a set of mapped faults with 

estimated slip rates, prescribed long term rates of fault slip, parameterizations of 

friction laws based on laboratory experiments and historic earthquake occurrence, and 

elastic interactions. An updated version of Virtual California (15-17) is used in this 

paper. The faults in the model are those that have been active in recent geologic history. 

Earthquake activity data and slip rates on these model faults are obtained from geologic 

databases of earthquake activity on the northern San Andreas fault. A similar type of 

simulation has been developed by  Ward and Goes (18) and Ward (19).   A consequence 

of the size of the fault segments used in this version of Virtual California is that the  

simulations do not generate earthquakes having magnitudes less than about 5 8m ≈ . .  

 

 Virtual California is a backslip model - the loading of each fault segment occurs 

due to the accumulation of a slip deficit at the prescribed slip rate of the segment. The 

vertical rectangular fault segments interact elastically, the interaction coefficients are 

computed by means of boundary element methods (20).  Segment slip and earthquake 

initiation is controlled by a friction law that has its basis in laboratory-derived physics 
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(17, ).  Onset of initial instability is controlled by a static coefficient of friction.  

Segment sliding, once begun, continues until a residual stress is reached, plus or minus 

a random overshoot or undershoot of typically 10%.  Onset of instability is also 

possible by means of a stress-rate dependent effect, in that segment sliding can initiate 

if stress on a segment increases faster than a prescribed value due to failure of a nearby 

segment.  Finally, the friction law used in Virtual California also includes a term that 

promotes a small amount of stable segment sliding as stress increases.  This latter term 

has been shown to promote stress-field smoothing along neighboring segments, 

offsetting the stress-roughening effects of increasing fault complexity, and allowing 

larger earthquakes to occur.  To prescribe the friction coefficients we use historical 

earthquakes having moment magnitudes 5 0m ≥ .  in California during the last 200∼  

years (17).   

 

 The topology of Virtual California is shown in Fig. 1 superimposed on a 

LandSat image. The 650 fault segments are represented by red, blue, and yellow lines. 

The combined blue and yellow lines represent the San Andreas fault, stretching from 

the Salton trough in the south to Cape Mendocino in the north. The yellow line 

represents the “San Francisco section” of the San Andreas fault, about 250 km in length, 

which is the section of the fault whose rupture would be strongly felt in San Francisco 

and is considered in this paper.  

 

 Our goal is to forecast waiting times until the next great earthquake on the 

yellow section of the fault for two minimum magnitudes: (i) 7 0SFm = .  and (ii) 

7 3SFm = . .  It should be emphasized that the magnitude mSF  is based only on the slip of 

the earthquake over the San Francisco section of the San Andreas fault.  An earthquake 
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with a particular value of  mSF  might actually have a "total" magnitude m > mSF  if the 

rupture includes segments outside the San Francisco section, so that the magnitude m is 

based on the extent of the entire rupture.  We also note that Virtual California does 

produce earthquakes on the northern San Andreas fault having magnitudes m ~ 7.8 to 

7.9, but these seem to occur at intervals of  ~ 700 years or longer.  We have generally 

found that the complex fault interactions in this region tend to inhibit the occurrence of 

great earthquakes on the northern San Andreas fault, representing interesting physics 

that needs further study. 

 

 Using standard seismological relationships (21), we estimate that an earthquake 

having 7 0SFm = .  with an average slip of 4 m and a depth of 15 km would rupture a 

20 km length of fault. With similar conditions, an earthquake having 7 3SFm = .  would 

rupture a 66 km length of fault. Earthquakes like these would produce a considerable 

damage, destruction, and injury in San Francisco.  

 

 Using Virtual California, we advance our model in 1 year increments, and 

simulate 40,000 years of earthquakes on the entire San Andreas Fault system. We note 

that although the average slip on the fault segments and the average recurrence intervals 

are tuned to match the observed averages, the variability in the simulations is a result of 

the fault interactions. Slip events in the simulations display highly complex behavior, 

with no obvious regularities or predictability.  

 

 In Fig. 2, we show examples of the distribution of earthquakes on the "San 

Francisco Section" of the San Andreas fault for a 3000 year period.  The left panel 

shows the slip in each earthquake as a function of distance along the fault from Fort 
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Ross (FR) in the north to San Juan Bautista (SJB) in the south.  The center panel shows 

the moment magnitudes associated with each of the events at left.  The 

frequency-magnitude distribution of earthquakes for a 40,000 year simulation of events 

on this section of fault, including the 3000 year interval illustrated, are shown at right.   

 

 One output of our simulations is the distribution of surface displacements 

caused by each model earthquake. Synthetic aperture radar interferometry (InSAR) is 

routinely used to obtain the coseismic displacements that occur after earthquakes (22). 

The displacements associated with two sets of our model earthquakes are illustrated in 

Fig. 3 as interferometric patterns. Each complete interferometric fringe color cycle 

corresponds to a displacement along the line-of-sight to the hypothetical spacecraft of 

56 mm.  

 

Earthquake Risk 

 A quantitative output of our simulations is the statistical distribution of time 

intervals between successive great earthquakes on a given fault or group of faults.  For 

the northern section of the San Andreas fault near San Francisco, this distribution is 

required if the risk of future earthquakes on the fault is to be specified.  We associate the 

properties of this distribution directly with the elastic interactions between faults, 

which are an essential feature of our model.  Current estimates of risk are based on the 

observed statistics of fault intervals.  However, Savage (23) has argued convincingly 

that actual sequences of earthquakes on specified faults are not long enough to establish 

the statistics of interval times with the required reliability.  

 

    In the WGCEP (11) report, several probability distributions are proposed to 
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describe  the statistics of failure of a single geological fault segment.  The two most 

frequently used are the Brownian passage time (BPT) (24) and the log normal (LN) 

(25).  The parameters of these distributions, the mean µ and standard deviation σ for 

each geological segment are found from field data by procedures described in WGCEP 

(11).  Once the statistical distribution for a single geological segment is defined, the 

distribution appropriate for rupture of multiple geological segments is computed by 

combining the single-segment probabilities.  A critical assumption made by the 

WGCEP (9) in this procedure is that geological fault segments should be statistically 

independent and uncorrelated.  This assumption is not satisfied by Virtual California 

earthquakes, since the elastic interactions allow stress changes on one fault to alter the 

stress level and failure time of other faults.  Our numerical simulations using Virtual 

California allow us to measure both single fault segment statistics, as well as multiple 

segment statistics for arbitrary combinations of faults, fault segments, or fault systems.  

By the nature of the simulation procedure, the multiple segment probabilities include 

the effects of fault interactions.  We illustrate this approach by using numerical 

simulations to obtain interval statistics for a suite of synthetic earthquakes on the San 

Francisco section of the San Andreas fault over 40,000 years.  We then compare these 

statistics to curves computed using proposed a priori probability distributions.    

 

 We consider earthquakes on the section of the northern San Andreas fault 

shown in yellow in Fig. 1.  Over the 40,000 year simulation, we obtained 395 simulated 

7 0SFm ≥ .  events having an average recurrence interval of 101 years, and 159 

7 3SFm ≥ .  events having an average recurrence interval of 249 years.   From the 

simulations, we measured the distributions of inter-event time intervals t between great 

earthquakes on the San Francisco segment. The time t  is defined as the time interval 
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between two successive great earthquakes.  

 

 A second important distribution that we will consider is the distribution of 

waiting times ∆t until the next great earthquake, given that the time elapsed since the 

most recent great earthquake is 0t .  If we take the time of the last great earthquake to be 

1906 and the present to be 2005, we find for San Francisco 0 2005 1906 99t = − =  years. 

The waiting time t∆  is measured forward from the present, thus 0t t t= + ∆ . We will 

express our results in terms of the cumulative conditional probability 0( )P t t,  that an 

earthquake will occur in the waiting time 0t t t∆ = −  if the elapsed time since the last 

great earthquake is 0t  (26).  

 

 A probability distribution that was not considered by the WGCEP (9) is the 

Weibull distribution, which has been used widely in Japan (27-30).  Here the fraction of 

the waiting times ( 0)P t,  that are less than t  can be expressed as  

 

   ( ) 1 exp tP t
β

τ
⎡ ⎤⎛ ⎞= − − ,⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

    (1) 

 

where β  and τ  are fitting parameters. Sieh et al. (31) fit this distribution to the interval 

times of great earthquakes on the southern San Andreas fault obtained from 

paleoseismic studies with 166 1 44 5τ = . ± .  years and 1 5 0 8β = . ± . . In its extension to 

the cumulative conditional probability the Weibull distribution is given by (32)  
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   0
0( ) 1 exp t tP t t

β β

τ τ

⎡ ⎤⎛ ⎞ ⎛ ⎞, = − − .⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

   (2) 

 

Equation (2) specifies the cumulative conditional probability that an earthquake will 

have occurred at a time t  after the last earthquake if the earthquake has not occurred by 

a time 0t  after the last earthquake.  

 

 We first consider the type of statistical forecast described in the WGCEP (9) 

report.   In Fig. 4a, the solid blue line is the  cumulative probability ( 0)P t,  that a 

simulated great 7 0SFm ≥ .  earthquake will occur on the San Andreas Fault near San 

Francisco, at the time t following the last such great earthquake.   For comparison, we 

plot three other cumulative probability distributions having the same mean µ = 101 

years and standard deviation σ = 61 years as the simulation data.. The solid black line is 

the best-fitting Weibull distribution; the dashed line is the BPT distribution; and the 

dotted line is the LN distribution.   For the Weibull distribution, these values of mean 

and standard deviation correspond to 1 67β = .  and 114τ =  years.   

 

 Fig. 4b shows the same type of conditional probability as computed by the 

WGCEP (9), obtained from the simulation data in Fig 4a..  The solid blue line is then 

the simulation-based conditional probability P(to ≤ t <  to + 30 yrs | t ≥ to ) that a 

magnitude  7 0SFm ≥ . event will occur in the next 30 years, given that it has not 

occurred during the time to since the last such event.  For comparison, the solid black 

line is the corresponding conditional probability for the Weibull distribution; the 

dashed line is for the BPT; and the dotted line is for the LN.   
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 From the results shown in Fig. 4, it can be seen that the Weibull distribution 

describes the simulation data substantially better than either the BPT or LN 

distributions.  At least in Virtual California, we can conclude that among these three 

statistical distributions,  the Weibull distribution is the preferred distribution to describe 

the failure of a group of fault segments interacting by means of elastic stress transfer.     

 

 Examples of cumulative conditional distributions of interval times are given in 

Fig. 5, for 7 0SFm ≥ .  in Fig. 5a and for 7 3SFm ≥ .  in Fig. 5b.  The left-most curves in 

each figure, ( 0)P t, , are the curves that pass through 0t = .  The left-most curve in Fig 

5a is the same as the distribution of interval times given in Fig 4a.  Also included are the 

Weibull distributions from Eq. (1) that best fit the data.   For 7 0SFm ≥ .  in Fig. 5a our 

best fit for the leftmost curve requires 1 67β = .  and 114τ =  years as described above, 

and for the left most curve Fig. 5b, our best fit requires 2 17β = .  and 289τ =  years.  

 

 We next determine the cumulative conditional probabilities that an earthquake 

will occur at a time t  after the last earthquake if it has not occurred at a time 0t . We 

therefore  remove interval times that are less than or equal to 0t  and plot the cumulative 

distribution of the remaining interval times. The resulting distributions 0( )P t t,  are 

given in Fig. 5a for 7 0SFm > .  with 0 25t = , 50 , 75 , 100 , 125 , and 150  years and in 

Fig. 5b for 7 3SFm > .  with 0 50t = , 100 , 150 , 200 , 250 , and 300  years. With the 

fitting parameters β  and τ  used to fit Eq. (1) to the cumulative distributions of 

waiting times ( )P t , we again compare the predictions of the Weibull distribution for 

0( , )P t t  from Eq. (2), the smooth curves, with data from our simulations in Fig. 5, the 

irregular curves.  
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 The data given in Fig. 5 can also be used to determine the waiting times to the 

next great earthquake 0t t t∆ = −  as a function of the time since the last great earthquake 

occurred 0t . This dependence is given in Fig. 6a for 7 0SFm ≥ .  and in Fig. 6b for 

7 3SFm ≥ . . The green stars in Fig. 6 are the median waiting times t∆ , 

0 0( , ) 0 5P t t t+ ∆ = . , to the next great earthquake as a function of the time 0t  since the 

last great earthquake. These stars are the intersections of the dashed red lines with 

0( ) 0 5P t t, = .  with the cumulative distributions in Fig. 5. Also given as circles in Fig. 6 

are the waiting times for 0( ) 0 25P t t, = .  (lower limit of the yellow band) and for 

0( ) 0 75P t t, = .  (upper limit of the yellow band). The dashed red lines are the forecasts 

of risk based on the Weibull distributions from Eq. (2).  

 

 Immediately after a great earthquake, e.g., in 1906, we have 0 0t =  years. At 

that time, Figs. 5a and 6a indicate that there was a 50% chance of having an earthquake 

7 0SFm ≥ .  in the next 90t =  years, i.e., in 1996. Also at that time ( 0 0t =  years), there 

was a 50% chance of having an earthquake with 7 3SFm ≥ .  in the next 249t =  years, as 

shown in Figs. 5b and 6b.  

 

 In 2006 it will have been 100 years since the last great earthquake occurred in 

1906. The cumulative conditional distributions corresponding to this case have 

0 100t =  years. We see from Figs. 5a and 6a that there is a 50% chance of having a great 

earthquake ( 7 0SFm ≥ . ) in the next 45t∆ =  years ( 145t =  years). This is the red star in 

Fig. 6a. It can also be seen that there is a 25% chance for such an earthquake in the next 
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20t∆ =  years ( 120t =  years), and a 75% chance of having such an earthquake in the 

next 80t∆ =  years ( 180t =  years). During each year in this period, to a good 

approximation, there is a 1% chance of having such an earthquake. These figures are 

consistent with the information in Fig. 4b, which indicates a 30% chance of an  

7 0SFm ≥ .  earthquake during the period 2006-2036.   

 

 Similarly, Figs. 5b and 6b indicate that there is a 75% chance of having a great 

earthquake with 7 3SFm ≥ .  in the next 250t∆ =  years, a 50% chance in the next 

180t∆ =  years (the red star in Fig. 5b), and a 25% chance in the next 75t∆ =  years. To 

a good approximation, there is a 0.3% chance of having such an earthquake during each 

year in this period.  

 

 We see from Figs. 3-6 that the Weibull distribution that fits the distribution of 

interval times also does an excellent job of also fitting the conditional probabilities and 

the waiting times. In both simulations and in our Weibull fit, the median waiting times 

systematically decrease with increases in the time since the last great earthquake. This 

is not the case for other distributions that provide a good fit to interval times (9).   Our 

results therefore support the use of Weibull distributions to carry out probabilistic 

hazard analyses of earthquake occurrences. 

  

Discussion 

 There are major differences between the simulation-based forecasts given in 

this paper, and the statistical forecasts given by the WGCEP (11). In our approach, it is 

not necessary to prescribe a probability distribution of inter-event times. The 

distribution of event intervals is obtained directly from simulations, which include the 
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physics of fault interactions and frictional physics. Since both methods use the same 

database for mean fault slip on fault segments, they give approximately equal mean 

inter-event times. The major difference between the two methods lies in the way in 

which inter-event times and probabilities for joint failure of multiple segments are 

computed. In our simulation approach, these times and probabilities come from the 

modeling of fault interactions through the inclusion of basic dynamical processes in a 

topologically realistic model. In the WGCEP (11) statistical approach, times and 

probabilities are embedded in the choice of an applicable probability distribution 

function, as well as choices associated with a variety of other statistical weighting 

factors describing joint probabilities for multi-segment events.  

 

 It should be remarked that Fig. 2 indicates that there is a difference between 

measurements of  "earthquake recurrence of a certain magnitude" on a fault, and 

"earthquake recurrence at a site" on a fault.  Specifically, the latter is the quantity that is 

measured by paleoseismologists, who would observe very different statistics on the 

earthquakes shown in Fig. 2 (left)  if they made observations at the locations of 50 km, 

100 km and 150 km from Fort Ross.  The former includes any earthquakes that rupture 

any set of segments on the given section of fault. 

  

 A measure of the interval times is the coefficient of variation cv of the 

distribution of values.  The coefficient of variation is the ratio of the standard deviation 

to the mean vc σ
µ

≡ .   For periodic earthquakes, we have 0vcσ = = ;  for random 

(Poisson) distribution of interval times, we have σ µ=  and 1vc = .  For our 

simulations of great earthquakes on the San Francisco section of the San Andreas fault, 
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we found that 0.6vc =  for earthquakes having 7 0SFm ≥ . , and 0.48vc =  for 

earthquakes with  7 3SFm ≥ . .  These figures apply to any earthquakes on the fault 

between Fort Ross and San Juan Bautista, rather than at a point on the fault. As 

mentioned previously, Ward and Goes (18) also simulated earthquakes on the San 

Andreas fault system.  Although the statistics of the simulated earthquakes produced by 

their Standard Physical Earth Model (SPEM) are similar to those produced by Virtual 

California , there are important differences between the two simulation codes.  

Whereas Virtual California involves rectangular fault segments in an elastic half space, 

SPEM is a plain strain computation in an elastic plate of thickness H.  The friction laws 

used in the two simulations are also entirely different.  Ward and Goes (18) obtained the 

statistical properties of earthquake interval times for the San Francisco section of the 

San Andreas fault, and found 1.16vc =  for earthquakes having 7 0SFm ≥ . , and 

0.54vc =  for earthquakes with  7 5SFm ≥ . .  The two simulations therefore predict 

different variability in the occurrence time intervals of the largest events.    

 

 It is also of interest to compare the simulation results with the available 

statistical distributions of interval times for the San Andreas fault.  Paleoseismic studies 

of  7SFm = +   earthquakes on the southern San Andreas fault at Pallett Creek by Sieh 

et al (31) indicate seven intervals with 155µ =  years and 109σ =  years, hence 

0.70vc = .  This figure, which is for a single site, should be compared with those above, 

which were obtained for a ~240 km long section of fault.  A second example is the 

sequence of 6SFm = +  earthquakes that have occurred on the Parkfield section of the 

San Andreas fault between 1857 and 2004.  The seven intervals give 24.5µ =  years 

and 9.25σ =  years, and 0.38vc = .  Again, this is at a single site on a fault. 
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 The inter-event statistics we have obtained in our simulations include the 

essential features of the fault interactions and are influenced also by the quality and 

quantity of the data available to constrain the parameters for each fault segment in the 

model. If different slip rates are prescribed, the mean and median waiting times will 

change accordingly. However, the statistical distribution of waiting times is likely to 

remain unchanged.   

 

 The statistical distribution of waiting times has long been a subject of 

controversy. The Weibull distribution utilized here is one of a number of distributions 

previously proposed (32). If 1β = , the Weibull distribution of waiting times reduces to 

a Poisson distribution. Waiting times are independent of the time since the last 

earthquake (no memory). In the limit β →∞  the intervals are constant and 

earthquakes are periodic. We find 1 67β = .  for 7 0SFm ≥ .  and 2 17β = .  for 7 3SFm ≥ . . 

The larger earthquakes are more periodic and less random. The validity of the Weibull 

distribution places important constraints on future probabilistic earthquake hazard 

analyses.  

 

 In this paper we have examined the statistics of great earthquake occurrence on 

the northern San Andreas fault in the San Francisco bay region using numerical 

simulations.   For previous estimates of hazard, only purely statistical estimates have 

been made. Our approach is analogous to the simulations used to forecast the weather.  

An example of the type of statement that can be made about the seismic hazard is:  

"There exists a 5% chance of an earthquake with magnitude 7 0m ≥ .  occurring on the 

San Andreas fault near San Francisco prior to 2009 and 55% chance by 2054".  The 
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practical use of statements like this for hazard estimation using numerical simulations 

must be validated by more computations and observations.    
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Figure Captions. 
 

Fig. 1. Faults segments making up Virtual California. The model has 650 fault 

segments, each approximately 10 km in length along strike and a 15 km depth. The 

yellow and blue segments make up the San Andreas fault. In this paper we consider 

earthquakes only on the yellow “San Francisco” segment of the San Andreas fault.  

 

Fig. 2.  Illustration of simulated earthquakes on the "San Francisco section" of the San 

Andreas fault.  In the left panel, the slip is given as a function of the distance along the 

fault for each earthquake over a 3000 year period.  The center panel shows the 

corresponding moment magnitude of each of the simulated earthquakes.  The right 

panel gives the cumulative frequency-magnitude distribution during the entire 40,000 

year simulation.  The dashed line has a slope (b-value) of 1. 

 

Fig. 3. Interferometric patterns of the coseismic deformations associated with two sets 

of model earthquakes. Each complete interferometric fringe color cycle corresponds to 

a displacement of 56 mm.  

 

Fig 4.  (a)  The solid blue line is the simulation-based cumulative probability e that a 

great 7 0SFm ≥ .  earthquake will occur on the San Andreas Fault near San Francisco at a 

time t  years after the last great earthquake, just after the last great earthquake with 

7 0SFm ≥ . .   For comparison, we plot three cumulative probability distributions having 

the same mean µ = 101 years and standard deviation σ = 61 years as the simulation 

data.. The solid black line is the best-fitting Weibull distribution; the dashed line is the 

Brownian passage time (BPT) distribution; and the dotted line is the log normal (LN) 

distribution.   For the Weibull distribution, these values of mean and standard deviation 
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correspond to 1 67β = .  and 114τ =  years.   

(b)  The solid blue line is the conditional probability P(to ≤ t <  to + 30 | t ≥ to ) that a 

magnitude  7 0SFm ≥ . event will occur in the next 30 years, given that it has not 

occurred by a time to since the last such event.  The black solid line is the corresponding 

conditional probability for the Weibull distribution; the dashed line is for the BPT; and 

the dotted line is for the LN. 

 

 

Fig. 5. (a) The conditional cumulative probability 0( )P t t,  that a great 7 0SFm ≥ .  

earthquake will occur on the San Andreas Fault near San Francisco at a time t  years 

after the last great earthquake, if the last great earthquake occurred 0t  years ago in the 

past. Results are given for 0 0t = , 25 , 50 , 75 , 100 , 125 , and 150  years. Also 

included are the fits to the data of the Weibull distribution. First, the best fit of Eq. (1) to 

the complete distribution of interval times ( 0 0t = ) is obtained taking 1 67β = .  and 

114τ =  years as in Fig. 4a. These values are then substituted into Eq. (2) taking 0 25t = , 

50 , ..., 150  years. The Weibull fits are shown as colored curves. (b) Results for 

7 3SFm ≥ . . In this case we take 0 0t = , 50 , 100 , 150 , 200 , and 250  years. The best fit 

of Eq. (1) to the complete distribution of interval times ( 0 0t = ) requires 2 17β = .  and 

289τ =  years.  

 

Fig. 6. The green stars (corresponding to the 50% probability of the distributions in 

Fig. 5) and the green solid line give the median waiting times until the next great 

earthquake as a function of the time 0t  since the last great earthquake. The red star is 

the median waiting time (50% probability) from today. The yellow band represents 
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waiting times with 25% probability (lower edge of yellow band) to 75% probability 

(upper edge of yellow band). The dashed red lines are the forecast using the Weibull 

distribution in Eq. (2) (a) for 7 0SFm ≥ .  and (b) for 7 3SFm ≥ . .  
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