INTEGRATING AJAX MODELS WITH GIS VISUALIZATION WEB SERVICES
Ahmet Sayar 1,*, Marlon Pierce 1 and Geoffrey Fox 1, 2, 3, 4
1 Community Grids Lab, Indiana University, Bloomington, Indiana, 47404, USA
2Department of Computer Science, Indiana University

3Department of Physics, Indiana University

4School of Informatics, Indiana University
{asayar, mpierce, gcf}@cs.indiana.edu
ABSTRACT

The ultimate goal of Geographic Information System (GIS) [14] community working on visualization of geographical data are building the best ways and algorithms to create best quality maps in a very short time with minimum costs. The hardest problems in their path leading to their goal are performance and interoperability. Creating a map in a short time with high quality is a performance issues. Integrating vendor specific visualization applications (especially browser based) with the other GIS data and visualization services are interoperability issues. Sometimes using CPU-bound services from the third party service providers such as High Performance Computing servers gives higher performance results than using our own services. In that case, we might need an abstract interface layer integrating different services from different providers such as gateways or proxies.
As the Web platform continues to mature, we see an increasing number of amazing technologies that take our GIS visualization applications to new levels of power and usability. By integrating new technologies into our systems, most of the time, we get higher performance results wit additional functionalities. The most recent development having attention of browser based application developers is the AJAX (Asynchronous JavaScript and XML). The most famous applications embracing the AJAX model is Google Maps.

This paper presents the creation of the abstract layer for integration of Google Maps with Web Services based GIS Visualization systems; by doing that we get much more detailed images with higher resolution in a shorter time with an interoperable way. Since the created abstract integration layer is generic, it can be applied to any GIS Web Services in case of using Google’s high resolution maps.
1. INTRODUCTION
AJAX [3] is an important web development model for the browser based web applications. It uses several technologies which they come together and incorporate to create powerful new model. Technologies forming AJAX model such as XML JavaScript, HTTP and XHTML are widely used and well-known technologies. High performance Google mapping applications use this new powerful browser based application model.

Web Services [2] are self-contained, self-describing, and modular. Unlike earlier, more tightly coupled distributed object approaches such as Common Objects Request Brokers (CORBA), Web Service systems support an XML message-centric approach, allowing us to build loosely coupled, highly distributed systems that span organizations. Web Services also generalize many of the desirable characteristics of GIS systems such as standards for providing general purpose specifications for publishing, locating, and invoking services across the Web. Web Services also use widely used and well-known technologies such as XML and HTTP as AJAX does.
This paper presents an architecture to integrate Google Maps into Web Service based GIS visualization systems. By this architecture clients can communicate with these two types of servers synchronously.

Google Mapping services provide high quality satellite images in high resolution to the visualization clients in a short time. Google Map's open data formats are based on XML and this allows all sorts of GIS Web Services to be built around it. In the technical base line the integration will be based on using AJAX model in Web Services environment. We might need to make some application specific extensions to AJAX or/and Web Services without losing their standards and implementation logic. Since AJAX and Web Services are XML based structures they are able to leverage each others strength.

In this paper we first give some background information about the web technologies we have been using in our proposed architecture. These are basically AJAX, Web Services, and GIS Web Services. In order to prove our concept of integration we use OGC Web Map Service (WMS) [12] and OGC Web Feature Services (WFS) [15] as GIS Web Services. In Section 3 we mention some related works about the AJAX and Web Services. In Section 4 we first give a generic architecture for integration of any Web Services and AJAX. Then, we give sample usage scenarios to proof our integration concepts, the one is for Google and GIS Data Server (WFS) integration and the other is for Google and GIS Mapping Server (WMS) integration. In both cases, at the end, users have customized maps in which feature data are overlaid on Google Maps. Section 5 is about the future work and Section 6 is the conclusion.
2. BACKGROUND
This Section describes some background information regarding our proposed generic integration algorithms for the Google Maps and GIS Visualization Web Services. We give some theoretical background for the Google Maps and Web Services. This will give some ideas about how and what to integrate and what will be gaining as a result of integration.

Google's web mapping tools use a technology known as AJAX (Asynchronous JavaScript and XML). AJAX is a style of web application development that uses a mix of modern web technologies to provide a more interactive user experience. Since integration architecture was formed by using AJAX and Web Services in the GIS domain, here we explain their technical and theoretical structures, and advantages.

2.1. AJAX (Asynchronous JavaScript and XML)
AJAX [3] is not a technology. It is an approach to web applications that includes a couple of technologies listed below:

For binding all the technologies below and user interactions JavaScript

For styling and presentation HTML or XHTML and Cascading Style Sheets (CSS)

For returned structured document handling Document Object Model (DOM)

For data manipulation and conversion XML and XSLT

For asynchronous request sending and retrieval XMLHttpRequest as a messaging protocol
These core AJAX technologies are mature, well-known and used in web application widely. AJAX is a new model or an approach to web applications that brings some benefits to web users. These are basically:

· Eliminates the stop-start nature of interactions

· User interactions with the server happens asynchronously

· Data can be manipulated without having to render the entire page again and again in the web browser. This prevents unchanged information to be send repeatedly back and forth across the network.

· JavaScript running on the client reduces bandwidth and processing demands on the server.

· Requests and Responses over the XMLHttpRequest protocol are structured XML documents. This enables developers easily integrate AJAX applications into Web Services.

In addition to its huge advantages, AJAX has some drawbacks as well. These can be summarized as below:
· It requires users to have JavaScript enabled browsers.

· It requires developers to have good knowledge of all these incorporating technologies mentioned above.

· It has technical limitations, missing standards and narrow applicability [4].

· Since pages are dynamically updated, when back button is pushed users can lose the previous state. There are some solutions for that such as IFRAMEs but it brings a lot of details to implementation.
After Google started to develop some new applications with the AJAX, AJAX has drawn some attention in the public. Some of the major products Google has introduced over the last year by using AJAX model are Google Groups, Google Suggests, and Google Maps. Besides the Google products Amazon also have used AJAX approach in its search engine application. These projects demonstrate that AJAX is not only sound technically, but also practical for real world applications.
You can use AJAX in your web applications just by writing your own custom JavaScript codes that directly use the XMLHttpRequest protocol's API. At that time you should be careful for the coding and implementation differences between different web browsers. The other way that a client can use is that some newly developed libraries providing higher level AJAX services and hide the differences between browsers. Among these are DWR, Prototype, Sajax, and AJAX.NET.

2.2. OGC GIS WEB SERVICES

The Open Geospatial Consortium (OGC) [1] defines a number of standards, both for data models and for online services, that has been widely adopted in the GIS community. OGC is a non-profit, international standards organization that is leading the development of standards for geographic data related operations and services. OGC has variety of contributors from different areas such as private industry and academia to create open and extensible software application programming interfaces for GIS.

GIS introduce methods and environments to visualize, manipulate, and analyze geospatial data. The nature of the geographical applications requires seamless integration and sharing of spatial data from a variety of providers. To solve the interoperability problems, the OGC has introduced standards by publishing specifications for the GIS services.

The emergence of Web Service technique overcomes the shortcoming of traditional Distributed Object technique and provides the interoperable capability of cross-platform and cross-language in distributed net environment. GIS services will be implemented more extensively by using Web Service approach. A spatial data infrastructure lets many GIS vendors share data stores and applications in a distributed environment. GIS basically involves the integration of data and services from multiple sources from different vendors. The Web services architecture establishes a standard interconnection rules between services and information clients that nicely support the dynamic integration of data, which is the key to creating a spatial data infrastructure. By introducing Web Services, distributed GIS services from different vendors can be dynamically integrated into the GIS applications using the interoperable standard communication protocols of the Web Services.

Porting OGC services to Web Services will offer several key benefits, including:

Distribution: It will be easier to distribute geospatial data and applications across platforms, operating systems, computer languages, etc. They are platform and language neutral.

Integration: It will be easier for application developers to integrate geospatial functionality and data into their custom applications. It is easy to create client stubs from WSDL files and invoke the services.

Infrastructure: We can take advantage of the huge amount of infrastructure that is being built to enable the Web Services architecture – including development tools, application servers, messaging protocols, security infrastructure, workflow definitions, etc [5]. Some of these features are being developed by using Web Service infrastructure in NaradaBrokering [6, 7], message based middleware system, developed in CGL (Community Grids Lab.) at Indiana University. NaradaBrokering aims to provide a unified messaging environment that integrates grid services, web services, peer-to-peer interactions and traditional middleware operations. In the near future we will be utilizing these features in GIS visualization systems.

The most commonly used and well-known OGC GIS services are GIS Mapping Services and GIS data services. OGC call mapping services as Web Map Services (WMS) and data services as Web Feature Services (WFS) and Web Coverage Services (WCS) [13]. WFS provides feature data in vector format encoded in Geographic Markup Language (GML) and WCS provides coverage data.
3. RELATED WORK

We grouped related works into three different areas. These are GIS Web Services, AJAX and GIS, and AJAX and Web Services. In this Section we mention about these works roughly.
Regarding to the GIS Web Services, the best known ones are OGC and ESRI, and there are some other big companies such as Cubewerx, Demis and Intergraph as well. ESRI produced ArcWeb service package for the GIS Web Services by using UDDI for the catalog and registry services. Cubewerx, Demis and Intergraph provide WMS transparent access to their Web Service mapping applications. OGC is actually a consortium and a standards body defining and publishing standards for the GIS services interfaces. One of its newly published standards is Web Services Common Implementation Specifications. Our GIS Web Services are not totally compatible with the OGC Web Services standards but we will be working on it in the near future. At the interface level we have some simplifications for the return data types but all the other details are almost compatible such as schema files for the requests and geo-data representations -GML schemas.

Regarding to AJAX-GIS, the best known ones are Google Map and Ka-Map [10, 11]. The recent popularization of certain web technologies used by Google Maps encouraged the development of more interactive web mapping techniques. One of these is ka-Map. Ka-Map is AJAX-based web mapping sites using an open source web mapping toolkit. ka-Map uses the MapServer [9] mapping server behind the scenes with AJAX and PHP to serve up the map content. MapServer prepares the map images, ka-Map serves them to the web browser. ka-Map also caches (saves copies of) maps as they are created by MapServer through the AJAX web model. When the same area on the map is viewed again, MapServer sits idle while ka-Map grabs the cached map image tiles. Ka-Map has one big difference compared to Google, instead of using its own mapping servers it uses MapServer Mapping Servers.
Regarding to AJAX and Web Services, ECMAScript for XML E4X is the only one. E4X is a simple extension to JavaScript that makes XML scripting very simple. It is actually the official name for JavaScript. The European Computer Manufacturers Association (ECMA) is the standards body where JavaScript is standardized E4X uses all other incorporated AJAX technologies without extension.

Via the E4X you don’t have to use XML APIs such as DOM or SAX. XML documents become one of the native types that JavaScript understands. You can update XML document from the JavaScript very easily. These properties of E4X enables creating calls to Web Services from the browser, but the only browser that supports E4X so far is the developer release of Mozilla 1.8.

Using E4X helps to interact with Web Services but again it is just an extended version of JavaScript. Some issues regarding how to put request in SOAP message and how to manipulate returned soap messages are still complicated. If you use E4X for you web application based on AJAX model you can not use the application on every browser. This is another drawback of the system.

In our approach you don’t have to extend any technology involved in AJAX model. We use all the technologies in AJAX as they are. This gives the developers and users the ability to integrate and customize their applications easily.
4. INTEGRATION ARCHITECTURE
Google Mapping Services can be integrated with OGC GIS Web Services such as WMS, WFS and WCS. In this Section we describe the generic integration algorithm for the mapping client side. There are three main actors in the integration architecture. These are; visualization client, GIS Web Services and Google Mapping Server. Client can be WMS or Google Map client. It can also be categorized as thin or thick depending on the communicated GIS Web Services. If it is visualization service such as WMS then to be thin is enough but if it is just data server such as WFS which provides row data, then client needs to make map image rendering, in other words it should have some additional functionalities. Thick clients have some light-Mapping Services deployed.
GIS Web Services that mention here are OGC compatible Web Services. As we mentioned before in Section 3, these services are not totally OGC compatible, there are some differences.

Google Mapping Server provides maps as remote script objects by using AJAX and XMLHttpRequest protocol. Web Services use SOAP, XML based messaging protocol for the message exchange.

4.1. Generic Integration

[image: image1.emf]Google

Mapping Server

W

S

D

L

USER INTERFACE

JAVASCRIPT, HTML,

XHTM, CSS

PROXY JSP

jb.doTask(req,resp);

Web

Service

Client Stubs

Req-Resp

Handlers

JavaBean

GIS

WEB Services

Figure 1: Invoking Web Services from the AJAX applications.
Client browser makes a request to the server broker (via a JSP page), which in turn makes a request to the Web Service by using previously prepared Web Service client stubs. The response from the Web Service is then transformed by the service broker, and presented to the client browser. Below we will go in more detail to explain all these steps.
We first create XMLHttpRequest object to make remote scripting call.
· var http = new XMLHttpRequest();
Then, define end point to make call.
- var url = “proxy.jsp”;
Then, we make a call by the user given parameters to remote end point.
- http.open(“GET”, url+”?bbox=“+bbox+…[other parameter-value pairs]……)

proxy.jsp is a intermediary page to capture HttpServletRequest and HttpServletResponse objects. Since it is a local page created to imitate a remote server responding AJAX requests over XMLHttpRequest protocol, URL is set to file name without using http:// tag. Proxy JSP includes just one line of codes to forward the HttpServletRequest and HttpServletResponse parameters coming from the first page via XMLHttpRequest protocol by making the “open” call on XMLHttpRequest object. This first page is user interface page that includes some JavaScript, XHTML, CSS and JSP depending on the applications purposes.

proxy.jsp does
<%JavaBeanClassObj.DoSomething(request, response)%>

JavaBeanClass is a class which handles creating appropriate requests by using its req-resp handlers and Web Service client stubs. Req-Resp handler also handles receiving and parsing response object coming from GIS Web Services interacted with.
After having received response from the GIS Web Service, JavaBeanClass sets the response object (HttpServletResponse type).
- PrintWriter pw = response.getWriter();

- pw.write(response);

XMLHttpRequest object at the user interface page captures this value by making a call as below

-http.onreadystatechange = handleHttpResponse

This generic integration architecture can be extended for different GIS Web services. Since return types of each GIS services are different and they provide different service API, you need to handle application specific implementations and requirements.
As usage scenarios, we cover WMS and WFS for the proof of integration concepts in Section 4.2.
4.2. Usage Scenarios

 – Integrating Google Maps with GIS Visualization Systems
Integration is basically coupling AJAX actions with the Web Services invocations, and synchronizing the actions and returned objects from the point of end users. These usage scenarios given below use generic integration architecture displayed above with some application specific extensions. Differences come from the creating Service specific requests according to the service provider’s service API published as WSDL, or handling returned data to display on the screen or using in an intermediary actions.
4.2.1. Google’s AJAX Integration with WMS

There are two different path working in parallel by the given user parameters created by the client actions. Actions are interpreted by the browser through the Google Mapping tools. JavaScript captures these actions by ActionListeners and Google Binding APIs and gives to Layer-2 object. Please see the Figure 2.
On the browser user interface class is a JSP page. It includes two JavaScript class-references. One is for Google Map object and the other is for WMS map image and bindings to Google Map object.

Interconnection for creating Layer-2 is done in accordance with the proposed architecture defined above in Figure 1. For Layer-1, classic Google mapping application is used through the AJAX web application module and XMLHttpRequest protocol. Google handles creating map by using XMLHttpRequest and given remote JavaScript file in the browser [4].

When we use this type of interaction interface to WMS, we can utilize all the OGC compatible functionalities of the WMS such as getMap, getCapabilities and getFeatureInfo. Client is going to be thin client; it just takes the map and overlay over the Google map. Overlay is done by using some advanced JavaScript techniques. Client does not need to make rendering or mapping jobs to create map image. Map is already returned by the WMS and in the ready to use format such as jpeg or png or tiff. Return type is defined in a parameter in the getMap request given to WMS. These images in different formats are converted to JavaScript object before overlaying.
For the sample user interface and outputs please see the Figure 4.

[image: image2.emf]Google Gmap

Object

Image as jpeg from

WMS

User Synchronized Actions

WMS

at CGL

W

S

D

L

Req: g

etMap in

SOAP

R

esp: Map I

mage

Google

Mapping Server

AJAX

 -Remote scripting

Resp: Gmap Obj

Layer-2

Layer-1

Figure 2: Integration of Google Maps with OGC WMS by using architecture defined in Figure 1.
4.2.2. Google’s AJAX Integration with WFS
WFS provides feature data in vector format and vector data are encoded in GML according to OGC WFS specifications and depending on the parameters given in the getFeature request. GML is an XML encoding for the transport and storage of geographic information, including both the geometry and properties of geographic features.

[image: image3.emf]Google Gmap

object updated with

GML geometry

elements

User Actions

With Google Tools

WFS

at CGL

W

S

D

L

getFeature R

eq. in SOAP

Return: GML in SOAP

Google

Mapping Server

AJAX -Re

mote scripting

Return: Gmap Obj

Figure 3: Integration of Google Maps with OGC WFS by using architecture defined in Figure 1.
In response to getFeature request, The GML file encoded in XML is returned in a SOAP envelope as a response to this request. After getting response, client extracts geometry elements. The most important and commonly used geometry elements are Points, LineStrings, LinearRings, and Polygons.
Even though Google Mapping API supports just two of them, Points and LineStrings, the other geometry elements can also be converted to these two types with minor updates. Having extracted and obtained geometry elements, these elements are plotted over the Google Map by using GPoints and GPolylines objects and mapOverlay function of the Google Map API.
By setting returned GML’s non-geometry elements and using GMarker object of the Google API, this architecture also provides getFeatureInfo functionalities of the OGC WMS services. All these tasks are achieved by using XMLHttpRequest API and JavaScript functionalities.

XMLHttpRequest uses DOM for parsing returned structured responses in XML. If returned data is oversized for the server then DOM parser throws out of Memory exception.In order to overcome this drawback of the DOM and Google Map we have used Pull Parsing via. After parsing and handling GML documents returned from WFS, result is written into the web browsers response object. Through the responseXML call of the XMLHttpRequest in JavaScript, browser gets the result and makes appropriate modification to the data and display on the screen.
[image: image4.jpg]
Figure 4: A user interface and a sample output of the proposed integration architecture.
5. FUTURE WORK
In the future, we will be working on the performance issues of the architecture. Google Map provide the map data in an efficient time, but WMS and WFS Web Services returns the data in a much longer time. This is because of the characteristics and sizes of the geographical data [12] and some CPU and time consuming rendering algorithms to produce the map images. Since we do not have high performance servers and private networks we need to consider improving the performance in different ways. For that purpose, we will be using streaming version of the WMS and WFS to get geographic data in the form of image and GML correspondingly by using message middleware systems such as NaradaBrokering, message based middleware system, developed in CGL (Community Grids Lab.) at Indiana University. NaradaBrokering provides some features that are important in GIS area. These are Quality of Service (QoS) and security profiles for sent and received messages, interface with reliable storage for persistent events, reliable delivery via WS-Reliable messaging, fault tolerant data transport, support for different underlying transport implementations such as TCP, UDP, Multicast, SSL, RTP, HTTP, discovery service to find nearest brokers / resources (efficient routing). For our ongoing work please have a look at our official project page, crisisgrid [8].
6. CONCLUSION
If GIS visualization client uses Web Services from the desktop browser application and Web Services are capable of responding fast enough then using AJAX model for calling Web Services gives high performance increases. Since both AJAX and Web Services uses XML based protocols for the request and responses, they leverage their advantages. AJAX uses XMLHttpRequest protocol and Web Services uses SOAP protocol for exchanging messages. This enables application developers easily integrate AJAX based browser applications into Web Services.
Using just Google Maps has some disadvantage in extracting and displaying the information about the specific feature selected by clicking on the map. By using GIS Web Services at the same application and assigning this part to WMS, we eliminated the Google Maps’ this drawbacks and made it much faster. Since Google Map API uses DOM parsing, if the data size is oversized for the server it is impossible to parse and get feature information from the large geographic data set represented in structured XML data such as GML. By integrating GIS Web Services into the visualization application and using Pull Parsing techniques we can easily eliminate this drawback.
In our proposed architecture design implementation, we have not modified or extended any technologies in AJAX model and Web Services. By using the same theological standards, you can integrate any GIS Web Services into your visualization applications just by doing some application specific extensions such as creating requests according to service API of the Web Service and handling the returned objects.
REFERENCES

[1] OGC (Open Geospatial Consortium) official web site http://www.opengeospatial.org/
[2] Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., and Orchard, D. “Web Service Architecture.” W3C Working Group Note, 11 February 2004. Available from http://www.w3c.org/TR/ws-arch
[3] Jesse James Garret, Ajax: A New Approach to Web Applications. http://www.adaptivepath.com/publications/essays/archives/000385.php
[4] Murray G., “Asynchronous JavaScript Technology and XML (AJAX)
With Java 2 Platform, Enterprise Edition”

http://java.sun.com/developer/technicalArticles/J2EE/AJAX/
[5] Jerome Sonnet, Charles Savage. OGC Web Service Soap Experiment Report 0.8 Document#03-014, Jan 2003.

[6] Message based middleware project at Community Grids Lab, Project Web Site: http://www.naradabrokering.org/
[7] Pallickara S. and Fox G., “NaradaBrokering: A Distributed Middleware Framework and Architecture for Enabling Durable Peer-to-Peer Grids” ACM/IFIP/USENIX International Middleware Conference Middleware-2003, Rio Janeiro, Brazil June 2003
[8] GIS Research at Community Grids Lab, Project Web Site: http://www.crisisgrid.org
[9] MapServer official web site http://ms.gis.umn.edu/.
[10] Ka-Map official web site http://ka-map.maptools.org/.
[11] Tyler Mitchell, “Build AJAX-Based Web Maps Using ka-Map”
http://www.xml.com/pub/a/2005/08/10/ka-map.html.
[12] de La Beaujardière, J. editor, 2002. Web Map Service Implementation Specification, Version 1.1.1, OGC 01-068r3. http://www.opengis.org/techno/specs/01-068r3.pdf

[13] Evans, J. eds, 2003. Web Coverage Service Implementation Specification, OpenGIS® Project Document OGC 03-065r6, http://www.opengis.org/docs/03-065r6.pdf
[14] ISO, 2001. ISO 19119: Geographic Information – Services. http://www.isotc211.org.
[15] Vretanos, P. A. editor, 2002. Web Feature Service Implementation Specification, Version 1.0.0 OGC 02-058. http://www.opengis.org/techno/specs/02-058.pdf.
* 	Corresponding author.

_1189013237.vsd
Google Gmap object updated with
GML geometry elements

User Actions
With Google Tools

_1189027582.vsd

_1188957760.vsd
text

USER INTERFACE

JAVASCRIPT, HTML, XHTM, CSS

PROXY JSP
jb.doTask(req,resp);

Web Service Client Stubs

Req-Resp
Handlers
JavaBean

