Distributed Web Mapping and
Streaming Map Movie Services
Ahmet Sayar 1, 2, *, Galip Aydin1, 2, Hasan Bulut1, 2, Geoffrey Fox 1, 2, 3, 4, and Marlon Pierce 1

1 Community Grids Lab, Indiana University, Bloomington, Indiana, 47404, USA
2Department of Computer Science, Indiana University

3Department of Physics, Indiana University

4School of Informatics, Indiana University
{asayar, gaydin, hbulut, gcf, mpierce}@cs.indiana.edu
ABSTRACT
WRITE SOMETHING HERE ….
1. INRODUCTION
The Open Geospatial Consortium (OGC) defines several related standards for the representation, storage, and retrieval of geographic data and information. Regarding to visualization services it basically defines and publishes standardization and implementation specifications for Web Map Service (WMS), Web Feature Service (WFS), Web Coverage Service (WCS) and Web Registry Service (WRS). The Web Map Service (WMS) [Beaujardiere2002] produce maps from the geographic data. Geographic data are kept in Web Coverage Server (WCS) and/or Web Feature Service (WFS) or other WMSs. WCS stores raster data in image tiles and WFS stores feature vector data in GML formats. WMS produces maps from these raw geographic data upon requests from the WMS clients. These maps are the static representations of geospatial data. Representations are in pictorial formats such as PNG, SVG, JPEG, GIF, etc.
Standard map servers produce static images, but many type of geographic data are time dependent. In order to understand geographic phenomena and characteristics of temporal data it is necessary to examine how these patterns change over time for these types of data. We are therefore investigating the problems of creating streaming video map servers based upon appropriate standard collaboration technologies [Wu2004].
In our approach, visualizing changes over time is achieved by integrating temporal information on a map. Usually the result is a series of static maps showing certain themes at different moments. In addition to creating static maps, WMS also has the ability to combine the static maps correspond to a specific time interval data and combine them in an animated movie. Movies created by WMS are composed of a certain number of frames. Each frame represents a static map that corresponds to a time frame defined in request.

All the services participating in the proposed architecture are Web Services. System utilizes all the advantages of the Web Services such as easy integration, using widely acceptable technologies, cross-platform, cross-language etc. However, because of the characteristics of the geographic data and Web Services message exchange protocol, SOAP, there are performance limitations if we use the current SOAP approaches to integrate Geographic Information Systems (GIS) applications with Web Service based collaboration systems, especially for the multimedia GIS applications such as displaying streaming map movies. To overcome this type of performance issues we created streaming version of Open Geospatial Consortiums (OGC)’s Web Map Service (WMS) for creating both static maps and map movie streams composed of more than one static map. Streaming data transfer is enabled by using Community Grids Lab’s Naradabrokering messaging middleware. The Naradabrokering messaging substrate enables scalable, fault-tolerant, distributed interactions between entities, and is based on the publish/subscribe paradigm. The Naradabrokering substrate provides support for transport protocols such as TCP, Parallel TCP, UDP, Multicast, HTTP and SSL; it also facilitates communications across NAT and firewall/proxy boundaries.
2. BACKGROUND
We produce map animations in the form of streaming map videos similar to ones you see in the weather cast web sites or weather news. Maps are produced from geographic data provided by WFSs, WCSs and WMSs in the form of vector or raster data. All the GIS services in our system are OGC compatible and Web Services based [9, 10]. Our proposed system uses NaradaBrokering to provide streaming map movies. In this Section we first explain the OGC compatible GIS Web Services involved in our proposed systems and later, we explain the architecture elements to achieve video mapping.
2.1 OGC GIS Web Services

The Open Geospatial Consortium (OGC) [1] defines a number of standards, both for data models and for online services, that has been widely adopted in the GIS community. OGC is a non-profit, international standards organization that is leading the development of standards for geographic data related operations and services. OGC has variety of contributors from different areas such as private industry and academia to create open and extensible software application programming interfaces for GIS.

GIS introduce methods and environments to visualize, manipulate, and analyze geospatial data. The nature of the geographical applications requires seamless integration and sharing of spatial data from a variety of providers. To solve the interoperability problems, the OGC has introduced standards by publishing specifications for the GIS services.

The emergence of Web Service technique overcomes the shortcoming of traditional Distributed Object technique and provides the interoperable capability of cross-platform and cross-language in distributed net environment. GIS services will be implemented more extensively by using Web Service approach. A spatial data infrastructure lets many GIS vendors share data stores and applications in a distributed environment. GIS basically involves the integration of data and services from multiple sources from different vendors. The Web services architecture establishes a standard interconnection rules between services and information clients that nicely support the dynamic integration of data, which is the key to creating a spatial data infrastructure. By introducing Web Services, distributed GIS services from different vendors can be dynamically integrated into the GIS applications using the interoperable standard communication protocols of the Web Services.

Porting OGC services to Web Services will offer several key benefits, including:

Distribution: It will be easier to distribute geospatial data and applications across platforms, operating systems, computer languages, etc. They are platform and language neutral.

Integration: It will be easier for application developers to integrate geospatial functionality and data into their custom applications. It is easy to create client stubs from WSDL files and invoke the services.

Infrastructure: We can take advantage of the huge amount of infrastructure that is being built to enable the Web Services architecture – including development tools, application servers, messaging protocols, security infrastructure, workflow definitions, etc [5]. Some of these features are being developed by using Web Service infrastructure in NaradaBrokering [6, 7].
The most widely used and well-known OGC GIS services are GIS Mapping Services and GIS data services. OGC call mapping services as Web Map Services (WMS) and data services as Web Feature Services (WFS) and Web Coverage Services (WCS) [13]. WFS provides feature data in vector format encoded in Geographic Markup Language (GML) and WCS provides coverage data. In our proposed system we use WMS and WFS web services.
2.2 NaradaBrokering (NB)
NaradaBrokering [12][14][15] is a distributed messaging infrastructure implemented on a network of cooperating brokers. Brokers can run either on separate or same machines. Communication within NaradaBrokering is asynchronous and the system can be used to support different interactions by encapsulating them in specialized events. It supports publish-subscribe messaging models with a dynamic collection of brokers [14]. It is capable to support transport protocols such as TCP, UDP, Multicast, SSL and RTP. It also provides the capability of the communication through firewalls and proxies. It can operate either in a client-server mode like JMS or in a completely distributed JXTA-like peer-to-peer mode. By combining these two disparate models, NaradaBrokering can allow optimized performance-functionality trade-offs for different scenarios. In our GIS visualization system, we use NaradaBrokering in a peer-to-peer mode.
Geographic data are with huge sizes and takes lots of time to transfer in the distributed GIS grid environments. By using streaming WMS and WFS through the NaradaBrokering, we overcome these kinds of common GIS problems. NaradaBrokering places no constrains on either on the size, or rate or scope of the interactions encapsulated within these messages, or on the number of entities present in the system [5].
2.3 Java Media Framework (JMF)

Map movies are created from array of images by using JMF libraries. Movie streams are sent to RTP sessions. If any one wants to see the movies needs to have JMF client or GlobalMMCS client or AccessGrid client.
The Java Media Framework (JMF) is a recent API for Java dealing with real-time multimedia presentation and effects processing. JMF handles time-based media, media which changes with respect to time. Examples of this are video from a television source, audio from a raw-audio format file and animations.

During the input stage, data is read from a source and passed in buffers to the processing stage. The input stage may consist of reading data from a local capture device (such as a webcam or TV capture card), a file on disk or stream from the network.

The processing stage consists of a number of codecs and effects designed to modify the data stream to one suitable for output. These codecs may perform functions such as compressing or decompressing the audio to a different format, adding a watermark of some kind, cleaning up noise or applying an effect to the stream (such as echo to the audio).
Once the processing stage has applied its transformations to the stream, it passes the information to the output stage. The output stage may take the stream and pass it to a file on disk, output it to the local video display or transmit it over the network.

JMF is built around component architecture. The components are organized into a number of main categories:

· Media handlers

· Data sources

· Codecs/Effects

· Renderers

· Mux/Demuxes

Media Handlers : MediaHandlers are registered for each type of file that JMF must be able to handle. To support new file formats, a new MediaHandler can be created.

Data Sources : A DataSource handler manages source streams from various inputs. These can be for network protocols, such as http or ftp, or for simple input from disk.

Codecs / Effects : Codecs and Effects are components that take an input stream, apply a transformation to it and output it. Codecs may have different input and output formats, while Effects are simple transformations of a single input format to an output stream of the same format.

Renderers : A renderer is similar to a Codec, but the final output is somewhere other than another stream. A VideoRenderer outputs the final data to the screen, but another kind of renderer could output to different hardware, such as a TV out card.

Mux / Demuxes : Multiplexers and Demultiplexers are used to combine multiple streams into a single stream or vice-versa, respectively. They are useful for creating and reading a package of audio and video for saving to disk as a single file, or transmitting over a network.

3. ARCHITECTURE: Streaming Map Movies
WMS is not able to create movie for all of its supported layers listed in its capabilities file. If WMS supports movie functionality for a layer it adds some attributes under this layer definition in capabilities file. Before making the request, the client first makes a “get capabilities” request and after getting information about the WMS, it makes requests according to capabilities of the WMS. If a client makes a request to get a movie for a specific layer, to succeed, this layer should have a time dimension defined under this layer element in the capabilities file. Clients should make the “get map” standard request to WMS to get the movie for a specific layer. WMS does not provide any other request types for the movie creation functionalities. Clients set the “format” variable to string “movie/<movietype>” and “time” variable to a value in an appropriate format to make a request to get movie from the WMS.
Streaming Map movies are created in a few separate but connected orderly stages. These are listed and explained below. We also illustrated the whole architecture in detail in Figure 6.
Invocation Stage:

Requests against multi dimensional data objects described with <Dimension> and <Extent>. Time is one of the dimension name defined in WMS capabilities file. If time dimension is defined for a layer then clients can make requests for a specific time intervals and periodicity value to create movies. The number of requests to WFS to get feature data for the specific time intervals and number of frames for the movie change according to the parameter values given in time parameter in getMap request.

For example, if WMS provides a time series data in a layer listed in its capabilities file, it puts a time dimension element as displayed below under the specific layer. For this sample layer WMS provides data from 01/01/1999 to 08/22/2000 in daily values.

<Dimension name="time" units="ISO8601" default="2000-08-22">1999-01-01/2000-08-22/P1D</Dimension>

For the different time intervals there might be different periodicities. At that time WMS adds additional lines to time dimension element as displayed below as sample.

<Dimension name="time" units="ISO8601" default="2000-08-22">

1999-01-01/2000-08-22/P1D

1990-01-01/1998-08-22/P1Y

</Dimension>

Sample request to WMS to create movie in mpeg format. (request to OGC WMS)

In case of that WMS provides its functionality in Servlets:

VERSION=x.y.z WIDTH=600

REQUEST=map HEIGHT=300

LAYERS=ozone TIME=2000-07-01/2000-07-31/P1D

SRS=EPSG:4326 ELEVATION=1000

BBOX=-180,-90,180,90 FORMAT=video/mpeg
[image: image1.png]A StyledLayeDescptor s 3
sequenca o yled layrs,
reresensd

e i vl by
Hamedayer and Userayer
Hernrts

Figure 1 : GetMap Request schema to be able to create streaming map movies.

[image: image2.png]210

0km 278.13-km 558.26-km 837.38-km 1,11

COORDINATES (accorting to SRS)

LoN: -124.85

LaT: 337

Map Movie

Movie created based on the data from : 01/01/1987 to : 12/31/1992

Select Time Periods :

Figure 2 : Related Part of the user interface (WMS Client) for invoking WMS to create streaming map movies.

Invoking starts with clicking the “Create Movie” button displayed at Figure 2.
	<?xml version="1.0" encoding="UTF-8"?>

<GetMap xmlns="http://www.opengis.net/ows">

<version>1.1.1</version>

<service>wms</service>

<exceptions>application_vnd_ogc_se_xml</exceptions>

<Map>

<BoundingBox decimal="." cs="," ts="">-124.85,32.26,-113.56,42.75</BoundingBox>

<Elevation>5.0</Elevation>

<Time>01-01-1987/12-31-1992/P1Y</Time>

</Map>

<Image>

<Height>400</Height>

<Width>400</Width>

<Format>video/mpeg</Format>

<Transparent>true</Transparent>

<BGColor>0xFFFFFF</BGColor>

</Image>

<ns1:StyledLayerDescriptor version="1.0.20" xmlns:ns1="http://www.opengis.net/sld">

<ns1:NamedLayer>

<ns1:Name>Nasa:Satellite</ns1:Name>

<ns1:Description>

<ns1:Title>Nasa:Satellite</ns1:Title>

<ns1:Abstract>Nasa:Satellite</ns1:Abstract>

</ns1:Description>

</ns1:NamedLayer>

<ns1:NamedLayer>

<ns1:Name>California:States</ns1:Name>

<ns1:Description>

<ns1:Title>California:States</ns1:Title>

<ns1:Abstract>California:States</ns1:Abstract>

</ns1:Description>

</ns1:NamedLayer>

<ns1:NamedLayer>

<ns1:Name>World:Seismic</ns1:Name>

<ns1:Description>

<ns1:Title>World:Seismic</ns1:Title>

<ns1:Abstract>World:Seismic</ns1:Abstract>

</ns1:Description>

</ns1:NamedLayer>

</ns1:StyledLayerDescriptor>

</GetMap>

Figure 3 : Sample GetMap request for invoking WMS to create streaming map movies. “Time” and “Format” elements are the fundamental elements in case of creating streaming movies.
Data Retrieval Stage :

After having parsed the getMap request and created linked list of getFeature requests, we invoke the WFS to get the feature data in GML format. Sample GetFeature request is shown in Figure 4.
The original WFS specification is based on HTTP Get/Post methods, but this type of service has several limitations such as the amount of the data that can be transported, the rate of the data transportation, and the difficulty of orchestrating multiple services for more complex tasks. Web Services help us overcome some of these problems by providing standard interfaces to the tools or applications we develop. We have developed a Web Service version of WFS and are testing in several scenarios where scientific data analysis tools such as Pattern Informatics [Tiampo2002] require fast access to large amount of data.

Our experience shows that although by using Web Services we can easily integrate several GIS and other services into complex tasks, providing high-rate transportation capabilities for large amounts of data remains a problem because the pure Web Services implementations rely on SOAP messages exchanged over HTTP. This conclusion has led us to an investigation of topic-based publish-subscribe messaging systems for exchanging SOAP messages and data payload between Web Services. We have used NaradaBrokering which provides several useful features besides streaming data transport such as reliable delivery, ability to choose alternate transport protocols, security and recovery from network failures.

Our streaming WFS uses standard SOAP messages for receiving queries from the clients; however, the query results are published (streamed) to a NaradaBrokering topic as they become available. Our initial implementation uses MySQL database for keeping geographic feature data, and we employ a capability in MySQL that streams the results row by row, allowing us to receive individual results and publish them to the messaging substrate instead of waiting for whole result set to be returned. The initial performance results show that (especially for smaller data sets) streaming removes a lot of overhead introduced by object initializations.
As it is shown in Figure 4, all the requests are sent to WFS in turn, over NB. For each successive requests, WFS returns back the feature data encoded in GML.

WFS provides feature data in vector format and vector data are encoded in GML according to OGC WFS specifications and depending on the parameters given in the “getFeature” request. GML is an XML encoding for the transport and storage of geographic information, including both the geometry and properties of geographic features.
In response to the “getFeature” request, the GML file encoded in XML is returned in a SOAP envelope as a response to this request. After getting a response, the client extracts geometry elements. The most important and commonly used geometry elements are Points, LineStrings, LinearRings, and Polygons. GML is an OGC standard for feature data representation.
Image Creation Stage :

There are basically two main ways to create an image from the simple features. First one is to create SVG file and convert it into any image format. Second is using Java Graphics2D libraries. First create graphics object then overlay another layers created as graphics object. We have been using both ways in different places but we saw that images drawn with graphics2d are with higher quality then the images drawn by SVG conversion. Below you will see a sample code for giving some idea on how to overlay different layers from different sources. In our sample code here, one is coming from HTTP Servlet based WMS server and the other data represented as features are coming from our implementation of Web Service based WFS.
	<?xml version="1.0" encoding="iso-8859-1"?>

 <wfs:GetFeature outputFormat="GML2" xmlns:gml="http://www.opengis.net/gml" xmlns:wfs="http://www.opengis.net/wfs" xmlns:ogc="http://www.opengis.net/ogc">

 <wfs:Query typeName="scedc">

 <wfs:PropertyName>YEAR</wfs:PropertyName>

 <wfs:PropertyName>MONTH</wfs:PropertyName>

 <wfs:PropertyName>DAY</wfs:PropertyName>

 <wfs:PropertyName>HOUR</wfs:PropertyName>

 <wfs:PropertyName>MINUTE</wfs:PropertyName>

 <wfs:PropertyName>SECOND</wfs:PropertyName>

 <wfs:PropertyName>MAGNITUDE</wfs:PropertyName>

 <wfs:PropertyName>LATITUDE</wfs:PropertyName>

 <wfs:PropertyName>LONGITUDE</wfs:PropertyName>

 <wfs:PropertyName>QUALITY</wfs:PropertyName>

 <wfs:PropertyName>DEPTH</wfs:PropertyName>

 <ogc:Filter>

 <ogc:BBOX>

 <ogc:PropertyName>coordinates</ogc:PropertyName>

 <gml:Box>

 <gml:coordinates>-117,32 -114,37</gml:coordinates>

 </gml:Box>

 </ogc:BBOX>

 </ogc:Filter>

 </wfs:Query>

 <wfs:Query typeName="scedc">

 <ogc:Filter>

 <ogc:PropertyIsBetween>

 <ogc:Literal>MAGNITUDE</ogc:Literal>

 <ogc:LowerBoundary>

<ogc:Literal>2</ogc:Literal>

 </ogc:LowerBoundary>

 <ogc:UpperBoundary>

<ogc:Literal>6</ogc:Literal>

 </ogc:UpperBoundary>

 </ogc:PropertyIsBetween>

 </ogc:Filter>

 </wfs:Query>

 <wfs:Query typeName="scedc">

 <ogc:Filter>

 <ogc:PropertyIsBetween>

 <ogc:Literal>DATE</ogc:Literal>

 <ogc:LowerBoundary>

 <ogc:Literal>575448425980</ogc:Literal>

 </ogc:LowerBoundary>

 <ogc:UpperBoundary>

 <ogc:Literal>575534835293</ogc:Literal>

 </ogc:UpperBoundary>

 </ogc:PropertyIsBetween>

 </ogc:Filter>

 </wfs:Query>

 </wfs:GetFeature>

Figure 4: Sample GetFeature request made to EFS to get Seismic feature data in GML format.
URL url = new URL(

 Wmsaddress+”?request=GetMap&width=" +

 width + "&height=" + heigth +

 "&layers="+layername+ ”&styles=&srs=EPSG:4326&format=”+format+”&bbox=" +

 bbox);

BufferedImage im = ImageIO.read(url);

Graphics2D g = im.createGraphics();

…

 if(istherePoint)

 String[] points = getPointsFromFeatureData();

if(isthereLineString)

 String [] LineStrings = getLineStringFromFeatureData();

if(isthereLineRing)

 String [] LineRings = getLineRingFromFeatureData();

if(istherePolygon)

 String [] polygons = getPolygonsFromFeatureData();

…

…
if(polygons!=NULL){

for(int i=0; i<polygons. length; i++){

 int [][] xypoints = wm.getXYpoints(polygons[i]);

 g.setColor(Color.darkGray);

 g.drawPolygon(xypoints[0], xypoints[1], xypoints[0].length);

}

}

if(LineRings!=NULL){

for(int i=0; i< LineStrings. length; i++){

 int [][] xypoints = wm.getLinesInStr(LineStrings[i]);

 g.setColor(Color.darkGray);

 g.drawPolyline(xypoints[0], xypoints[1], xypoints[0].length);

 }

}

…

g.dispose();

…

 Sample output:

 [image: image3.png]

Streaming Input Stage : (Details are coming)
First date in parameter time defines the starting date and second date defines the end date of the data collection. The last value defines the periodicity of data collection. According to last value in parameter time, WMS cut the time into multiple values and for each time interval it makes a request to WFS to get feature data in GML. WMS creates static maps in pictorial formats from each returned data from the WFS and store in memory as an image array and shown one by one dated in a vertical frame as a movie.

Streaming Processing Stage : (Details are coming)
Map video stream has several parameters that can be adjusted. These parameters affect the quality of the produced map video stream. Among these configurable parameters are frame rate and video format of the stream, update rate of the map images in the video stream. In our experiments we updated map images for every 0.5 seconds while we kept the video frame rate at 10 frames per second (fps). This provides a high quality of the video stream at the receiving side. This is necessary because some clients might not be capable of visualizing video streams with low frame rate or can visualize them with very low quality.

Map video streams produced are published to RTP sessions, whether unicast or multicast session. AccessGrid clients use multicast sessions to send/receive video. Once a video is published to a multicast session, it can be received by any client listening that multicast session as long as the underlying network lets client receive multicast packets. GlobalMMCS can also provide this map video stream to its clients as unicast video stream.
Streaming Output Stage : (Details are coming)
As soon as the movie frames are created at WMS side for each time slice for the same data layer, WMS publishes them as streams to specific Real Time Protocol (RTP) [RTP] sessions. RTP sessions are represented as <IP Address, Port Number> pairs. A video stream published to a RTP session can be visualized by any video client connecting to the same RTP session. RTP session can be configured at properties file. Map images are dynamically generated from raw geographic data and those images are transcoded into video streams. The supported video stream formats are H.261 and H.263, which are mostly used formats in AccessGrid [accessgrid] sessions. Map video stream can be played in collaborative environments such as AccessGrid and GlobalMMCS [globalMMCS] sessions.
[image: image4.png]

Figure 5 : Interface to Map Movie with JMF Studio connected to RTP Session

[image: image5.emf]Img

Obj 1

PROCESSOR

DATA

SOURCE

Network

INPUT STAGE

-Static Maps;

 Created

 Converted to

-Available formats

 for feeding Processor

-List of image Objects

-Network Inputs

PROCESSING STAGE

-Codecs

-Effects

-Multiple Threads of work

listening image objects

publishing bytestreams

OUTPUT STAGE

-Video Rendere

-Save to disk

-Output to network

img

1

img

2

img

n

gml

1

gml

2

gml

n

req

1

req

2

req

n

Img

Obj 1

Img

Obj 1

WFS

NB

W S D L

IMAGE CREATION STAGE

-Static map images are

created from the geometry

elements in GML documents

returned from WFS.

-The most important

geometry elements are Point,

LineString, LinearRing and

PolyLine.

DATA RETRIAVAL STAGE

-After creating requests, they

are sent to WFS to get feature data.

Example reqs;

req-1 : covers 1989-1990

req-2 : covers 1990-1991

req-3 : covers 1991-1992

-WFS returns feature data

encoded in GML for each

successive requests listed above.

-Requests and responses are

handled by NB message

middleware. Data are returned in

byte streams through the NB.

INVOCATION STAGE

Creating OGC GetMap Request and

sending to WMS:

 <GetMap>

...

<Time>

 01-01-1989/12-31-1992/P1Y

</Time>

…

<Format>

 video/mpeg

</Format>

...

 </GetMap>

-Exracting required parameters and

Creating list of requests depending on

the Time element in the GetMap request

SOAP

W

S

D

L

R

E

Q

U

E

S

T

H

A

N

D

L

E

R

Figure 6 : Detailed Streaming Map Movies architecture.
4. CONCLUSION AND FUTURE WORK
There is no much work done on this area. This is also an ongoing work in our Lab. We have implemented a couple of good sample applications of streaming map movies and used Java Media Framework (JMF) libraries and JMF Studio to display the movie streams published to a multicast IP address and port number. Broadcast and Unicast addresses are also supported by the JMF Studio. Server creating movie streams sends streams to a multicast address, clients who wants to see the map movie streams should subscribe to this address. In our basic proof of concept application, clients use JMF studio to subscribe to the Real Time Protocol (RTP) session that they are interested in.

We will continue to integrate the streaming map server with Global-MMC’s archiving capabilities. This will enable useful functionality, such as allowing users to select a movie from the archive. To make the WMS available for the collaborative conferences or online education, admin user will be able to update map streams on the fly while it is playing. This is called annotation feature for the collaboration. For this purpose, we plan to integrate e-Sports [Gang2005] whiteboard drawing tools.
We will be creating movies at the client side even in case of collaborative movie creating environment. There will be significant performance gain when we use this approach. Clients can archive both previously created frames and movies. If a client needs same type of frames for the same matching time intervals then it does not need to go back to WMS and spend time for getting the movie frames.

Right now for publishing collaborative map videos streams, we are using multicast addresses but in the future we will be using publish/subscribe properties of NB. Approaches to collaboration have tended to use IP Multicast to deal with the content distribution problem. Multicast provides a powerful, elegant and flexible framework for implementing collaborative systems. In this scenario, participants agree upon a multicast group and collaborate by exchanging data over this group; the system relies on MBONE to manage this interchange. Far more powerful framework for collaboration is the publish/subscribe paradigm. In publish/subscribe system the routing of messages from the publisher to subscriber is within the purview of the message oriented middleware (MOM), which is responsible for routing the right content from the producer to right consumers [5].
REFERENCES:

[2] Global Multimedia Collaboration System. http://www.globalmmcs.org

[3] Wenjun Wu, Geoffrey Fox, Hasan Bulut, Ahmet Uyar, Harun Altay “Design
and Implementation of A Collaboration Web-services system”, Journal of
Neural, Parallel & Scientific Computations (NPSC), Volume 12, 2004.

[4] The Access Grid Project. http://www.accessgrid.org/
[5] Shrideep Pallickara, Hasan Bulut, Pete Burnap, Geoffrey Fox, Ahmet Uyar, David Walker Support for High Performance Real-time Collaboration within the NaradaBrokering Substrate Technical Report May 2005.

[6] Geoffrey Fox, Wenjun Wu, Ahmet Uyar, and Hasan Bulut, A Web Services Framework for Collaboration and Audio/Videoconferencing, The 2002 International Multiconference in Computer Science and Computer Engineering, Internet Computing(IC’02), June 2002, Las Vegas.

[7] Wenjun Wu, Ahmet Uyar, Hasan Bulut, Geoffrey Fox, Integration of SIP VoIP and Messaging Systems with AccessGrid and H.323, (to appear) the proceedings of The 2003 International Conference on Web Services (ICWS'03), June 2003, Las Vegas, ND, USA.

[8] Geoffrey Fox, Wenjun Wu, Ahmet Uyar, Hasan Bulut, Shrideep Pallickara, Global Multimedia Collaboration System, 1st International Workshop on Middleware for Grid Computing, June 2003, Rio de Janeiro, Brazil.

[9] Ahmet Sayar, Marlon Pierce, Geoffrey Fox OGC Compatible Geographical Information Services Technical Report (Mar 2005), Indiana Computer Science Report TR610
[10] Ahmet Sayar, Marlon Pierce and Geoffrey Fox, “Developing GIS Visualization Web Services for Geophysical Applications”. ISPRS 2005 Spatial Data Mining Workshop, Ankara, Turkey.
[11] Ahmet Uyar, Wenjun Wu, Hasan Bulut, Geoffrey Fox, “An Integrated Videoconferencing System for Heterogeneous Multimedia Collaboration”, 7th IASTED International Conference on Internet and Multimedia Systems and Applications ~IMSA 2003~ August 13-15, 2003 Honolulu, Hawaii, USA.
[12] Shrideep Pallickara, Geoffrey Fox; An Event Service to Support Grid Computational Environments, Concurrency and Computation: Practice & Experience. Special Issue on Grid Computing Environments Volume 14(13-15) pp 1097-1129.
[14] Shrideep Pallickara and Geoffrey Fox, NaradaBrokering: A Distributed Middleware Framework andArchitecture for Enabling Durable Peer-to-Peer Grids in Proceedings of ACM/IFIP/USENIX International Middleware Conference Middleware-2003, Rio Janeiro, Brazil June 2003

[15] The NaradaBrokering project http://www.naradabrokering.org/

Check all the geometry data of the feature, Point, LineString Polygon etc.

If you find any geometry data above such as Points, LineStrings, convert the numbers in the GML file for the feature data into appropriate format to draw shapes for representing these geometry elements and display them by using graphics2D object. If you use the same grpahics2D data the layers will be overlaid.

* 	Corresponding author.

_1197159162.vsd
Text

The height of the text box and its associated bracket increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

