
Integrating AJAX Approach into GIS Visualization Web Services

Ahmet Sayar1, 2, *, Galip Aydin1, 2, Marlon Pierce1 and Geoffrey Fox 1, 2, 3, 4
1 Community Grids Lab, Indiana University, Bloomington, Indiana, 47404, USA

2Department of Computer Science, Indiana University
3Department of Physics, Indiana University
4School of Informatics, Indiana University

{asayar, mpierce, gcf}@cs.indiana.edu

Abstract

As the Web platform continues to mature, we see an
increasing number of amazing technologies that take
Geographic Information Systems (GIS) visualization
applications to new levels of power and usability. By
integrating new powerful technologies into GIS
systems, we get higher performance results with
additional functionalities. The most recent
development capturing the attention of the browser
based application developers is AJAX (Asynchronous
JavaScript and XML). In this paper we present a
generic and performance efficient framework for
integrating AJAX models into the browser based GIS
Visualization Web Services systems.

1. Introduction

AJAX [3] is an important web development model for
the browser based web applications. It uses several
technologies which come together and incorporate to
create a powerful new model. Technologies forming
AJAX model such as XML JavaScript, HTTP and
XHTML are widely-used and well-known. High
performance Google mapping uses this new powerful
browser based application model.

Web Services [2] are self-contained, self-describing,
and modular. Unlike earlier, more tightly coupled
distributed object approaches such as Common Objects
Request Brokers (CORBA), Web Service systems
support an XML message-centric approach, allowing
us to build loosely coupled, highly distributed systems
that span organizations. Web Services also generalize
many of the desirable characteristics of GIS systems,
such as standards for providing general purpose
specifications for publishing, locating, and invoking
services across the Web. Web Services also use
widely-used and well-known technologies such as

XML and HTTP as AJAX does. Since AJAX and Web
Services are XML based structures they are able to
leverage each others strength.

In this paper, we first give some background
information about the web technologies we have been
using in our proposed architecture. These are basically
AJAX, Web Services, and GIS Web Services. In
Section 3 we mention some related works about the
AJAX and Web Services. In Section 4 we first give a
generic architecture for integration of any Web
Services and AJAX. Then, we give sample usage
scenarios to prove our integration concepts; one of
them is for Google and GIS Data Server (WFS)
integration and the other one is for Google and GIS
Mapping Server (WMS) integration. Section 5 is about
the future work and Section 6 is the conclusion.

2. Background

Integration architecture was formed by using AJAX
and Web Services in the GIS domain, here we explain
their technical and theoretical structures, and
advantages.

2.1. Asynchronous JavaScript and XML

AJAX is a style of web application development that
uses a mix of modern web technologies to provide a
more interactive user experience. AJAX [3] is not a
technology. It is an approach to web applications that
includes a couple of technologies. These are
JavaScript, HTML, Cascading Style Sheets (CSS),
Document Object Model (DOM), XML and XSLT,
and XMLHttpRequest as messaging protocol.

These core technologies forming AJAX are mature,
well-known and used in web applications widely.
AJAX became so popular because it has a couple of

advantages for the browser based web applications
developers. It eliminates the stop-start nature of
interactions, user interactions with the server happen
asynchronously, data can be manipulated without
having to render the entire page again and again in the
web browser, and requests and responses over the
XMLHttpRequest protocol are structured XML
documents. This enables developers easily integrate
AJAX applications into Web Services.

After Google started to develop some new applications
with the AJAX, AJAX drew some attention in the
public. Some of the major products Google has
introduced over the last year by using AJAX model are
Google Groups, Google Suggests, and Google Maps.
Besides the Google products Amazon also have used
AJAX approach in its search engine application.

Client can use AJAX in her web applications just by
writing her own custom JavaScript codes that directly
use the XMLHttpRequest protocol's API. At that time,
client should be careful of the coding and
implementation differences between different web
browsers. Instead of using pure AJAX and dealing
with the browser differences, client can use some
newly developed libraries providing higher level
AJAX services and hide the differences between
browsers. Among these are DWR, Prototype, Sajax,
and AJAX.NET.

2.2. OGC GIS Web Services

The Open Geospatial Consortium (OGC) [1] defines a
number of standards, both for data models and for
online services, that has been widely adopted in the
GIS community. OGC is a non-profit, international
standards organization that is leading the development
of standards for geographic data related operations and
services. OGC has variety of contributors from
different areas such as private industry and academia to
create open and extensible software application
programming interfaces for GIS [16].

GIS introduce methods and environments to visualize,
manipulate, and analyze geospatial data. The nature of
the geographical applications requires seamless
integration and sharing of spatial data from a variety of
providers. To solve the interoperability problems, the
OGC has introduced standards by publishing
specifications for the GIS services.

The emergence of Web Service technique overcomes
the shortcomings of traditional Distributed Object
technique and provides the interoperable capability of
cross-platform and cross-language in distributed net

environments. GIS services will be implemented more
extensively by using the Web Service approach. A
spatial data infrastructure lets many GIS vendors share
data stores and applications in a distributed
environment. GIS basically involves the integration of
data and services from multiple sources from different
vendors. The Web services architecture establishes a
standard interconnection rules between services and
information clients that nicely support the dynamic
integration of data, which is the key to creating a
spatial data infrastructure. By introducing Web
Services, distributed GIS services from different
vendors can be dynamically integrated into the GIS
applications using the interoperable standard
communication protocols of the Web Services [17].

Porting OGC services to Web Services will offer
several key benefits, including:

Distribution: It will be easier to distribute geospatial
data and applications across platforms, operating
systems, computer languages, etc. They are platform
and language neutral.

Integration: It will be easier for application developers
to integrate geospatial functionality and data into their
custom applications. It is easy to create client stubs
from WSDL files and invoke the services.

Infrastructure: We can take advantage of the huge
amount of infrastructure that is being built to enable
the Web Services architecture – including development
tools, application servers, messaging protocols,
security infrastructure, workflow definitions, etc [5].

The most commonly used and well-known
visualization related OGC GIS services are GIS
Mapping Services and GIS data services. OGC call
mapping services as Web Map Services (WMS) and
data services as Web Feature Services (WFS) and Web
Coverage Services (WCS) [13]. WFS provides feature
data in vector format encoded in Geographic Markup
Language (GML) and WCS provides coverage data in
raster format.

3. Related Work

There are some well-known projects and efforts on the
technologies participating in the proposed integration
framework, such as Web Services and AJAX. OGC
and ESRI use Web Services in GIS. OGC is actually a
consortium and a standards body defining and
publishing standards for the GIS services interfaces.
Cubewerx, Demis and Intergraph are commercial GIS

companies involved the Web Services technologies
into their systems. Google Maps and Ka-Map
integrated the AJAX model into GIS visualization
systems. Ka-Map is AJAX-based web mapping sites
using an open source web mapping toolkit. ka-Map
uses the MapServer [9] mapping server behind the
scenes with AJAX and PHP to serve up the map
content. In all these efforts mentioned above, Web
Services and AJAX are used separately.

ECMAScript [17] for XML E4X is the only related
work involving AJAX and Web Services together.
E4X is a simple extension to JavaScript that makes
XML scripting very simple. It is actually the official
name for JavaScript. The European Computer
Manufacturers Association (ECMA) is the standards
body where JavaScript is standardized E4X uses all
other incorporated AJAX technologies without
extension.

Via the E4X, you don’t have to use XML APIs such as
DOM or SAX; XML documents become one of the
native types that JavaScript understands. You can
update XML documents from the JavaScript very
easily. These properties of E4X enable creating calls to
Web Services from the browser, but the only browser
that supports E4X so far is the developer release of
Mozilla 1.8.

E4X helps to interact with Web Services but again it is
just an extended version of JavaScript. Some issues
regarding how to put request in SOAP messages and
how to manipulate returned SOAP messages are still
complicated. If you use E4X for a web applications
based on AJAX model, you can not use the application
on every browser. This is another drawback of the
system.

In our approach, you don’t have to extend any
technology involved in the AJAX model. We use all
the technologies in AJAX with their original forms.
This gives the developers and users the ability to
integrate and customize their applications easily.

4. Architecture: Invoking Web Services in
the AJAX Model

In this Section, we describe and illustrate the generic
integration framework for integrating AJAX into
browser based Web Service applications. There are
two main actors in the integration architecture – the
visualization client and GIS Web Services. Web
Services are invoked by using Simple Object Access

Protocol (SOAP) - XML based messaging protocol for
the message exchange.

4.1. Generic Integration
How to invoke Web Services in the AJAX model?

Figure 1: Invoking Web Services from the
AJAX applications.

The client browser makes a request to the server broker
(via a JSP page), which in turn makes a request to the
Web Service by using previously prepared Web
Service client stubs. The response from the Web
Service is then transformed by the service broker, and
presented to the client browser. Below we will go in
more detail to explain all these steps.

First create an XMLHttpRequest object to make a
remote scripting call.
 - var http = new XMLHttpRequest();

Then, define the end point as an URL to make a call.
The URL address should be local. This an intermediary
proxy service to make appropriate requests for the GIS
Web Service.
 - var url = “proxy.jsp”;

Then, make a call to the local proxy service end point
defined above by the user given parameters.

W
S
D
L

USER INTERFACE

JAVASCRIPT, HTML,
XHTM, CSS

PROXY JSP
jb.doTask(req,resp);

Web
Service
Client
Stubs

Req-Resp
Handlers
JavaBean

WEB Services
(GIS Server)

BROSER BASED USER
INTERFACE

(GIS CLIENT)

 - http.open (“GET”, url + ”?bbox = “ + bbox
+…[other parameter-value pairs]……)

proxy.jsp is an intermediary server page to capture
request (HttpServletRequest) and response
(HttpServletResponse) objects. Proxy JSP includes just
one line of codes to forward the HttpServletRequest
and HttpServletResponse parameters coming from the
first page via XMLHttpRequest protocol.
- jb.doTask(request,response)

“request” and “response” parameters come from the
user interface page. This first page includes some
JavaScript, XHTML, CSS and JSP to capture the user
given parameters and to display the returned result on
the screen.

“jb” is a java class object which handles creating
appropriate requests by using its request-response
handlers and Web Service client stubs. Request-
response handler also handles receiving and parsing
response object coming from GIS Web Services
interacted with.

After having received response from the GIS Web
Service, “jb” object sends the returned result to
XMLHttpRequest object in the first page.
 - PrintWriter pw = response.getWriter();
 - pw.write(response);

XMLHttpRequest object at the user interface page
captures this value by making a call as below
 - http.onreadystatechange = handleHttpResponse

This generic integration architecture can be applied to
any kind of Web services. Since return types of each
Web services are different and they provide different
service API, you need to handle application specific
implementations and requirements in browser based
client side.

In Section 4.2, we proof the applicability and
efficiency of the proposed integration framework by
giving two important usage scenarios in GIS domain.

4.2. Usage Scenarios
 –Integrating Google Maps with GIS
 Visualization Systems

Integration is basically coupling AJAX actions with
the Web Services invocations, and synchronizing the
actions and returned objects from the point of end
users. The usage scenarios in Section 4.2.1 and 4.2.2
use the generic integration architecture illustrated in
Figure 1. In the usage scenarios there will be minor

difference in the form of extensions. Differences come
from the service specific requests created according to
the service provider’s service API (published as
WSDL), or handling returned data to display on the
screen. But these are all implementation differences.

4.2.1. Google’s AJAX Integration with WMS: There
are two different path working in parallel by the given
user parameters created by the client actions. Actions
are interpreted by the browser through the Google
Mapping tools. JavaScript captures these actions by
ActionListeners and Google Binding APIs and gives to
Layer-2 object. Please see the Figure 2.

On the browser user interface class is a JSP page. It
includes two JavaScript class-references. One is for the
Google Map object and the other is for the WMS map
image and bindings to the Google Map object.

Interconnection for creating Layer-2 is done in
accordance with the proposed architecture defined
above in Figure 1. For Layer-1, a classic Google
mapping application is used through the AJAX web
application module and XMLHttpRequest protocol.
Google handles creating the map by using
XMLHttpRequest and given remote JavaScript file in
the browser [4].

When we use this type of interaction interface to
WMS, we can utilize all the OGC compatible
functionalities of the WMS such as “getMap”,
“getCapabilities” and “getFeatureInfo”. The client is
going to be a thin client; it just takes the map and
overlays it over the Google map. Overlay is done by
using some advanced JavaScript techniques. The client
does not need to make rendering or mapping jobs to
create the map image. The map is already returned by
the WMS and in a ready to use format such as JPEG or
PNG or TIFF. Return type is defined as a parameter in
the “getMap” request given to WMS. These images in
different formats are converted to a JavaScript object
before overlaying.

Figure 2: Integration of Google Maps with OGC
WMS by using architecture defined in Figure 1.

4.2.2. Google’s AJAX Integration with WFS: WFS
provides feature data in vector format and vector data
are encoded in GML according to OGC WFS
specifications and depending on the parameters given
in the “getFeature” request. GML is an XML encoding
for the transport and storage of geographic
information, including both the geometry and
properties of geographic features.

Figure 3: Integration of Google Maps with OGC
WFS by using architecture defined in Figure 1.

In response to the “getFeature” request, the GML file
encoded in XML is returned in a SOAP envelope as a
response to this request. After getting a response, the
client extracts geometry elements. The most important
and commonly used geometry elements are Points,
LineStrings, LinearRings, and Polygons. GMLis an
OGC standard for feature data representation.

Even though Google Mapping API supports just two of
them, Points and LineStrings, the other geometry
elements can also be converted to these two types with
minor updates. Having extracted and obtained
geometry elements, these elements are plotted over the
Google Map by using “GPoints” and “GPolylines”
objects and the “mapOverlay” function of the Google
Map API.

By setting returned GML’s non-geometry elements and
using ‘GMarker” object of the Google API, this
architecture also provides the “getFeatureInfo”
functionalities of the OGC WMS services. All these
tasks are achieved by using XMLHttpRequest API and
JavaScript functionalities.

XMLHttpRequest uses DOM for parsing returned
structured responses in XML. If returned data is
oversized for the server then the DOM parser throws
“Out of Memory” exception. In order to overcome this
drawback of the DOM and Google Map, we have used
Pull Parsing via. After parsing and handling GML
documents returned from WFS, the result is written
into the web browsers response object. Through the
responseXML call of the XMLHttpRequest in
JavaScript, the browser gets the result and makes
appropriate modifications to the data and display on
the screen.

5. Future Work

In the future, we will be working on the performance
issues of the architecture. Google Map provide the map
data in an efficient time, but WMS and WFS Web
Services returns the data in a much longer time. This is
because of the characteristics and sizes of the
geographical data [12] and some CPU and time
consuming rendering algorithms to produce the map
images. Since we do not have high performance
servers and private networks we need to consider
improving the performance in different ways. For that
purpose, we will be using streaming version of the
WMS and WFS to get geographic data in the form of
image and GML correspondingly by using message
middleware systems such as NaradaBrokering [6,7],
developed in CGL (Community Grids Lab.) at Indiana
University. NaradaBrokering provides some features
that are important in the GIS area. These are Quality of
Service (QoS) and security profiles for sent and
received messages, interface with reliable storage for
persistent events, reliable delivery via WS-Reliable
messaging, fault tolerant data transport, support for
different underlying transport implementations such as
TCP, UDP, Multicast, SSL, RTP, HTTP, discovery

service to find nearest brokers / resources (efficient
routing). For our ongoing work, please have a look at
our official project page, crisisgrid [8].

6. Conclusion

If the GIS visualization client uses Web Services from
the desktop browser application and Web Services are
capable of responding fast enough, then using the
AJAX model for calling Web Services gives high
performance increases. Since both AJAX and Web
Services use XML based protocols for the request and
responses, they leverage their advantages. This enables
application developers to easily integrate AJAX based
browser applications into Web Services.

Using just Google Maps has some disadvantages in
extracting and displaying the information about the
specific feature selected by clicking on the map. By
using GIS Web Services in the same application and
assigning this part to WMS, we eliminated the Google
Maps’ drawbacks and made it much faster. Since
Google Map API uses DOM parsing, if the data size is
oversized for the server it is impossible to parse and
get feature information from the large geographic data
set represented in structured XML data such as GML.
By integrating GIS Web Services into the visualization
application and using Pull Parsing techniques we can
easily eliminate this drawback.

In our proposed architecture design implementation,
we have not modified or extended any technologies in
the AJAX model or Web Services. By using the same
theoretical standards, you can integrate any GIS Web
Service into your visualization applications just by
doing some application specific extensions such as
creating requests according to the service API of the
Web Service and handling the returned objects.

7. Acknowledgements

This work is supported by the Advanced Information
Systems Technology Program of NASA's Earth-Sun
System Technology Office and the National Science
Foundation’s National Middleware initiative.

8. References

[1] OGC (Open Geospatial Consortium) official web site
http://www.opengeospatial.org/

[2] Booth, D., Haas, H., McCabe, F., Newcomer, E.,
Champion, M., Ferris, C., and Orchard, D. “Web Service
Architecture.” W3C Working Group Note, 11 February
2004. Available from http://www.w3c.org/TR/ws-arch

[3] Jesse James Garret, Ajax: A New Approach to Web
Applications.
http://www.adaptivepath.com/publications/essays/archives/0
00385.php

[4] Murray G., “Asynchronous JavaScript Technology and
XML (AJAX) With Java 2 Platform, Enterprise Edition”
http://java.sun.com/developer/technicalArticles/J2EE/AJAX/

[5] Jerome Sonnet, Charles Savage. OGC Web Service Soap
Experiment Report 0.8 Document#03-014, Jan 2003.

[6] Message based middleware project at Community Grids
Lab, Project Web Site: http://www.naradabrokering.org/

[7] Pallickara S. and Fox G., “NaradaBrokering: A
Distributed Middleware Framework and Architecture for
Enabling Durable Peer-to-Peer Grids” ACM/IFIP/USENIX
International Middleware Conference Middleware-2003, Rio
Janeiro, Brazil June 2003

[8] GIS Research at Community Grids Lab, Project Web
Site: http://www.crisisgrid.org

[9] MapServer official web site http://ms.gis.umn.edu/.

[10] Ka-Map official web site http://ka-map.maptools.org/.

[11] Tyler Mitchell, “Build AJAX-Based Web Maps Using
ka-Map”
http://www.xml.com/pub/a/2005/08/10/ka-map.html.

[12] de La Beaujardière, J. editor, 2002. Web Map Service
Implementation Specification, Version 1.1.1, OGC 01-068r3.
http://www.opengis.org/techno/specs/01-068r3.pdf

[13] Evans, J. eds, 2003. Web Coverage Service
Implementation Specification, OpenGIS® Project Document
OGC 03-065r6, http://www.opengis.org/docs/03-065r6.pdf

[14] ISO, 2001. ISO 19119: Geographic Information –
Services. http://www.isotc211.org.

[15] Vretanos, P. A. editor, 2002. Web Feature Service
Implementation Specification, Version 1.0.0 OGC 02-058.
http://www.opengis.org/techno/specs/02-058.pdf.

[16] Sayar A., Pierce M., Fox G. “OGC Compatible
Geographical Information Services”, Technical Report
(Mar 2005), Indiana Computer Science Report TR610.

[17] Sayar A., Pierce M., Fox G., “Developing GIS
Visualization Web Services for Geophysical
Applications” ISPRS 2005 Spatial Data Mining
Workshop, Ankara, Turkey.

[18] EcmaScript web site http://www.ecma-
international.org/

