
 1

SERVOGrid Complexity Computational Environments (CCE)
Integrated Performance Analysis

Galip Aydin, Mehmet S. Aktas, Geoffrey C. Fox ,Harshawardhan Gadgil,
Marlon Pierce and Ahmet Sayar

Community Grids Lab, Indiana University, Bloomington, Indiana, 47404, USA
{gaydin, maktas, gcf, hgadgil, mpierce, asayar}@cs.indiana.edu

Abstract

In this paper we describe the architecture and
initial performance analysis results of the SERVOGrid
Complexity Computational Environments (CCE). The
CCE architecture is based on a lightly coupled,
Service Oriented Architecture approach that is
suitable for distributed applications that are tolerant
of Internet latencies. CCE focuses on integrating
diverse Web and Grid Services for coupling scientific
applications to Geographical Information Systems.
The services and coupling/orchestrating infrastructure
are mapped to problems in geophysical data mining,
pattern informatics, and multiscale geophysical
simulation.

1. Introduction

We describe the initial testing of the integration and
performance of several component pieces being
developed as part of the SERVOGrid Complexity and
Computational Environment (CCE). The overall CCE
architecture is described in the technical report,
“Complexity Computational Environment (CCE)
Architecture,” [1]. To briefly summarize this
document, the primary components of the system are
as follows:
1. Earthquake simulation and modeling codes to

support data assimilation, data mining, and
multiscale modeling;

2. Data modeling with ontologies and semantic tools;
3. Web Services for managing data sources, data

flow, code execution, and information;
4. A message-based event system

(NaradaBrokering); and
5. A workflow management system (HPSearch) [11]

for connecting services.
In this document, we explicitly focus on points 3, 4,
and 5.

The goal of the CCE system is to build and
integrate different domains of Grid and Web Services
into a single cooperating system. Science Grids have
tended to focus on code execution, job management,
and high performance data transfer. However, projects
such as LEAD [23] and GEON [24] have demonstrated
the importance of integrating scientific computing with
online meteorological and geophysical data sources.
In our SERVOGrid work, the importance of both
archival and real-time geophysical data has led us to
implement a number of Web Services to support
Geographical Information Systems. In this paper, we
present an initial integration of these various services.

To establish some performance measurements on a
particularly interesting application, we chose the
Pattern Informatics (PI) application [14] as a test case.
A screen shot of the user interface is shown in Figure
1. Our distributed architecture is an iteration of the
earlier RDAHMM data mining tests documented in
[2]. The current tests extend this earlier system by
adding Geographical Information Services (GIS) -- the
Web Map Service [21] and Web Feature Service [20] -
- and the WS-Context [12] information service. We
designed and developed all services described in this
paper. More information and WSDL interfaces are
available from [6, 7, 11, 12].

We chose the PI application since it is used to
produce the well-publicized “hot spot” maps published
by SERVO team member Prof. John Rundle and his
group at the University of California-Davis. The
integrated PI-GIS system profiled here, when in
production, represents a very high-profile application
of SERVOGrid, so the current tests provide an
important practical example. The PI code is also
simple to run, reliable, and fast, simplifying our tests.

 2

Figure 1. The SERVOGrid WMS client interface

creates overlay maps that can also be used to set up
and launch the Pattern Informatics code.

The PI case study provides more general insights
into overall system performance because the GIS
services provide access to GPS, seismic event, and
fault catalogs, and so are important parts of many CCE
applications such as GeoFEST, RDAHMM, Virtual
California, and Potts Model codes. Also, the
HPSearch workflow engine provides a general purpose
service management system and transparently manages
data flow between service components. Hence it is
imperative to test the overhead introduced by this
scheme.

This report documents our efforts welding the
various pieces of SERVO together and has served to
point out various bottlenecks in the current system, as
described below. We report specific lessons learned
for improving performance in applying conventionally
designed Java Web Services to problems with non-
trivial data requirements. We do not anticipate major
changes in the architecture as the system evolves, but
we do anticipate interesting Web Service performance
research will be required to overcome some
performance problems inherent to HTTP-based Web
Services. In particular, we plan to address some of
these issues using techniques described in [3] to
improve the performance of the data services.

2. System Overview and Components

Web Feature Service: The Web Feature Service
(WFS) [20] is an Open Geospatial Consortium (OGC)
[4] based data service that manages “feature” data:
abstract representations of map features and associated
metadata. WFS servers are conventionally used by the
GIS community to store map entities such as political
boundaries and geographic features (rivers, roads), and
so forth. We may also use the WFS to store
information sets specific to the SERVO modeling code

requirements, including a) GPS data archives,
accumulated from SOPAC, JPL, and USGS data
archives; b) seismicity data archives, accumulated
from SCSN, SCEDC, Dinger-Shearer, and Haukkson
formatted data archives; and c) earthquake faults
obtained from the QuakeTables fault database [5].

We have designed and built a Web Services-based
WFS [6], which we use in these tests. The WFS stores
data accumulated from public, online archives. We
reformat and store locally, to support query searches
and combined/filtered results. More information is
available from [10].

Web Map Service: The Web Map Service (WMS)

[21] is an OGC specification for generating interactive,
online maps. WMS can generate maps in several
formats (JPEG, SVG) by acting as client to both WFS
and other WMS instances. WMS maps are generated
as overlays, so it is possible to generate and customize
maps interactively. The SERVOGrid WMS [7]
interacts with the NASA OnEarth WMS [8], which
provides very high quality satellite images. WMS
implementations can also be used to interactively
extract component features. We use the SERVOGrid
WMS to, for example, set up initial problems visually
with information from the WFS (such as seismic event
records described below or earthquake faults), then
“read off” the WFS from the map to generate input
files for running SERVOGrid earthquake modeling
codes. For a general overview of WMS and related
material, see [9].

We designed and developed a Web Services-
compatible Web Map Service for this project. All
performance measurements are made using this
implementation. More information on the
SERVOGrid WMS implementations can be found at
[10].

HPSearch: The HPSearch [11] system provides a
scripting environment for managing distributed Web
Services. We specifically use HPSearch for deploying
system components and for managing the distributed
services in a workflow pattern on SERVOGrid. For the
current system, we rely on a HPSearch node, which is
responsible for managing the execution of services,
and WSProxyService [17], a specialized Web Service
that functions as both, a Web Service and a
NaradaBrokering publisher and/or subscriber.

Context Service: The Context Service [12] is a

system for storing transitory metadata needed to
describe distributed session state information. In the
current test system, it is used to store information
needed by HPSearch to orchestrate system interactions.

 3

NaradaBrokering: NaradaBrokering [13]

development is not directly part of the current work,
but we rely upon it to manage data flows and event
notifications within the SERVOGrid system.
NaradaBrokering may be thought of a as topic-based
publish/subscribe messaging system: interested entities
can register to a NaradaBrokering node to send and
receive messages on particular topics. HPSearch uses
NaradaBrokering to route data streams.

3. Performance Tests

Computers and Networks: All tests were run at
the Community Grids Lab using modestly performing
PCs and Linux servers. CGL computing environment
consists of Windows (2000 and XP), Linux, Sun
Solaris workstations and servers, including 40 Pentium
4-based desktop class machines, 20 Linux/Solaris
(dual-CPU) server class, and two 8-CPU 16 GB Sun
v880 server class machines to support the lab’s
development and research efforts. The laboratory’s
network consists of server, workstation, and mobile
connectivity provided by 100Mbit/second Ethernet,
and 11Mbit/second 802.11b wireless connections
respectively, connected in turn to Indiana University’s
network backbone via a 1000Mbit/s fiber optic link,
and from there to the Internet2 Abilene network and
the commodity internet via multiple OC3 links.

We run the WFS, WMS, PI code, and Context
Service each on separate servers, as described in “Test
Scenario.” The purpose of these tests is to establish
relative performance numbers and identify bottlenecks,
not to establish absolute times or benchmarks.

Running the Test Application: The Pattern
Informatics (PI) code is used to generate “hot spot”
maps based on past seismic records: it identifies areas
of high probability for large future earthquakes. The
PI code is described in more detail in [14]. For our
purposes, we only need to be concerned with the
requirements for running the code. It needs these
inputs: a) a seismic record catalog (SCEDC) [15] file
with dates, latitude/longitude coordinates, and event
magnitudes; b) time and space boundaries for selecting
the region and time period of interest from the seismic
catalog; and c) a lower bound for seismic event
magnitudes: seismic events below the desired
threshold are discarded. Note this threshold
dramatically affects the size of the input data file since
the number of events grows exponentially as the lower
bound decreases (see Table 1). PI generates an output
file consisting of a latitude/longitude grid of

probabilities (forecasts) for events within a given
future time period.

NaradaBrokering
Broker Network

Data Filter
(danube.ucs.indiana.edu)

PI Code Runner
(danube.ucs.indiana.edu)
1. Accumulate Data
2. Run PI code
3. Convert RAW Data to GML

GML Output
(danube)

WS Context
Service

GPS Data
gridFarm001

HPSearch
Kernel
(trex)

HPSearch
Kernel

(danube)

Web Map
Service

4

3

7

6 5

Read / Writes to context Service
WMS invokes Web Service to deploy script and then
gets GML output after computation is complete

HPSearch Kernels communicate using NaradaBrokering
HPSearch HPWorker node manages various services
using simple SOAP based Web Service calls
Actual data flow

Virtual data flow

Web Feature
Service

1, 2

WMS queries WFS for data

Figure 2. Architectural diagram of the integrated
system. Host names are given in parenthesis.

The PI application is a natural candidate for testing
the SERVOGrid WFS, WMS, HPSearch and Context
services because the local copy of the SCEDC catalog
file can be replaced by the SERVOGrid WFS, and the
WMS can be used to interactively set up the problem,
allowing a user to visually set latitude/longitude
bounding boxes and time intervals. After the problem
parameters are configured through WMS interface,
HPSearch can be used to execute the simple workflow
associated with the PI code: extract data from the
WFS, transfer it to the PI code’s host, execute the PI
code, and notify listeners when the output data is
available. Finally the WMS can be used to visualize
the hotspot outputs. In this scenario the Context
Service can be used to store various pieces of
information, such as the state of the system
(“executing” or “done”) and the location of data files.

Following steps summarizes how system works (see
Figure 2. We will expand on this in more detail in the
“HPSearch Performance Tests” subsection.
1: WMS queries WFS for a given bounding box and
time interval
2: WFS dumps the results into a web accessible ASCII
file (see comment below).
3: WMS starts a session, invokes HPSearch to run
workflow script for PI Code with a session id

 4

4: HPSearch runs the workflow script and generates
output file in GML format as result
5: HPSearch writes the URI of the of the output file
into Context
6: WMS polls the information from Context Service
7: WMS retrieves the generated output file’s location
from the Context Service, downloads the data, and
generates a map.

Note that Step 2 is a temporary solution. Normally
WFS returns the query results as a GML Feature
Collection, but since we did not want to impose GML
processing overhead on HPSearch, we devised this
intermediary step where WFS dumps the query results
to a file for HPSearch before converting them to GML
to transfer to WMS. We are developing streaming
support both for WFS and WMS which will allow us
to remove Step 2.

We calculated the performance of the various
system components for the following lower bounds for
the seismic event magnitudes: M=5.0, 4.5, 4.0, 3.5, and
3.0. These correspond to increasing data file size, as
shown in Table 1 for the eventful year 1992 in the
SCEDC catalog for Southern California. The entire
catalog from 1932 to 2004 has 401,403 entries.

Table 1. SCEDC entries for test year 1992.

Event Magnitude
Lower Bound

Number of
Seismic Events

GML
Result Size

(KB)
5.0 19 11
4.5 67 36
4.0 209 106
3.5 587 287
3.0 1790 880

WFS Performance: We measure WFS

performance by timing the steps needed to extract
seismic records with specific latitude/longitude
bounding boxes, time periods, and lower bounds for
the earthquake threshold magnitudes. These extracted
records are returned as GML responses. This test is
representative of other SERVOGrid applications that
need to extract records from remote data bases through
the WFS. The tests are made over 10 runs. Data from
1/1/1992 to 12/31/1992 were requested and
latitude/longitude bounding box (32.0, -117.0)-(37.0, -
114.0) was used.

We make 4 types of measurements in addition to
the total processing time between receiving the
getFeature request and returning the feature collection
object: Initialization time is spent during object
initializations and checking to see if the database that
contains the requested feature is alive. This is a
relatively small period of time (average 30ms) and can

be ignored. During the initialization phase, the WFS
extracts the query from the request and opens a
connection to database that has the requested feature
data. We measure the total query execution time since
it affects the performance significantly. Other
important measurements are made to find out how
much time it takes to build GML feature objects from
the query results and then how long it takes for
merging them into a feature collection as the final
result to return.

WFS test results (Figure 3) show that the
performance decreases as the lower event threshold M
decreases, corresponding to the increase in data size.
Higher thresholds are dominated by database query
execution time which remains relatively constant for
all magnitudes. However for event thresholds 3.5 and
3 time for building GML object takes considerable
amount of time. Our further tests showed that for event
magnitudes between 2.5 and 1 this step dominates the
total processing time.

WFS Performance

0

1000

2000

3000

4000

5000

6000

5 4.5 4 3.5 3

Magnitude

Time(ms)

Total Processing Time Query Execution Time
Build GML Object Build Return

Figure 3. WFS performance measurements

We note that the results depicted in Figure 3 are
intermediate results which show significant
improvements over initial testing results. Although the
performance is almost the same for lower event
threshold M=5 and 4.5 it is improved by a factor of 4.4
for M=4, 4.7 for M=3.5 and 22.8 for M=3. Since our
initial design was intended for smaller data loads GML
FeatureCollection objects were created using string
concatenation methods. But this proved to be highly
costly for larger data sizes and we utilized temporary
files for immediately flushing the intermediate results
and using byte arrays instead of strings for creating the
final results. This improved performance significantly
for M > 4. Currently the most significant portion of the
total processing time is spent for database query

 5

execution and we are investigating methods to
optimize it. The initial WFS performance analysis
results are available in an earlier version of this report
[26].

The current version of our WFS implementation is
based on interacting relational databases such as
MySQL, but we are planning to test support for native
XML databases as well. The latest version of SERVO
Grid WFS binary and source files as well as the related
schemas are available from WFS web site [6].

HPSearch Performance: The HPSearch engine

controls the flow of data from the WFS to the data
filtering service that filters and reformats the data and
then to the PI service that manages the execution of PI
code. As the system goes through these stages,
HPSearch interacts with the Context Service to store
metadata and keep track of state. There are two
HPSearch nodes in the system: a master node, and a
worker node. The master node is responsible for
scheduling worker HPSearch nodes: there is only one
worker in the demo, but for load balancing and
scheduling we can run additional worker nodes.

In addition to the WFS and Context Service
HPSearch nodes interact with a Data Filter service and
the PI Code Runner service. The Data Filter service is
responsible for translating the GML output of the WFS
into a format understood by the PI code, and for
transmitting this reformatted data to the PI Code
Runner. The PI Code Runner is also an extension of
the WSProxyService class and consists of three related
services: a Data Accumulator, which receives data
from the Data Filter; a code wrapper, which can
execute the PI code; and a “Raw-to-GML” translator,
which translates the PI code output to GML, for later
display in the client as a hotspot map. These services
are co-located in our tests but may be separated.

HPSearch uses NaradaBrokering nodes to route
data streams between components and also for
exchanging control messages between different
HPSearch nodes.

The system works as follows (Figure 2). We denote
the HPSearch master node as HPMaster (runs on the
host trex), which also acts as a Web Service, and the
worker node as HPWorker (runs on the host danube).

The end user selects a bounding box, time interval
and lower seismic event threshold for the problem. In
the user interface we also provide specific UI elements
for deploying the flow. The deployment is started by
clicking the “Run PI code” button which invokes the
Web Service with the appropriate parameters, on the
HPMaster node submitting the flow for execution.

The script which defines the flow structure initially
creates a placeholder entry in the context service and

marks the status of the flow as “Executing”. The script
further sets up the various components of the flow
(components wrapped as Web Services using the
WSProxy) and initializes them. Initialization entails
setting up the various communication channels thus
linking the individual components via streams using
NaradaBrokering.

After a successful initialization, the HPMaster node
signals the Data Filter component to start the flow. The
Data Filter components downloads the input data,
filters and reformats each line of the data and streams
it to the PI Code Runner service. After the entire data
is collected, the PI Code Runner service executes the
PI code on the data followed by conversion of the
output data to GML format for further use. This marks
the end of the flow and the HPSearch master node is
notified of the successful flow completion. The
HPMaster node then modifies the placeholder entry in
the context service created previously, to reflect the
URL of the final output GML file.

The WMS, in the meantime, continuously polls the
Context service, checking to see if the service was
completed. Once the HPMaster has updated the
placeholder entry, the WMS can download the
resulting GML file to plot the results.

The total HPSearch processing time contains a) the
time required to create a placeholder entry in the
context service, b) executing the flow and c) updating
the placeholder entry. In addition to this we measure
Data Processing time and the PI Code Runner Service
time. Data Processing time is spent for reading,
transporting, and re-formatting the GML output from
the WFS into the legacy format expected by the PI
code. The data is read line by line, transformed, and
transported from the WFS to the PI Code Runner
service. For the sample data this takes, on average, a
little over eight seconds. The PI Code Runner Service
consists of several co-located services. The first, Data
Accumulate, receives data from the Data Filter service
and writes it to a local file (required by the PI code
executable). The Exec PI Code service then runs the
PI application. For the test data, the PI code execution
time is negligible. Raw->GML is a filter for
transforming the PI output file into a GML format that
can be interpreted by the Web Map Service.

The HPSearch overhead may be found by
comparing the “Data Processing” time to the “Exec PI
Code” time. Note that the Data Filter and Data
Accumulate steps run concurrently. The overhead
percentage is

The overhead percentage we calculated is about 4% for
all values of M.

 6

Note that from Figure 3 below, it takes about 16 –
18 seconds to run the PI code using the HPSearch
system. Also note that the time required while running
the PI code for different magnitudes is approximately
the same. Our current architecture contains a data filter
component which is responsible for filtering and
reformatting the input data file to suit the PI code. This
step reads all the input data (about 50000 lines) and
filters each line with the given specifications. Since the
data filtering step takes the maximum time, the overall
time is dominated by this step and is constant for each
run. Ref [22] contains more detailed overhead results
for the same test. During the development of our initial
prototype, we could improve the performance by a
factor of 1000 by making the following modifications.

Time taken by various steps in Executing the PI Code

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

3 3.5 4 4.5 5

Magnitude

Ti
m

e
(m

s) Dat a Filt er

Exec PI Code

RAW t o GML

Cont ext wr it e

Figure 4. HPSearch performance measurements

First, HPSearch previously used the
RunnableProxyService interface for hosting the data
filter service. This data service checks after each run,
whether the service STOP / PAUSE was requested.
This extra step introduces a heavy penalty and we were
able to reduce this penalty by a factor of about 50 by
implementing the WrapperProxyService interface.

Second, the RAW data to GML format conversion
service performance was also improved by introducing
immediate flushing out of the relevant output streams
rather than buffering the data, thereby improving the
performance by a factor of about 20.

We plan to make future amendments to the
prototype to further improve the performance.
Currently the data accumulation step works in 2 parts,
namely, the WFS creates a temporary file for string the
query results, which is then filtered by the data filter
service. By having HPSearch directly invoke the WFS
and have it stream data to the PI code runner, we can
remove the extra overhead of the data filtering and
temporary file creation step.

Context Service Performance: The Context
Service stores metadata that (collectively) identifies the
state of the system, as shown in Figure 2. The
metadata pieces are typically small and are
independent of the event magnitude M used in the PI
testing.

The Context Service’s primary operations are
GetContext and SetContext. Three measurement sets
were made using a 50 byte string for GetContext.
Each of the three sets consisted of 100 individual
measurements. We also performed 3 sets of 100
measurements on the SetContext method. In average,
we measure ~116 ms for GetContext and ~125 ms for
SetContext functions to be performed. Both of these
measurements are internal timings to process requests.

We conclude from this that the Context Service
does not add excessive overhead to the overall system
for these small metadata stores. The actual internal
processing time for small metadata pieces is typically
smaller than the network invocation time.

WMS Performance: The WMS generates maps

based on input (bounding boxes and time intervals)
from the user interface. Maps are generated in layers
from features sets obtained from one or more WFS
sources. WMS can also combine the locally generated
images of features with images obtained from other
(remote) WMS instances. In the current test case, our
WMS generates map boundaries, locations of
earthquake events, and locations of hotspots, which are
superimposed on images obtained from the OnEarth
WMS at JPL [8].

We tested WMS service performance for M=5.0,
4.5, 4.0, 3.5, and 3.0. We chose a latitude/longitude
bounding box of (-124.85, 32.26), (-113.56, 42.75) and
tested results for the time period 1/1/1992 to
12/31/1992 (the most active year in the catalog). The
timings represent averages of ten measurements per
point.

Our WMS Client (shown in Figure 1) is a thin client
to the WMS for displaying the maps returned by the
server. The WMS generates the images and delivers
back to the client. The WMS operation timings are
thus split between the internal server timings and the
overall timings seen by the client. Note that the
“internal” server timings, Figure 5, include remote
calls to the WFS and OnEarth WMS. In addition to the
initialization and total processing time we measured
the times to retrieve the LandSat images for the
selected latitude/longitude bounding box from OnEarth
WMS and GML formatted seismic records from WFS.
We also measure the time to assemble the abstract map
pieces to render as a JPEG image.

 7

WMS Server Side Performance

-500

500

1500

2500

3500

4500

5500

6500

7500

5 4.5 4 3.5 3
Magnitude

Ti
m

e
(m

s)
 GetBaseMap

GetFeature
DrawMap
TotalTime

Figure 5. WMS server side performance

WMS Client Side Performance

0

5000

10000

15000

20000

25000

30000

5 4.5 4 3.5 3

Magnitude

Ti
m

e
(m

s)

GetMap
PlotPIOutput
Total Time

Figure 6. WMS client side performance

The WMS client side performance results (Figure
6) show that plotting the GML result dominates the
total processing time.

4. Conclusions and Future Work

This initial performance evaluation and related tests
have served to prove several of the basic concepts of
CCE architecture, while revealing bottlenecks and
areas of needed performance improvement.

We employ Web Service-based WFS to bridge data
sources with client applications by using standard
OGC interfaces. However, the HTTP protocol-based
approach has its limitations: transfer of large volumes
of data may cause long delay or may not be possible at
all. To overcome this difficulty we are initially
implementing a streaming version of WFS using
NaradaBrokering as transfer medium [16]. There are
also interesting techniques that use the XML Infoset to
preserve the XML message in binary transmissions
[25]. These techniques have been applied to hand-held
devices but could apply equally well to large data
transmissions from standard servers.

The WMS performance depends on WFS,
HPSearch, and network speed. However, it also can
be made more efficient. We plan to increase
performance of both WMS server and client modules
by employing new algorithms and optimization
techniques such as using distributed rendering and

tiling, and parallel rendering of images. Additionally
future versions of WMS will be used for scientific
visualization which requires us to handle high volumes
of data. To support high performance large volume
data transfer we are integrating our WMS
implementation with NaradaBrokering.

We have demonstrated the use of HPSearch [2] to
deploy and manage system components. However,
currently the system can only handle one user at a
given time. We are currently adding support for
session management within HPSearch so that multiple
users can execute the same flow while HPSearch
transparently manages temporary data files created
during execution of each instance. Further, HPSearch
currently does not address security for data streams.
We plan to leverage NaradaBrokering's security
features [18] for securing data streams in the future.

5. Acknowledgements
We would like to thank James Holliday of the
University of California-Davis for providing the PI
code and data sets. Dr. Jay Parker at NASA JPL
critiqued earlier versions of this document. Dr.
Shrideep Pallickara provided assistance with
NaradaBrokering. This work is supported by the
Advanced Information Systems Technology Program
of NASA's Earth-Sun System Technology Office.

6. References
[1] Geoffrey Fox, et al, “Complexity Computational
Environments (CCE) Architecture.” Technical report
available from
http://grids.ucs.indiana.edu/ptliupages/publications/CCE%20
Architecture.doc

[2] Harshawardhan Gadgil, Geoffrey Fox, Shrideep
Pallickara, Marlon Pierce, Robert Granat “A Scripting based
Architecture for Management of Streams and Services in
Real-time Grid Applications” Proceedings of the IEEE/ACM
Cluster Computing and Grid 2005 Conference (CCGrid
2005). Cardiff, UK May 2005

[3] Geoffrey Fox, Harshawardhan Gadgil, Shrideep
Pallickara, Marlon Pierce, Robert L. Grossman, Yunhong
Gu, David Hanley, Xinwei Hong, Indiana University and
University of Illinois at Chicago “High Performance Data
Streaming in Service Architecture” Technical Report July
2004

[4] The Open Geospatial Consortium, Inc. (OGC) Web Site:
http://www.opengeospatial.org/

[5] Chen, A., Donnellan, A., McLeod, D., Fox, G., Parker, J.,
Rundle, J., Grant, L., Pierce, M., Gould, M., Chung, S., and
Gao, S., “Interoperability and Semantics for Heterogeneous
Earthquake Science Data”, International Workshop on

 8

Semantic Web Technologies for Searching and Retrieving
Scientific Data, Sanibel Island, FL, October 2003.

[6] SERVOGrid WFS implementation web page:
 http://www.crisisgrid.org/html/wfs.html

[7] SERVOGrid WMS implementation home page:
http://complexity.ucs.indiana.edu/~asayar/wms

[8] OnEarth: Server of Landsat 7, WMS Global Mosaic. Web
Site: http://wmt.jpl.nasa.gov/.

 [9] Ahmet Sayar, Marlon Pierce, Geoffrey Fox “OGC
Compatible Geographical Information Services”, Technical
Report (Mar 2005), Indiana Computer Science Report
TR610. Available from
http://grids.ucs.indiana.edu/ptliupages/publications/ogctech_r
eport.pdf

[10] Crisis Grid Web Site, Geographic Information Systems
Research at Community Grids Lab, http://www.crisisgrid.org

[11] Harshawardhan Gadgil, Geoffrey Fox, Shrideep
Pallickara “HPSearch for Managing Distributed Services”,
Work in Progress session at IEEE/ACM Cluster Computing
and Grid 2005 Conference (CCGrid 2005). Cardiff, UK May
2005. HPSearch Web Site, http://www.hpsearch.org

[12] Mehmet S. Aktas, Geoffrey C. Fox and Marlon Pierce,
“Managing Dynamic Metadata as Context, Technical
Report”, available at:
http://grids.ucs.indiana.edu/ptliupages/publications/maktas_i
ccse05.pdf. See also Context Service web site:
http://grids.ucs.indiana.edu/~maktas/fthpis

[13] Shrideep Pallickara and Geoffrey Fox
“NaradaBrokering: A Distributed Middleware Framework
and Architecture for Enabling Durable Peer-to-Peer Grids”,
in Proceedings of ACM/IFIP/USENIX International
Middleware Conference Middleware-2003, Rio Janeiro,
Brazil June 2003. See also the NaradaBrokering Web Site:
http://www.naradabrokering.org

[14] Tiampo, K. F., Rundle, J. B., McGinnis, S. A., & Klein,
W., “Pattern dynamics and forecast methods in seismically
active regions”, Pure Ap. Geophys. 159, 2429-2467 (2002).

[15] Southern California Earthquake Data Center (SCEDC)
Web page, http://www.data.scec.org/

[16] Galip Aydin, Marlon Pierce, Geoffrey Fox, “High
Performance Web Feature Service Implementation for GIS
Grid and Web Service Architectures”, Submitted to GML
And Geo-Spatial Web Services Conference 2005.

[17] Harshawardhan Gadgil, Jin-Yong Choi, Bernie Engel,
Geoffrey Fox, Sunghoon Ko, Shrideep Pallickara, Marlon
Pierce, “Management of Data Streams for a Real Time Flood
Simulation”,, CGL Technical Report June 2004, Available
from

http://grids.ucs.indiana.edu/ptliupages/publications/crisisGrid
Flow.pdf

[18] Yan Yan, et. al., "Implementing a Prototype of the
Security Framework for Distributed Brokering Systems".
Proceedings of the 2003 International Conference on
Security and Management Volume I pp 212-218

[19] Shrideep Pallickara, Geoffrey Fox and Hasan Bulut
“Fault Tolerant Reliable Delivery of Events in Distributed
Middleware Systems”, Technical Report April 2005.
Available from
http://grids.ucs.indiana.edu/ptliupages/publications/FT-
ReliableDelivery.pdf

[20] Vretanos, P. (ed.), “Web Feature Service
Implementation Specification”, (WFS) 1.0.0, OGC
Document #02-058, September 2003.

[21] Jeff De La Beaujardiere, OpenGIS Consortium “Web
Mapping Server Implementation Specification”, 1.3, OGC
Document #04-024, August 2002.

[22] More information about the PI demo is available at:
http://www.hpsearch.org/demos/PI

[23] Beth Plale, Dennis Gannon, Dan Reed, Sara Graves,
Kelvin Droegemeier, Bob Wilhelmson, Mohan Ramamurthy,
“Towards Dynamically Adaptive Weather Analysis and
Forecasting in LEAD”, To appear ICCS workshop on
Dynamic Data Driven Applications, Atlanta, Georgia, May
2005. See also http://lead.ou.edu.

[24] GEON (Geosciences Network): A Research Project to
Create Cyberinfrastructure for the Geosciences.
http://www.geongrid.org.

[25] Sangyoon Oh, Hasan Bulut, Ahmet Uyar, Wenjun Wu,
Geoffrey Fox, “Optimized Communication using the SOAP
Infoset For Mobile Multimedia Collaboration Applications”,
Proceedings of the International Symposium on
Collaborative Technologies and Systems. May 2005,
Missouri, USA.

[26] SERVOGrid Initial Performance Analysis, CGL
Technical Report, available from:
http://www.crisisgrid.org/html/servo.html

