
Asynchronous Peer-to-Peer Web Services and Firewalls

Denis Caromel, Alexandre di Costanzo
INRIA Sophia Antipolis, CNRS - I3S - UNSA, France

First.LastName@sophia.inria.fr

Dennis Gannon, Aleksander Slominski
Computer Science Department, Indiana University, USA

gannon, aslom @cs.indiana.edu

Abstract

In this paper we test the suitability of Java to implement
a scalable Web Service that solves a set of problems related
to peer-to-peer interactions between Web Services that are
behind firewalls or not generally accessible. In particular
we describe how to enable reliable and long running con-
versations through firewalls between Web Service peers that
have no accessible network endpoints.

Our solution is to implement in Java a Web Services Dis-
patcher (WSD) that is an intermediary service that forwards
messages and can facilitate message exchanges by support-
ing SOAP RPC over HTTP and WS-Addressing for asyn-
chronous messaging. We describe how Web Service clients
that have no network endpoints, such as applets, can be-
come Web Service peers by using an additional message
store-and-forward service (”mailbox”). Then we conduct
a set of experiments to evaluate performance of Java im-
plementation in realistic Web Service scenarios, involving
intercontinental tests between France and the US.

1 Introduction and Motivation

The emerging trend in Web Services (WS) is to avoid
tightly coupled RPC interactions in favor of loosely cou-
pled asynchronous messaging. Initially, SOAP was viewed
by many as a better remote procedure call (RPC) [8] mech-
anism which worked on Internet scale and was capable of
passing through firewalls. This view has changed in recent
years as the final SOAP specification has focused on mes-
saging and with RPC no longer required. New WS speci-
fications such as WS-Addressing, WS-ReliableMessaging,
or WS-Transaction, indicate clearly that asynchronous, long
lasting, peer-to-peer interactions (sometimes called conver-
sations) are important to future of Web Services.

Today Internet is built on top of the TCP/IP protocol that

is inherently peer-to-peer (p2p). However, the limited sup-
ply of IPv4 addresses and, more importantly, use of fire-
walls and Network Address Translation Systems (NATs)
makes it hard to support p2p communication directly on
top of TCP/IP. There are a number of solutions proposed
including more widespread use of IPv6 and better practices
for firewalls that use the extended IPv6 address space and
avoid the use of NATs. However the move to IPv6 is not
going to replace IPv4 overnight. Instead, many alternative
ad-hoc solutions have been proposed. Even through lim-
ited, they somehow work with current Internet infrastruc-
ture. In particular, file sharing and instant messaging net-
works proved that such immediate solutions are not only
possible but good enough.

In this paper we build on this experience to identify a set
of common problems that appear when trying to do peer-
to-peer interactions with Web Services that are behind fire-
walls or not generally accessible. We propose a Web Ser-
vices Dispatcher (WSD) as a service that is capable of pro-
viding reliable and secure peer-to-peer interactions between
Web Services peers and can additionally provide load bal-
ancing, single sign-on, and service location transparency.
Then we examine how Java can be used to implement such
solution and evaluate its performance.

2 Related work

There are two separate modes of interactions with our
WS-Dispatcher. If the WSD is used with SOAP-RPC then
interactions follow a common HTTP Proxy pattern: the in-
coming HTTP request is forwarded to destination Web Ser-
vices (after any necessary security or validity checks) and
the HTTP response is sent back using the same connec-
tion. However this approach is not suitable for a WS that
may need a non-trivial amount of time to produce the re-
sponse. In this cases a TCP connection may timeout before
response is available to send back. A significant amount of
work which already exists examines performance of HTTP

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) 
1530-2075/05 $ 20.00 IEEE



Proxy servers [17], load balancing, and other optimizations
for advanced Web Servers at the TCP level [13]. We have
made our WS-Dispatcher implementation modular so that it
can be adapted to work in any servlet container within ex-
isting commercial products and easily integrated in existing
infrastructure. A promising research direction is to gener-
alize the notion of HTTP proxy to further increase perfor-
mance and scalability [11]. However, in our case we limit
ourselves to solutions that are compatible with current WS
standards, such as SOAP RPC and messaging. The only
other standard beside SOAP that we use is WS-Addressing
[10] to allow message level routing.

Web Services are defined in terms of SOAP [9] mes-
sage exchange patterns. In particular the SOAP processing
model allows one to use intermediaries that help with rout-
ing of SOAP messages. Technically our WS-Dispatcher is
similar to a SOAP intermediary but it is designed to be a
transparent service.

In general it is easy to create a very simple dispatcher-
like functionality [15], however providing a fully transpar-
ent intermediary requires considerable effort. There is al-
ready a significant commercial interest in building scalable
WS routers or gateways. Consequently there are many com-
panies (such as IBM, BEA, Sonic Software) working on
similar products and message routing is a very important
part of future commercial web services (including those
called ”Enterprise Service Bus”). The IBM Web Service
Gateway is a typical example of such a product [16]. Gate-
way is part of the WebSphere Application Server Network
Deployment Version 5 [5]. Gateway has an interesting de-
sign based around modified open source Web Service In-
vocation Framework (WSIF [12][4]) which is Apache open
source Java project and is designed to allow multiple pro-
tocols use when accessing services hosted in Gateway. Our
WSD currently only supports SOAP/XML messages but ex-
tensions to other protocols, such as binary XML, may be an
interesting topic to investigate in future work.

3 Connecting RPC and Messaged oriented
Web Service peers

Before we start a detailed discussion of the WS-
Dispatcher design we should consider its role in translating
semantics between RPC and message oriented Web Service
peers. There are few possible choices: a peer acting as a
client may make an RPC call or send a message to the WSD
that then forwards it to an actual Web Service peer that may
be implemented using RPC or message style middleware.

Table 1 describes the matrix of scenarios that must be
considered. This relatively simple table becomes more
complicated when we consider that both client and service
may be locate behind firewall that allows only outgoing con-
nections.

When the client is RPC-based it can use an HTTP con-
nection to receive a response. However this capability is
limited by the duration of the TCP connection prior to its
time-out. There are clever workarounds that will try to keep
HTTP/TCP connection alive and/or reinitiate connection if
it fails, but these solutions place a big burden on the client.

However even for an RPC client, if a Web Service peer
is behind firewall it is not possible to communicate with
it. In case of SOAP-RPC a standard HTTP proxy may be
used but a standard HTTP proxy will not be able to do any
inspection of the SOAP traffic. Our WSD (and similar com-
mercial products [5]) can alleviate this problem by forward-
ing RPC connections. This introduces additional processing
time (to establish forwarded connection) and generally will
not work well if the message has to pass multiple firewalls
or, even worse, when the time to generate the RPC response
takes longer than HTTP/TCP timeout. Consequently, mes-
sage oriented processing looks very attractive for Web Ser-
vices as it allows interaction between peers that may be con-
nected by any number of intermediaries and transport proto-
cols other than HTTP/TCP. It also allows for many message
interaction patters and flexible timeout policies.

WS-Addressing (WSA) [10] is gaining popularity as a
specification to describe addressing of WS messages. We
have used WSA in the dispatcher to facilitate forwarding
of messages and it has worked very well. However neither
WSA nor RPC addresses the problem of a client that has
no accessible network endpoint but wants to receive asyn-
chronous messages.

We propose the solution to this problem by implement-
ing a mechanism similar to a post office mailbox. A Web
Service client with no endpoint creates a mailbox and then
uses this mailbox address when it needs to receive mes-
sages. When the client is ready, it can check the mailbox
service (Post Office) for new messages and download them
for processing. We call our implementation of this mecha-
nism WS-MsgBox and describe it in more detail below.

WS-Dispatcher with WS-MsgBox provides a complete
solution for Web Service peers that are behind firewall but
need to communicate asynchronously by exchanging mes-
sages.

4 Design and implementation

At this time, we have implemented two versions of the
WS-Dispatcher. The first version forwards RPC interac-
tions and the second handles asynchronous messages based
interactions.

4.1 Design

In the RPC case, clients wait for a response from the WS
and WS-Dispatcher must maintain one connection with the
client and a second one with the WS.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) 
1530-2075/05 $ 20.00 IEEE



RPC based service Messaging based service
Peer acting as RPC client Limited but very popular (RPC connection is

forwarded) (1)
Very limited (may not work at all if message
reply comes too late) (2)

Peer acting as messaging client Limited: RPC server is a bottleneck (translation
of semantics from messaging to RPC) (3)

Unlimited (This is the best situation as there is
no transport time limit on sending response) (4)

Table 1. Possible interactions between Web Service peers using WS-Dispatcher.

In a message based approach there is no need to keep
connections open, which is good for scalability. In this case
WS-Dispatcher works like a forwarding agent that is accept-
ing and forwarding messages. Furthermore in the Message
approach it is possible to add new intermediary message
oriented service, such as WS-MsgBox or WS load balancer.

We expect that asynchronous forwarding should scale
better and be more robust than RPC forwarding. Addi-
tionally, in the Message based approach, after the WSD ac-
cepts an incoming message, it can queue it for later deliv-
ery and, when it is deemed appropriate, multiple messages
can be delivered to a destination over one connection which
is more efficient than opening multiple short lived connec-
tions.

We implemented 2 versions of the WS-Dispatcher: RPC-
Dispatcher for RPC forwarding and MSG-Dispatcher for
asynchronous message based services.

Both dispatchers share a common functionality: registry
of services. This is a list of web services that are behind
the firewall and are to be made accessible through the dis-
patcher. Each entry in the service registry describes the
”logical” address used by clients and the permanent ad-
dresses where the service is implemented. The role of dis-
patcher is to translate logical address to known physical lo-
cations. Hence this registry of services could be used like
a directory or Yellow Pages, possibly as a simple browse-
able list of WSDL files with metadata. Because creating
a real registry of services for registering/updating services
is independent from forwarding requests, the registry is an
independent module in the WS-Dispatcher.

Accordingly the WS-MsgBox service is also an in-
dependent service from the RPC-Dispatcher and MSG-
Dispatcher. Clients can directly contact the WS-MsgBox
service to get responses from a requested WS without in-
voking the dispatcher.

The WS-Dispatcher design is illustrated in Figure 1.
This Figure also describes the task of processing a request
from a client to a WS: (1) the client sends a SOAP mes-
sage to the WS-Dispatcher with a logical name of a WS, (2)
the WS-Dispatcher asks the Registry for the logical service
name and the Registry returns the physical address of the re-
quested WS (3). Using the real address, the WS-Dispatcher
forwards the message to the WS (4). If needed, the WS
sends back a response to the message to the WS-Dispatcher

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) 
1530-2075/05 $ 20.00 IEEE


