THESIS PROPOSAL

FEDERATED SERVICE ORIENTED INFORMATION MANAGEMENT

Author:
Ahmet Sayar

Indiana University

Computer Science Department

Advisor:
Prof. Geoffrey Fox

Indiana University

Computer Science Department

ABSTRACT

In any scientific domain, scientists or end users need to access data remotely from different administrative domains or real-time sensors or instruments, extract information and knowledge and analyze it seamlessly. Accessing and integrating different data from different providers using different heterogeneous technologies is a cumbersome and even impossible with the current technologies.

Our goal is making this dream real in the heterogeneous technologies supporting application data and metadata with domain specific XML interfaces. We develop a general Grid architecture based approach to distributed heterogeneous data, information and knowledge –which are provided by different repositories and producers- in an efficient and robust manner. We call this solution framework as Application Specific Information System (ASIS) composed of ‘filters’ in the form of (Application Specific Feature Service) ASF and Application Specific Visualization Service (ASVS). ASIS is a federated service oriented information managements system. All the services and components are Web Services.
Federation in the service oriented information management is accomplished through the metadata enabled filter services. Filter federation is done at the information level. The composability of the filters supports natural scaling and federating and adding load balancing and caching capabilities in the filters. Caching and load balancing enable handling large scientific data in an efficient and robust manner. Adding metadata to the filters also provide loosely coupling and chaining of filters, and, binding of services into pipelines with or without human intervention.
1. Introduction
Scientific data is complex, heterogeneous and huge, even if they come from the same domain; different vendors provide data in different formats. The same data can be represented in ASCII, byte array or string. If data want to be federated or searched, it needs a lot of extra application specific implementation workload. In order to solve this problem at least in a specific domain, some standard bodies such as Open Geospatial Consortium (OGC) [2] in Geographic Information Systems (GIS) domain and International Virtual Observatory Alliance (IVOA) [3] in Astronomy domain have created some standards for the online services and data models. In order to provide interoperability across the platforms, operating systems and programming languages, standard bodies define required services and their interfaces, functionalities each service provides, message formats and supported communication protocols, data annotation and metadata formats and concepts etc. Standard bodies for science domains mostly do not define specifications for the data federation but their definition of data model enables federation indirectly. Among these data models are Geographic Markup Language (GML) for GIS and Virtual Observatory Tables (VOTable) for IVOA.
Information federation is constructed on top over the data/data-federation services. There is no clear separation line between data and information; it changes from application to application. We use DIKW to describe the hierarchy of Data-Information-Knowledge-Wisdom that we are attempting to support. Information is the meaning that is currently assigned to data by means of the conventions applied to these data. Knowledge is an organized, integrated collection of facts and generalizations [4]. Wisdom is super extraction from information and knowledge. In order for the scientific data to be useful, information has to be extracted and converted to wisdom decisions or at least knowledge. However, because of the complexity, heterogeneity and multidisciplinary nature of the scientific data, it is difficult to extract knowledge and draw wisdom decisions from them without complex chained processes. Each different process is wrapped as web service and called as “Filter”.

Filter Services are information sources (not data – see previous paragraph) enable federated information management through their predictable input/output interfaces defined by capability documents. A capability document is XML based document and provides metadata about the filters and their functionalities. A Filter Service inputs DIKW from other Grids or Services and outputs DIKW – perhaps converting data to information etc.
Services in the science domains or in any other domains take some parameters as inputs and after processing/transforming return something as outputs. For the sake of generality we call these services as filters after adding some specific functionalities, service ports and metadata capabilities. Raw data goes through several filtering operations that transform and analyze it before accessing to the scientists and end users in general. Basic filter applications typically include simple transformation operations and predictable data extraction operations (which extract out known parts of the data stream). Filters are typically grouped into chains of dependent operations that produce specialized data products through a process commonly called ‘workflow’ but it is out of scope in our research work. Filters are basically Web Services so that they can be chainable together to create more complex services by using any third party workflow machines and languages such as Business Process Execution Language (BPEL).
In our initial proposal we will be using static chaining of filters instead of using any workflow systems.
Information management is accomplished through the federation of Filter Services in the Service Oriented Environment. In our architecture framework SOA is based on Web Service. In other words, each Filter Service is a Web Service. Being Web Service enables Filter Services publish their interfaces, locates each other and chain together easily. Extending systems and applications with a new Filter Service also will be easy.
We call our federated information management as ASIS (Application Specific Information System). In ASIS, Filter Services come up in two different names; these are Application Specific Feature Service (ASFS) and Application Specific Visualization Service (ASVS). ASFS and ASVS talk to each other in Application Specific Language (ASL). ASL is a common data model structured in XML. XML based hierarchical data model (ASL) enables common language and communication across operation system and platforms to exchange and federate information. In order to make proposed architecture feasible, all the data should be converted to ASL through an adapter deployed DB end Filter Services such as WFS in GIS domain. Filter Services provide data in consistent format and define these formats in their capability documents.
We created the interactive decision support (IDS) tools for the geosciences applications in SERVO[??] project. We will use IDS tools for investigating the interesting general problems of information transformation and service federation. For the decision support user needs human readable outputs such as images, animations and statistical information such as plotting, graph and pie charts. When using IDS tools, users don’t need to know data and application specific parameters and query settings for querying the heterogeneous data providers. They use just the tools to query and get the information and knowledge in human readable formats from the system to make wisdom decisions. We also created movie and animation tools for querying and creating animation on time series data.

We also propose but not guarantee some quality of services for Filter Services. These are; dynamic filter interaction to upgrade integrated cascaded capabilities metadata files, and, streaming connection between all services that provide on the fly archiving, high-performance transport, authentication, authorization and fault tolerance.
On our way to achieve this ultimate goal mentioned above, we expect to encounter some challenges. These are; representing, transforming, integrating and displaying data and information/knowledge, and defining common annotation and metadata structures to enable attribute based data search and display. We define common concepts and characteristics for data, metadata, query facilities and services in our proposed general architecture, ASIS.

As methodology, we first create ASIS for the Geographic Information Systems (GIS) domain, and then create client/end-users tools to enable usage of proposed architecture by the scientists. After proving that it works for GIS, we extend and define the general architecture requirements for the other domains, defining the challenges and general characteristics and/or requirements for ASIS.
In Chapter 2, we present literature survey about first; how strongly ASIS architecture (or Federated Service oriented information management) matches to major science domains such as GIS, Astronomy and Chemistry, second; well known scientific data grid projects such as Geon, LEAD, and third; major data access and federation projects in grid environment. In Chapter 3, we summarize problem statement. In Chapter 4, we propose methods and architecture of the federated service oriented information management. In Chapter 5, we present preliminary results and discussions. Chapter 6 is conclusions, covers research issues, milestones and expected contributions in its subsections.
2. Literature Review
Literature review section is composed of three parts. One is regarding possible science domains to which ASIS will be applicable and gives idea how strongly they match. Another one is some related well known data grid projects give idea about the general picture of what we are trying to achieve. Last part is about the grid data access and federation projects Open Grid Service Architecture – Data Access and Integration (OGSA-DAI), and Storage Resource Broker (SRB).

Our motivation domain is Geographic Information Systems (GIS). GIS is a system for creating and managing spatial data and associated attributes. Open Geospatial Consortium (OGC) is a standard body for the GIS domain. It defines publicly available online services and data models specifications. Its goal is to make geographic information and services neutral and available across any network, application, or platform. We implemented OGC compatible Web Feature Service (WFS) (Aydin, G.) and Web Map Service (WMS) for our proposed ASIS architecture. We also use Geographic Markup Language as data representation and exchange (we call it ASL in the ASIS). WFS is feature service and provide vector data such as lines, polygons and points. WMS is map server and provides data in the form of images and some other formats such as svg, png, text files. These formats are defined in their capability documents. In the next section you will see the comparison between proposed ASIS architecture components and major science domains requirements.

Our federated service oriented architecture based on Web Services. All the filters building the system are Web Services. Web Service technique overcomes the shortcomings of traditional Distributed Object technique and provides the interoperable capability of cross-platform and cross-language in distributed net environments. The Web services architecture establishes a standard interconnection rules between services and information clients that nicely support the dynamic integration of data, which is the key to creating federated information management architecture. Wrapping Filter Services such as ASFS and ASVS from different vendors as Web Services enable them to be integrated into federated information management system easily.
2.1. Matching ASIS Components to the Components in Major Science Domains
OGC GIS, Chemistry and Astronomy

All these science domains have some common characteristics and this motivates scientist to work on the same or similar directions. These characteristics/challenges can be summarized as below;
- Distributed nature of scientific data.

- Proprietary data formats, and service methodologies.
- Annotation and metadata formats and boundaries between data and metadata
- Lacking of interoperable services.

- Federating/Assembling data from distributed sources

- Format conversions

- Amount of resources for geoprocessing
- Modular extensible visualization tools.

Table 1: Matching ASIS components to well known science domains

	
	ASL
	Filters

ASFS ASVS
	Metadata

	GIS
	GML
	WFS
	WMS
	capability.xml schema

	Astronomy
	VOTable, FITS
	SkyNode
	VOPlot

TopCat
	VOResource

	Chemistry
	CML
	NO
	NO standard

JChemPaint
	NO

For a simplest scientific data/information grid, we need at least data, a data/information provider and a data/information displayer (See Figure 1). In our proposed immature ASIS architecture we represent data as ASL, data/information provider as ASFS and data/information displayer as ASVS. After our long literature survey we saw that other main science domains also have similar online services serve for the same/similar purposes (see Table 1). Not all the domains have specifications for all the services, data models and metadata definitions in their field. For example in Chemistry, specifications for distributed scientific applications are very immature, moreover, they have just data model specifications which is not widely accepted and used.

We think that our proposed federated service oriented information management architecture can be applied to these sample domains. ASIS architecture proposals and methods will be given briefly in Chapter 4.
2.2. Scientific Data/Information Grid
Here in this section we mention about some major well know data grid applications such as LEAD (Linked Environment for Atmospheric Discovery) [??], Geophysics Network (GEON) [??], MyGrid[??], and National Virtual Observatory (NVO) [??], all are in different domains. Please see the Figure 1 to see the relation to our proposed architecture, ASIS. For the data access and integration part they use the projects mentioned in Chapter 2.3.
We will not go into detail and explain all these sample projects but give summary of their general characteristics from our proposal point of view. All application grids that we surveyed have similar features. All use Web Service architecture, all have service families; data services, application execution services, information services, and workflow. We also need and use similar features in our application grid. You will see them in the following chapters.

LEAD seeks to provide on-demand weather forecasting in meteorology domain. GEON provides ontology enabled applications mostly based on data registration, discovery, manipulation and display in GIS domain. MyGrid is basically a combination of Grid, Web Services, and semantic web efforts in the bioinformatics domain. NVO is data grid project in Astronomy domain.

[image: image1.emf]Data

Data Grid Services

Data Access Services

Data Interpretation

Tools

Wisdom Decisions

LEAD

(Meteorology)

Geon

(GIS)

MyGrid

(BioInfo)

NVO

(Astronomy)

OGSA-

DAI

SRB

ASIS

Adaptors

(Anydata

to ASL)

Filters

ASFS

and

ASVS

IDS

Tools

Figure 1: Related projects and where we are in that world as ASIS.

2.3. Data Access and Federation
Data access and federation projects regarding our proposed work are SRB and OGSA-DAI. SRB puts more emphasis on managing and maintaining data files, OGSA-DAI puts emphasis on data retrieval.
In contrast to OGSA-DAI, We are tackling DIKW to describe the hierarchy of Data-Information-Knowledge-Wisdom that we are attempting to support. We are more close to SRB in such as capability managing data integration than OGSA-DAI with some differences: In order to integrate any data to the system we need to convert it to Application Specific Language (ASL). ASL is XML based common data format. We use adaptors in service end filters deployed at the service invocation points of DBs to make this conversion. We can leverages OGSA-DAI and SRB services by adding extra filters in front of their service invocation points.

SRB provides uniform access to distributed heterogeneous data resources by attributes. It uses MCAT (Metadata Catalog Service) to enable attribute based querying and data access. It provides location transparency for the data and data access is done through the authentication and authorization. SRB can be leveraged in ASIS. Sample projects using SRB: BIRN and IVOA.
OGSA-DAI emphasizes database layer whereas we are tackling the application specific DIKW. OGSA-DAI can be leveraged in ASIS. OGSA-DAI enable access to heterogeneous data via common interfaces on the grid. Catalog service is MCS (Metadata Catalog Service). Sample projects using OGSA-DAI are LEAD, MyGrid.
3. Problem Statement
Because of the complexity and multidisciplinary nature of scientific data and lacking of general solution to data grid architectures, it is difficult to extract useful knowledge from the geographically distributed data and information without sophisticated processes. These processes mostly belong to different administrative domains and deployed on various kinds of different platforms and might be written in any languages. There is no clear cut solution to the common architecture to handle this heterogeneity of data and service to be used by scientist and decision makers in the scientific applications. There are some solutions to the problems related to the distributed nature of data grid applications but there still a problem about the common data models and relating different data in different formats from different providers in an application (see Figure 2). In order to solve this problem, annotation and metadata come up. OGSA-DAI and SRB are the well known projects about attribute based data access using annotation and metadata concepts.
[image: image2.png]Vector
data

=)

data

AN

d
Binary | -

Bitmap
ata

Plots

images

[Coverage
data

Raw Data

Data

Information

Enowledge

Wisdom

Decisions

10

Figure 2: Scientific data world – interaction – conversion in DIKW
Each circle is a process in the federated information management concept. Since naturally each one take an input as data and after processing sends out as processed data, we call them filters. In real life data perception as raw, information, knowledge or a wisdom decision changes from person to person or application to application. We use DIKW to describe the hierarchy of Data-Information-Knowledge-Wisdom that we are attempting to support. Some filters are edge filters that just have adaptors to get data from DataBase (DB) or Sensor Service (SS) and send them to next filter or end users, some other filters are just intermediary gets a data from one filter and sends it to another. Some filters are both an edge and intermediary filters.

In order to be able to create such an architecture framework we need some services in addition to filters such as discovery and notification. Services like discovery and notification do not need to be made application specific but defining common interfaces is a necessity.

Instead of making complex querying just use filter interface in human readable form such as “give me the map for California”. These type of queries will be interpreted by the filters and it will create complicated (if needed cascaded multiple) queries to his own DB or to other filters which is in contact with. Currently, we keep connections static, later we will be working on how to make these interactions dynamic through the MD services.

We will be creating this type of architecture first for GIS domain as solution to problems mentioned above. After having done with it we will extend the architecture and define the general requirements for the other domains. If the domain changes then, choices, database requirements, data format, core service requirements, attributes and metadata context changes. What the common concepts and characteristics for data, metadata, query language, services, and communication language are in order to drive information / knowledge from the heterogeneous data/information sources in any application domains is the other problem remains to be solved.
4. Proposed Methods and Architecture
Based on the general picture of the problem statement (see Figure 2), we proposed an architecture framework to implement federated service oriented information management, and called it as ASIS.
We already started and implemented some parts of the architectural concepts and explained them in Chapter 5, Preliminary Results and Discussions. Here we describe the research design and procedures to be used to accomplish the specific aims of the proposal defined in Chapter 3 as Problem Statements.
We firs created basic fundamental architecture framework and general aims of ASIS as federated service oriented information management architecture in GIS domain. Then, generalize it for the general science domains. For that purpose we define general characteristics of the science domains and requirements for federation or basic federated service components. For the current situation see the Section 5. Here we basically mention about the required components of the architecture and define the functionalities and ultimate goal to create this architecture.

Generalization from GIS to any domain:

General Science
Main

GIS

Domain

Functionality
GIS
 ASIS
(Science Domain)

GML ASL
(Representing)

WFS ASFS
(Storing-Resource)

WMS ASVS
(Displaying)

Capa.xml Metadata
(Integrating)

SOAP over HTTP (Communication Protocol)
ASL: Application Specific Language. XML based hierarchical data representation format. Cross language, platform and operating system

ASVS: Application Specific Visualization System, last filter before the decision maker.

Provides information/knowledge in human readable formats

ASFS: Application Specific Feature Service. Stores and provides common data model (ASL) Treat binary and common data (in ASL) differently.
[image: image3.png]ASFS

As
Repository

AS Tool
(generic)

AS Service
+(user defined

AS Tool
(generic)

.Message Using ASL ~ ’ 13

Figure 3: ASIS Architecture enabling federated service oriented Information Management
We generalize our experience with GIS, defining an ASIS for Application Specific Information System. In each application, there are some services like discovery and notification that do not need to be made application specific. However we will need a generalization of the Web Feature Service from GIS that can be applied to domain specific data and metadata models. Operations of this service include search/store/access functions. We call this generalization Application Specific Feature Service, and all interfaces in Figure 2 must use ASFS for domain specific data.
We also need to define the analogy of the Geography Markup language, which is a language expressing the domain specific features. We call this Application Specific Language (ASL). We note that the ASL must support data sources such as sensors (in analogy to GIS metadata and data sensor standards) and repositories. Further, sensors need support of streams of data which can be common across applications. Queries in the application domain’s information system need to support archived (all relevant data in past) and streaming (all data in future with given properties) styles.
We finally introduce Application Specific Visualization Services, generalizing the Open Geospatial Consortium’s Web Map Service to both visualize information and provide a way of navigating Application Specific Feature Services and their underlying databases (cf. the GetFeatureInfo operation for the Open Geospatial Consortium’s Web Map Service). The Visualization Service can itself be federated and presents an output interface. As in Figure 2, all user and system services will input and output data in the appropriate domain-specific XML language using filters to process raw data. The high performance web service techniques described earlier allow one to combine high performance with the expressivity of XML.
In Table 2, we explain interfaces of ASFS and ASVS required for the ASIS architecture to create federated service oriented information management system. Each one has three different routines for different purposes. Below, you will see the brief explanations about each routine.
Table 2: ASIS Components (ASVS, ASFS) interfaces

	ASFS
	
	ASVS

	Routines
	Return types
	
	Routines
	Return types

	GetCapability
	Capability file XML
	
	GetCapability
	Capability file XML

	DescribeData
	XML-schema
	
	GetVis
	Images, svg, png..

	GetData
	ASL
	
	GetDataInformation
	HTML, Text, XML

GetCapability: Enables learning which feature types ASFS can service and what operations are supported on each feature type. It allows the server to advertise its capabilities such as available layers, supported output projections, supported output formats and general service information. After invocation of this request, ASFS and/or ASVS return an XML document with the metadata about themselves. This capabilities file is kept in the local file system. The capabilities file is XML structured metadata file defining service metadata, description of services and content, acceptable request parameters.
DescribeData: An ASFS should be able, upon request, to describe the structure of any feature (vector data) type it provides. The function of the DescribeData operation is to generate a schema description of feature types serviced by an ASFS implementation. The schema descriptions define how an ASFS implementation expects feature instances to be encoded on input and how feature instances will be generated on output. In response to a DescribeData request, where the value of the output format attribute has been set to XMLSCHEMA, an ASFS implementation must be able to present an XML Schema document that is a valid GML application schema and defines the schema of the feature types listed in the request.
GetData: The GetData operation allows retrieval of features from ASFS. A GetData request is processed by a ASFS and an XML document, containing the result set, is returned to the client. The <GetData> element contains one or more <Query> elements, each of which in turn contains the description of a query. The results of all queries contained in a GetData request are concatenated to produce the result set. The outputFormat attribute defines the format to use to generate the result set. Data might be cascaded data, I mean not directly provided by first hand ASFS, but that ASFS should communicate with some other ASFS in order to get that data and respond to requesting client.
GetVis: The GetVis routine allows the retrieval of the data display in a defined format in the request. It is done after finishing getCapabilities request to ASVS and defining the available layers provided by that specific ASVS. All the supported image formats are defined in ASVS Capabilities document. Requests for the image formats should be made in accordance with the ASVS’s Capabilities file. The image is returned back to the ASVS Client as a SOAP attachment.
GetDataInformation (optional): It is used only when a user needs further information about any data on the display – interactive display screen. This routine is in ASVS. After getting the feature collections data from the ASFS, instead of producing display, ASVS extracts all the non-geometry elements and attributes in the returned ASL and convert it to HTML or plain text depending on a specific request parameter. This conversion is done using ASL specific XSL file and generic XSLT transformation machine.
Each service needs to support a “GetCapabilities” interface. It provides a set of metadata (a capabilities document) describing the service, the behavior, contents, and binding information. Capabilities (metadata) are composed of 3 sections, see the sample capabability.xml file given in Figure 4.

-
Service itself.

-
Scientific data provided

-
Functions on data

All the interactions are done through SOAP over HTTP. Each routine is published in the WSDL, invoked based on predefined request schema and put into SOAP body.

[image: image4]

 SHAPE * MERGEFORMAT
[image: image5]
Different domains require different attributes for the appropriate metadata structure for the data but service attributes are going to become same. So, capability schema needs to be changed when domain changes. When attributes change, requests for querying data/information needs to change. Here we define general architectural approach to scientific information federation but not generic capability schema and data models. Data models define data attributes and capability defines the system and data attributes and functionalities each component provides.

Services will know the capability schema and ASL (common data model). If they know these at the beginning they will know how to handle requests, extracting attributes recreating cascaded requests and handling return types. If they know the ASL, they can create appropriate querying and handle expected outputs.

[image: image6.png]<IDOCTYPE WIT_MS_Capabilties SYSTEM
=Capanillies versian="T.1.1" UpdatsSequencs
<Service=

=Name>COL_Mapping<ihame>
<Tille=CGL_ifapping WHS<Title:
<OnlineRegaurce xmins xink=""tp:ihwww w3 0rgf1 999Adink xlinktype="simple"
ik href="hiipiora.ucs. indiana, edu: B0BBMMSServices wsd /=

<Contactinformatior>

i o ucs iniana ecu 803Bmcapahiles o

<{Contactinformation
<igenvice>
<Capabilit
et
<GetCapatilies
SFormat=Whis_xML</Format=
<DCPType-HTTP><Get-
<GriingResource xmins ink="ht:W3.0ro/1 399Nk Yink type="sirpl
linkfref="tyhoro ucs intiana el B0BBANMSServices wsdf
<[Get><IHTTP><DCPTypes
<ioetCaailties-
<Getlap-
SFormat-image/GIF <Format-
<Format-image/PNG S orrat-
<DCPType-<HTTF><Get-
<OrlineResource xmins Xlink="htt 3. oro/1 S9BINK' xlink type="sirmple
inkhref="itytoro s ntiana eorB0BBMMSServices wsd £~
</Get><IHTTP><DCPTypes
</Gethap>
<(Request>
<Layer-
<Name-Califorria f autts</Narre>
<Tifle>CallfomiaF auts</T e~
<6RG-EPSG 4376 /SR>
ZCaiLonBoundingBox mir
<lLayer
<Capanilty-
o aRanlity:

180" iy

2" mae="180" ma="82" 1>

Figure 4: Sample capability.xml file used as metadata in ASIS filter services, ASVS and ASFS.
Figure 5 illustrates a sample scenario explaining what ASIS looks like, how to federate data/information through ASFS and ASVS using capability based metadata, where the user is in proposed system and how they utilize the proposed system. In other words, the figure also illustrates how decision makers utilize data/information at the application level via filters. To summarize, ASFS and ASVS are two services called filters. ASFS provide ASL, ASVS provide human readable information such as text, graphs (scalable vector (svg) or portable (png)) and images. Filters have common ports and interfaces to enable federating information in service oriented architecture and enable chaining for creating more complex data and information. Since they are Web Services, Filters are easily published, located and invoked over the internet.
In order to understand the proposed architecture, here we give the steps in Figure 5 to explain how a decision maker make a request and display the data A and E.

· Each filter publishes its metadata through the capabilities file in static mode (current)
· Initially; Filter-2 provides information-A, filter-3 provides information-D, filter-4 provides information-B,C, filter-5 provides information-E and filter-6 provides information-F.
· Filters are statically linked (application based) and Capability aggregation cycle through “GetCapabilities” interface of the filters.

· Each filter updates their data/information providing by aggregating interacted filters capabilities – metadata. For example after capabilities aggregation filter-2 provides data/information-A,B,C.

· Interactive Tools client makes GetCapability request (invokes GetCapabilities routines) to the filter-3 (ASVS).

· After the invocation, client sees that A,B,C,D,E and F are available information provided by filter-3.

· Decision maker makes a GetVis request (invokes GetVis routine of the ASVS) to filter-3 to display A and E with specific attributes for querying. GetVis is defined in an XML schema file. In case of cascaded data, successive query creation and information handling are done at the appropriate filters. Whether information is cascaded or not is defined in capability file.
· Successive requests are done without user involvement. The appropriate request chains are created in accordance with the filters capabilities published and aggregated before.

[image: image7.png]

Figure 5: Successive requests are done, user is not involved. These request chains are created based on filters capabilities that published before

ASIS is composed of filters. Filters come in two different forms of service. These are ASVS and ASFS. Filters keep their metadata locally. Common data (ASL) is maintained in ASFS with query capability and, upon request from other filters or any clients it returns data. In a given domain every filter speaks in ASL. ASVS both visualize information and provide a way of navigating ASFS and their underlying DB. ASVS can itself be federated and present output interface.
Metadata should be maintained and kept up-to-date to be useful in the system to federate information. In order to be able to do that system should update the metadata with current changes. We propose two ways to do that, one is dynamic metadata update via Registry/Catalog Services (any service we can use with minor changes in the configuration) another way is doing static updates by using properties files or changing capabilities of ASIS service manually.

Goal is to enable binding with or without human intervention. Services describe their interfaces through WSDL. Data goes through filtering operations in which they are transformed and analyzed. Filters include simple transformation and predictable data extraction operations. Filters are characterized by the certainty of their outputs such as Images (WMS), GML (WFS), CML, ASCII files. They also make data mining, statistical analysis tools and other adaptive services and invoked remotely.

5. Preliminary Results and Discussions
On our way to creating federated information management architecture for scientific data/information grid applications, we first selected a science domain to work on it and prove our concept and approaches. That domain is GIS. GIS introduce methods and environments to visualize, manipulate, and analyze geospatial data. The nature of the geographical applications requires seamless integration and sharing of spatial data from a variety of providers. To solve the interoperability problems, the OGC has introduced standards by publishing specifications for the GIS services. ASIS is the name of the creating federated information management architecture for scientific data/information grid that we propose. To create a rough working draft as ASIS we implemented basic fundamental services defined by OGC specifications in GIS domain. These are WFS and WMS. After having finished implementing OGC compatible services we converted them into Filter Services as ASFS (corresponds to WFS) and ASVS (corresponds to WMS) by wrapping them as Web Services and adding some additional ports required in ASIS architecture explained in Chapter 4. As data model (defined ASL in ASIS) we used GML whose specifications and descriptions are defined by OGC.
We have developed a portlet-based interactive decision support tools interface to our proposed federated service oriented information management system for testing and the demonstration purposes. A sample interface is shown in Figure 6. Several capabilities are implemented for the user to access and display geospatial data. Tools enable the user to zoom in, zoom out, measure distance between two points on the map for different coordinate reference systems, to get further information by making some getFeatureInfo requests for the attributes of the features on the map, and drag and drop the map to display different bounding boxes. Users can also request maps for the area of interest by selecting predefined options clicking the drop-down list. The user interface also allows the user to change the map sizes from the drop-down lists or enable them to give specific dimensions. Zoom-in and zoom-out features let the user change the bounding box values to display the map in more or less details. Each time user change the bounding box values, user interface shows the updated bounding box values at the each side of the map.
Our implementation of interactive decision support tools are generic and application independent. They can support more than one geophysics application at the same time. Each geophysics application is bound to a set of layers. These bindings are defined in structured XML formatted properties file. Users navigate over the applications by selecting set of layers from the dropdown list. Set of layers in the dropdown list created according to communicated ASFS. Binding properties are updated based on the set of supported layers of the communicated ASFS.

Our implementation of interactive decision support tools is modular. In order to interact with a specific geophysics application we integrate a plug-in with a modular client. In order to interact with corresponding geophysics application, each component adds various application specific features to interactive decision support tools. Each plug-in can be defined by user it creates a sort of abstraction layer where users can define how to interact with geophysics application.

As initial implementation ASIS Filter Services are stateless services. At each interaction all the state information and environment parameters are renewed. Since each Filter Service wrapped as Web Service and interactions are through the SOAP over HTTP.
In our ASIS framework for the GIS standard map servers (ASVS) produce static images, but many types of geographic data are time dependent. In order to understand geographic phenomena and characteristics of temporal data it is necessary to examine how these patterns change over time for these types of data. We therefore investigate the problems of creating streaming video map servers based upon appropriate standard collaboration technologies.
[image: image8.png]3 GIS crisis_grid - Microsoft Internet Explorer 65X
T Tk Ven Fomtes Toch teb

Pattern_informatics Data

Nasa:Satlite o .

Google:Map
Google Satslite
Calformia States.

World Seismic

B update wap

[——

[A8 A A |
SelectAvea of nterest FZEXONNED

Resize Map
Customized oim: . [NEEE < NN

Time Interval for Seismic Data
(Month /Day / Year)

From (t0) - (TN / CINN / KX
Tow - EN/EN/EE

Min Magnitude : CHll

[CoOROMATES (ccortoato S) Low: 12062 LAT: 4038

Map Movie How 1o run

Movie created based on the data from : 01/01/1987 to : 1231/1992

PI Specific parameters
(Mot efect the curet MAP)

Estimate(t1) - [/ N/ EEEE
Select Time Periods . [ERCTID
Binsie o | ot

Tinesieps © E

FLOT FIOUTRUT.

Figure 6: A snapshot from Interactive Decision Support Tools Interface. Sample snapshot is from Pattern Informatics Demo.
In addition to creating static maps, interactive decision support tools have the ability to display time series data as movies or animations (see a sample snapshot from a demo Figure 7). Movies or animations are created after getting set of successive static images (movie frames) and playing them successively. Each frame represents a static map that corresponds to a time frame defined in the requests. We have created movies and animation for Pattern Informatics and Virtual California projects in ServoGrid.
For the performance issues, we developed streaming version of data transfers. Streaming data transfer is enabled by using Community Grids Lab’s Naradabrokering messaging middleware. The Naradabrokering messaging substrate enables scalable, fault-tolerant, distributed interactions between entities, and is based on the publish/subscribe paradigm. The Naradabrokering substrate provides support for transport protocols such as TCP, Parallel TCP, UDP, Multicast, HTTP and SSL; it also facilitates communications across NAT and firewall/proxy boundaries.
[image: image9.png]

Figure 7: Sample JMF movie client subscribed to RTP Session opened by our IDS tools.
5.1. Application Use Domains
We have been working on some projects related to data grid and information management. These are mostly in GIS domain but in the near future we will be working on Chemistry domain and apply our already started framework into that domain. In that section we explain briefly some project that we have been working on and applying ASIS proposed framework.
ServoGrid Projects in GIS domain:

1. Pattern Informatics (PI):

PI is a technique developed at University of California, Davis for analyzing earthquake seismic records to forecast regions with high future seismic activity.
PI analysis technique, formulated based on the physical and theoretical understanding of complex, nonlinear fault systems, to isolate emergent regions of coherent, correlated seismicity prior to their occurrence in Southern California. Please see the Figure 6 for a sample demo snapshot.
2. Geophysical Finite Element Simulation Tool (GeoFEST):
GeoFEST is a two- and three-dimensional finite element software package for the modeling of solid stress and strain in geophysical and other continuum domain applications. GeoFEST uses stress-displacement finite elements to model stress and strain due to elastic static response to an earthquake event in the region of the slipping fault, the time-dependent viscoelastic relaxation, and the net effects from a series of earthquakes.

3. Virtual California (VC):
VC approach to earthquake forecasting is similar to the computer models used for weather forecasting, said John Rundle, director of the UC Davis Computational Science and Engineering Center, who has developed the model with colleagues from the Jet Propulsion Laboratory and other institutions. A previous forecast of earthquake hazards, the Working Group on California Earthquake Probabilities, used records of past earthquakes to calculate the probability of future ones.
The Interdependent Energy Infrastructure Simulation System (IEISS):

This is a Home Land Security Project at Los Alamos National Labs (LANL). IEISS simulates the physical and operational behavior of interdependent energy infrastructures during incidents and disruptions. It can identify and rank critical components across energy infrastructures, estimate outages, and quantify feedback.
Possible Future Projects might be in Chemistry and Astronomy domain.

6. Conclusions

6.1. Research Issues

Here we summarize briefly what the issues are on our way to create ASIS framework for federated service oriented information management.
In order to provide attribute based querying of information and capability aggregation we need to define metadata in capabilities. In that concept, we define the functionalities of the capabilities in the system to federate the filters.
We define the general architecture of the information sources – Filter Services. Filter Services are grouped into two categories. These are ASFS and ASVS. We define the common ports to communicate, locate and bind each other to create more complex information.

In the federated information management architecture filters (ASFS, ASVS) talks to each other in ASL (such as GML and CML). ASL is common data representation format. We define requirements and schema for ASL and its functionalities in the system to federate the information sources.
We create a common information management framework for application level data/information federation which can be applied to any domain. We define common characteristics, differences and extensions needed from domain to domain and/or application to application.
We integrate the ASIS system with the application science simulations (Pattern Informatics, Virtual California and GeoFEST in ServoGrid) through IDS tools. IDS tools are created for utilizing integrated filter services. We have created tools for map animation, map movies, images and interactive query support to get further information on the image and/or animation.
We plan to enable binding of services into pipelines with or without human intervention through metadata. Currently, we bind them before runtime statically.

In order to handle large scientific data in an efficient and robust manner we plan to introduce caching and load balancing into the ASIS to handle large scientific data in an efficient and robust manner (application based).

6.2. Expected Contributions
We define requirements and instructions about how to build ASL and metadata in XML based capability documents for the application sciences and, specific information system (ASIS) and framework for federating multiple filters speaking ASL.
We formalize federated service oriented information grid (ASIS) through capabilities metadata, defining all the data/information sources as interacting Web Service filters with standard metadata service ports. GIS is our motivating domain. We will demonstrate proof of concepts for other domains (such as chemistry and astronomy). We provide Data/Service federation through capabilities metadata as distinct from data/database federation/replication approaches.
We define possible bottlenecks and optimization/enhancement opportunities for the distributed heterogeneous information management systems. Composability nature of the filters enables caching and load balancing for obtaining enhanced service outcomes.
We also provide enhanced decision support with domain specific metadata languages and interactive mapping tools with query capabilities. We propose an architecture framework to transform heterogeneous and dispersed data into human-interpretable maps and integrate multiple information sources into interactive user interfaces such as digital photography, demographic information, and information from simulations.

REFERENCES

1. Project home page http://complexity.ucs.indiana.edu/~asayar/gisgrids/
2. OGC web site http://www.opengeospatial.org/
3. IVOA web site http://www.ivoa.net/
4. Liping Di paper. “Distributed geospatial Information Services-Architectures, Standards, and Research Issues”.
References to grids, web services and ogsa-dai and srb
Complete all the missing references.

5

6

3

4

2

1

<SOAP:Envelope>

 <SOAP:Body>

 <request to routine>

 <request body/>

 </request to routine>

 <SOAP:Body>

<SOAP:Envelope>

<request to routine> …..<request body/>

 </request to routine>

_1213458821.vsd
Text

