Thesis Proposal: High Performance, Federated and Service-Oriented Geographic Information Systems

Ahmet Sayar asayar@cs.indiana.edu

Introduction

- Definition of GIS
- Explanation of IS requirements in GIS
- History: From central to distributed
- Interoperability and heterogeneity of distributed application specific IS.
- Federation of data+services.
- Performance issues: exchange, transform and process large data sets
- Summary:
 - o Architectural issues for Service-Oriented capability-based federated GIS
 - High performance and responsive GIS
 - Aggregator services
 - Pre-fetching, parallel processing and caching techniques

Motivation

- Distributed nature of data and computation resources
 - o Heterogeneity, interoperability
 - Data is provided by diff vendors in diff formats with diff service interfaces
- Single point of access, query and display of heterogeneous data sources (federation)
 - Through integrated data views (seamless interaction with data sources)
 - Needs for informatory and comprehensible data (hierarchical?)
 - Definitions of services and comprehensible data formats such as maps
- Needs for high performance and responsiveness
 - Emergency early-warning systems such as homeland security and natural disasters
- Motivating examples for federation and performance requirements (see the document)
- Summary: Above needs require us to research on
 - Federated and Service-Oriented (Interoperable) GIS systems

- Seamless data access and unified querying of heterogeneous distributed data from a single access point
- o Interoperable and responsive Information System architecture for GIS
 - Handling large scale data
 - Common data models
 - Common service interfaces for data sources

Architecture

- Interoperable Service Oriented GIS
 - Definitions of Services (Generalization)
 - WFS provides data in common data model (GML)
 - Has different adaptors and wrappers depending on the original data source (such as relational database or plain ASCII files)
 - WMS provides comprehensible data (map images)
 - Services, their capability files and common data model (GML)
 - o Extending the service definitions as Web Services
 - Additional components of the architecture
 - Interactive-smart user interface
 - Interactive display and unified query over integrated data- view
 - Wrappers for integrating other WMS
 - For non-web service OGC compatible WMS and,
 - For Google Maps
- Federated GIS
 - Creating federator service based on WMS
 - AWMS (WMS Aggregator): WMS extended with aggregator capabilities and high-performance techniques
 - Service and capabilities extensions for federation
 - WFS-based common service interfaces to heterogeneous data sources
 - Capability-defined data+service chaining and referencing
 - WMS to WFSs
 - WMS to WMSs
 - WFS to WFSs
 - Web-based interactive single point data access and querying architecture
 - Through integrated data view
 - Capability based dynamic GUI update.
 - Capability comes from initially interacted service (AWMS)
 - Hierarchical data definitions in capability files
 - Project->map ->layer ->{vector (GML), raster and binary data}
 - Data and service bindings

- Abstracting the system to the general science domain
 - Formulating the system and defining the requirements
 - Capability (service+data defns), ASL, ASFS, ASVS, ASAS.
 - From WFS to ASFS (Application Specific Feature Service)
 - From WMS to ASVS (Application Specific Visualization Service)
 - \circ $\,$ From AWMS to ASAS (Application Specific Aggregator Service) $\,$
 - Capability requirements
 - From GML common data to ASL (Application Specific Language)
- High Performance design Issues
 - Data transfer (streaming pub/sub based messaging middleware)
 - Data rendering (pull parsing over common data model)
 - Federator (AWMS) oriented design
 - Pre-fetching (un-frequently changing data)
 - parallel processing and caching (frequently changing data)

Applications of the Proposed Work

- Coupling the federated GIS Data System with Geo-Science Applications
 - Integrating the System with other CGL-Lab projects for Geo-Science Applications.
 - Sci-Plotting (my development), WS-Context HPSearch Web Services
 - Displaying correlation of input and output of scientific applications
 - Three-layer structured display through Sci-Plotting Service
 - Interactive decision making tools
 - AJAX (Asynchronous Java and XML) and Web Service integration with mediator Service
 - Ex use cases: Google Map + WFS, Google Map + WMS
 - Use Case Scenarios on real Geo-Science Applications
 - Pattern Informatics (PI)
 - Virtual California (VC)
 - Interdependent Energy Infrastructure Simulation System (IEISS)
- Animating time-series data (such as earthquake seismic) as streaming map movies
 - o Time-series data animation
 - Streaming map movies architecture for GIS
 - Frames (static map image) creation
 - Frame is map created through proposed GIS system
 - Invocation stage -chain of requests based on time-periodicity
 - Data retrieval stage –chain of returns
 - Map streams creation, publishing, and fetching and displaying
 - Applications to Virtual California and Pattern Informatics.

Research Issues

- Developing Interoperable and Service-Oriented GIS
- Developing high-performance federated GIS
 - Developing capability file-based federated GIS system
 - WFS-based federation of data
- Enhancing the system responsiveness by dealing with
 - Data transfer and rendering issues
 - Streaming data transfer through message based middleware
 - Advanced parsing and rendering techniques
 - Performance-enhanced federation design
 - Federator (AWMS) oriented approaches
 - Pre-fetching, caching and parallel processing or combinations
- Abstraction of the federated GIS
 - Defining the requirements for the generalizing the proposed capability-file based federation for general application domains
 - Defining the capability file, service types, service functionalities and message formats.
- Secondary Research Issues:
 - Framework for coupling Geo-applications with the proposed GIS system
 - Framework for map animations and streaming map movies time-series data
 - User portals enabling single point data access and querying through integrated data views.

Expected Contributions

- Introducing capability file-based federation approach to distributed Application Specific Information Systems (ASIS),
- And define the requirements for generalizing the architecture to the other application science domains.
- Introducing interoperable Service-Oriented GIS with universally accepted standards and Web Service technologies.
- Minor Contributions:
 - Introducing the innovative techniques for high performance and responsive data rendering. Performance hurdles are due to:
 - Data characteristics: variable sized and un-evenly distributed
 - Using semi-structured common data model.
 - Introducing a web-based interactive single point data access and querying architecture through integrated data view
 - Through hierarchical data definitions and service bindings in capability files