Thesis Proposal
Responsive and interoperable data rendering for Distributed GIS
Ahmet Sayar

asayar@cs.indiana.edu

1. Introduction
Geographic Information Systems (GIS) [1, 2] is basically a collection of computer hardware and software for capturing, managing, analyzing, and displaying all forms of geographically referenced information.

General purpose of GIS systems is extracting information/knowledge from the raw geo-data collected from sensors, satellites or any other ways and stored in databases or file systems. The raw data goes through the filtering and rendering services and, geographically referenced information in human recognizable formats are produced. Perhaps the simplest example of GIS is map viewers which process layers of geospatial data to create map images. GIS are used in a wide variety of tasks such as urban planning, resource management, emergency response planning in case of disasters, crisis management and rapid response etc.
Like any other information systems, GIS journeyed from centralized mainframe systems to desktop systems and finally to distributed systems [3]. Today a modern GIS requires distributed systems support at two levels; first for accessing various geospatial databases to execute spatial queries and second for utilizing remote geographic analysis, simulation or visualization tools to process spatial data.
Distributed GIS systems helped academia, governments and businesses to have easy access to substantial amount of geospatial data stored in heterogeneous data sources and service providers. On the other hand, Because of the challenging requirements regarding performance of the system and, data and service heterogeneity problems, developers create their GIS applications locally and use internet just for enabling browser-based online remote access for end-users. These challenges degrade the distributed systems advantages and make the system un-usable and un-feasible for the large scale applications.
Current traditional distributed Information Systems are based on more traditional client-server models and, have some problems of linking distributed computational components to create more complex information because of the heterogeneity and performance issues. For example, accessing and overlaying map layers from different remote map rendering services using different protocols and service interfaces.
GIS which is used in emergency early-warning systems like homeland security and natural disasters (earthquake, flood etc) require quick responses. But, because of the characteristics of geo-data (large sized and un-evenly distributed), time-consuming rendering processes and limited network bandwidth, the responsiveness of the system is one of the most challenging parts the current traditional distributed systems.
GIS is viewed in three ways. These are “database view”, “map view” and “model view”. We will be addressing issues at all levels but mostly focusing on map view level regarding responsiveness, performance and heterogeneity issues.
This thesis proposes a novel architecture to solve above challenges of the traditional distributed GIS systems by creating a grid-enabled [10, 11] responsive and interoperable map rendering system.
2. Motivation

Besides having many advantages of using distributed systems in GIS, GIS face some problems regarding data and service interoperability [8, 9] and responsiveness.

There is a necessity for the rendering services to be interoperable so that a client can utilize and integrate them seamlessly. Otherwise, a separate application needs to be deployed for each of services. For example, if we want to build an Indiana map showing all the counties, we have to use three different rendering services and three different client applications to communicate with; (1) ESRI’s [5] ArcIMS and ArcMap Servers are used for Marion, Vanderburgh, Hancock, Kosciusko, Huntington and Tippecanoe counties, (2) Autodesk MapGuide [6] is used for Hamilton, Hendricks, Monroe and Wayne counties and (3) WTH Mapserver Web Mapping [7] is used for Fulton, Cass, Daviess and City of Huntingburg counties based on several Open Source projects.
In addition to accessing these servers seamlessly and making unified querying of data attributes, users might need to add another details on the maps from different heterogeneous services. For example users might be interested in seeing the earthquake seismic activity happened last year magnitude is over 3 and plotted over the integrated layers coming from above servers. These types of requirements might be coming from public users or geo-scientists developing some science applications requiring comprehensible data represented in map layers.

All these tasks involve data accessing, transferring, processing and rendering. Furthermore, geo-data is characterized as large sized and geographically un-evenly distributed (such as human population). Large scale data processing, transferring and displaying takes a long time and degrades the access and responsiveness of the GIS systems. It even gets worse when we want to integrate rendered data from distributed services as mentioned above case. Users do not wait to get the result on the screen for a long. More specifically, if the GIS is interacted with web-based client tools, sometimes even browsers time out if it takes more than a specific time set internally in the browser.

Our motivation is ensuring responsive and interoperable GIS rendering system for the end users and Geo-science applications.

3. Research Issues

We group our research issues into two. The first group of research issues is related system performance and responsiveness and, the second group issues are the interoperability of GIS systems.

Information Systems demand high-performance and high-rate data transfers and, require quick response times. In most cases the amount of collected data reaches to an amount in the order of gigabytes or even terabytes. Therefore, the GIS services must enable accessing and processing these large data sets in a reasonable time period. Handling large data becomes a challenge for most users and organizations. Specifically for the GIS, this picture will be even worse when the map animations and map movies need to be created.

Since the proposed GIS system is a distributed system and due to the limited bandwidth and network speed, sometimes it is impossible to make large scale geo-science applications feasible. Information Systems utilize and handle large size data structures and need high performance data transfer and rendering. Instead of dealing with the hardware and network issues, we work on software solutions to improve the system performance such as streaming data transfer, caching and pre-fetching.

The distributed Information systems face interoperability and heterogeneity problems. These are mostly result from adoption of the universal standards, distributed nature and heterogeneous formats of science data and, service interoperability. In order to make the system interoperable, the services and data types should be standardized. Service standardization includes defining standard service functionalities and corresponding service interfaces. After defining the service standards we need to define common request formats and expected responses

We identify the following research questions:

- How to build Web Services for data and computation source for supporting scientific GIS applications demanding high-performance and high-rate data transfers.

- How can we incorporate widely accepted geospatial industry standards (OGC [25] and ISO-TC211) with Web Services?

- How to make unified access and querying of heterogeneous data provided by geographically distributed sources

- How to make parallel processing for un-evenly distributed and large size geospatial data (workload cannot be guessed before the results come)
-How to make responsive data rendering system enabling interactive rendering and display

-How to create a data rendering server making query partitioning and assembling the results to sub-queries.

-How to make interactive and responsive data display and unified querying in distributed GIS.
4. Methodology
Our proposed GIS architecture is Web Service based Service Oriented Architecture (SOA) implemented in JAVA. In order to develop and evaluate our architecture, we chose Apache Axis 1.x [15] version to deploy Web Services. We exploited Apache Tomcat [14] as a servlet container. Apache Tomcat is developed in an open and participatory environment. It implements Java Server Pages (JSP) and the servlet specifications from Sun Microsystems.

In order to test the proposed system for performance and responsiveness, we develop interactive decision making tools enabling interactive display and querying of the data. For the creation of interactive browser-based system, we use AJAX (Asynchronous JAVA +XML), Dynamic HTML, JavaScript and Web Service client tools.

In order to achieve interoperable GIS system we use universally accepted OGC and ISO-TC211 standards specifications for online services and data model. As online standard services we develop Web Map Services (WMS) [12] and Web Feature Services (WFS) [13] (by Ayding G.) and, convert them into Grid-enabled Web Services by extending. We also utilize standard definition of capability metadata (RDF-WSDL like structures defined by OGC) of the services and enable inter-service communications.

As data model we use semi-structured data defined by widely accepted OGCTC-211 standards. It is called Geographic Markup Language (GML) [4]. GML is basically an XML encoding for the modeling, transport and storage of geographic information including the spatial and non-spatial properties of geographic features. Feature is an entity related to earth with a geographic location such as road, river, states etc. GML has separate schema standards for both content part and presentation part. That enables display and query of the data. Display is related to presentation part of the data schema and query is related to attributes of the data schema.

5. Architecture in Brief

In order to investigate research issues mentioned in Chapter 3, we propose an architecture enhancing interoperability and responsiveness of the data rendering in GIS systems.
The core and key service of the proposed architecture is Aggregator WMS (AWMS). AWMS is actually in between the user portal and GIS systems (see Figure 1) and, capable of orchestrating and partitioning the main job to the worker WMS and WFS to improve the responsiveness of the system.
We focus on the issues related to increasing the responsiveness and performance of the GIS systems at the map-view level. In order to achieve this, we first propose architecture (Figure 1) and secondly, propose novel caching and load balancing techniques to the well-known problems of handling un-evenly distributed and large size data transferring, rendering and displaying fo distributed data. Second issues are applied on AWMS. AWMS can interact and integrate any map layers from any OGC compatible mapping and rendering services such as NASA WMS or any Feature data services such as from ESRI. Internally in CGL lab, we develop GIS in SOA principles and all the WMS and WFS services are Web Services. In order to enable interaction of our Web Service WMS with other OGC WMS such as NASA’S WMS we develop handlers for solving service-communication level interoperability.
The proposed arch is SOA all the services are Web Services and this enable each individual services to be publish, located and invoked remotely. The system is developed based on universally accepted and widely used OGC and ISO-TC211 standards. This enables us to extend the sy[image: image2.png]

stem with other compatible data sources (WFS) and Map Services (WMS).
[image: image3.png]

There are two types of data flying around in the below GIS system. One is for vector data encoded in GML common data model and provided to the system through WFS representing earth related features such as rivers, earthquake faults, seismic records, state boundaries etc. this type of data is mostly kept in Databases and provided by WFS. Another is binary data encoded in image types as map layers. These two data are handled differently. Most of the performance issues are coming from the encoding, transferring and rendering of the vector data in feature collections encoded in GML.
Streaming data transfer for GML data traveling from WFS to WMS is implemented by using publish-subscribe based messaging middleware called Naradabrokering. The clients make the requests with standard SOAP messages but for retrieving the results, a NaradaBrokering subscriber class is used. Through first request to Web Service (called getFeature), WMS gets the topic (publish-subscribe for a specific data), IP and port to which WFS streams requested data. Second request is done by NaradaBrokering Subscriber.
Parsing and rendering of the structured GML data we use Pull Parsing technique. Pull parser only parses what is asked for by the application rather than passing all events up to the client application as SAX parsing does. The pull approach of this parsing model results in a very small memory footprint (no document state maintenance required – compared to DOM), and very fast processing (fewer unnecessary event callbacks - compared to SAX). You see the article where pull parsing is compared with other leading Java based XML parsing implementations [26].
The proposed GIS (triangle in Figure 1) is composed of chains of WMS and WFS services. WFS (implemented by Aydin G.) provides interfaces for data access on geographic data kept in geospatial database to retrieve and present the data to the clients in a standard data model (GML feature collections). WFS provide three major interfaces. These are “GetCapabilities”, “GetFeature” and “DescribeFeatureType”. WMS interact with WFS by submitting standard structured queries in compliance with OGC’s Filter Encoding and OGC Common Query Language.
WMS renders the raw binary or structured data captured from WFS and, creates comprehensible information in map images (MIME types JPEG etc). WMS defines a request/response protocol for web-based client/web-server interactions. It has three standard services, “GetCapabilities”, “GetMap" and “GetFeatureInfo”. Communications between WMS and WFS is achieved by exchanging the capability documents through their GetCapabilities service interface. Capability document include all the required information to make successive request to use other service interfaces such as GetFeature, GetMap and GetFeaturInfo.
GetCapabilities request allows the server to advertise its capabilities such as available layers, supported output projections, supported output formats and general service information. After getting this request, WMS returns an XML document with the metadata about the WMS Server. This capability file is kept in the local file system.

The getMap service interface allows the retrieval of the map. getMap request is consist of attribute value pairs. Attributes are predefined in a standard form but values are assigned in accordance with the capability document of the server invoked. The most of the WMS clients are browser based and GUI enabled. Values for the attributes are assigned with the help of user interface and interactive map tools such as zoom-in, zoom-out and panning.

GetFeatureInfo is for making unified querying over the feature data used for creating the map layers. It is used for querying the attributes (content) of the data. The common data model used to encode feature data in the system (GML) enables this. GML has two parts, one is content and the other is presentation. The presentation part is for rendering and displaying geometry elements such as linestrings, points etc. Content part is related to the attributes of the data such as the magnitude values of seismic records represented as points in the map.
5.1. WMS Aggregator (AWMS)
AWMS is actually a WMS with some extensions providing enhanced map rendering services by using innovative pre-fetching, parallel processing and caching techniques for the data at the representation level. AWMS aggregates, composes and orchestrates WMS and WFS services and, express the layer level compositions in its capabilities file and, present it to the clients with “GetCapabilities” Web Service interface.

Pre-fetching is purely for overcoming the natural bandwidth problem, caching helps system prevent redoing the jobs of querying and rendering before and, parallel processing helps workload sharing and parallel job run.

Pre-fetching is for rendering of the data - not changing often. It runs independent of the AWMS’s other services. Pre-fetching is getting the data before it is actually needed and keeping it in local server for the successive requests committed for the same data. In our framework we use archived scientific data. Archived data does not change often. So, it is not reasonable transferring and rendering the same data again and again for every request coming from the different or even the same users. In order to solve this problem we use pre-fetching. Pre-fetching will be done between WMS and WFS based on the predefined periodicity such as once a day or once a week. Periodicity is defined previously depending on the data’s characteristics.
Sometimes pre-fetching is not possible because of the data characteristics such as updated very often or limited storage capacity of the local server. For these cases we propose alternative techniques summarized as caching, rectangulation and parallel processing. These are all closely related to each other.
Caching is composed of two types of processes. These are “cached-data extraction” and “rectangulation” of remaining area in main query (Figure 2). We utilize from cached data by extracting overlapping region from the cached map and prepare request for the remaining parts through rectangulation processes. AWMS assembly the extracted cached data with the returned map images in response to sub-queries corresponding to rectangles obtained from rectangulation process.
[image: image4.png]

[image: image1]
AWMS apply the parallel processing after cached data extraction and rectangularion. Since all the data in the system (geo-data) is geo-referenced and, defined and queried in ranges by bounding boxes, we do range query partitioning to implement parallel processing to increase the performance of the data access, display and querying. Parallel processing is done for handling the data changing very often, in other case we prefer to use pre-fetching. Parallel processing technique is applied together with caching, cached data extraction and rectangulation processes.
Partitioning for parallel processing can be considered in two ways. One is layer-based another is queries’ range partitioning for the same layers. These issues are considered at the aggregator and layer compositions and partitioning are configured in aggregator’s capabilities file. Depending on the experience for a specific application, configurations in capability file can be upgraded and performance and responsiveness of the system can be increased.
6. Benchmarking
In order to address research issues we will perform (1) usability tests and (2) performance-responsiveness tests. Tests will be done on the proposed system with our creation of interactive decision making tools over real ServoGrid applications. These are Pattern Informatics (PI) [16] and Virtual California (VC) [17].
(1) Usability tests (Figure 1):
· Testing basic interactive data (map) display tools, zoom-in, panning, moving etc.

· Interactive unified data querying through map-display. Click on the map get data attrbute.

· Map animations. Creating map movies with user provided parameters interactively. Animations are composed of series of static map images.

Measurement of success for the usability: sending the link to some newsgroups and email groups and getting feedbacks.
(2) Performance tests (Figure 3):
Each test will be done on a single machine, local area network and wide area network.
 For different data size

· Timing for rendering and display of data (T)
· Caching and parallel processing (for the data change very often)

· Pre-fetching (for the data do not change often)

· Timing for data (GML) transfer issues (from WFS to WMS –see Figure 3) (t1.1-t’1.3)
· Streaming data transfer (through pub/sub based messaging middleware [18])

· Non-streaming data transfer

· Stress tests; over Virtual California science application for streaming map movies applications requiring high performance data transfer and rendering.

Measurement of success for the performance: We will compare the performances of the system with the other well-known deegree project [19] and possibly UMN MapServer [20] map-rendering tools.
7. Related Work
Linked Environments for Atmospheric Discovery (LEAD) [21] is a large scale project funded by NSF Large Information Technology Research grant for addressing fundamental IT and meteorology research challenges to create an integrated framework for analyzing and predicting the atmosphere [23]. On the other hand we aim same things for the earth-related Geo-science. LEAD and our architecture both use SOA for the utilization of distributed sources.

At the application level, LEAD supports for adaptive analysis and prediction of mesoscale meteorological events. They call it forecast mode using available observations or model generated data and manages necessary resources. They mostly focus on automated data management, scalable data archiving system and easy search and access interfaces via GUI and underlying ontology. LEAD has MyLEAD concept for enabling users to process their own data. Users can interactively explore the weather as it evolves, create custom scenarios or acquire and process their own data. Our approach is based on accessing querying and displaying the data not management.

As we do they also provide a web-portal as the entry point for students, users or advanced researchers to the meteorological data, services, models, and workflow, analysis and visualization tools related to the project.

Like LEAD, GEON [22] is also SOA based architecture adopted with a portal developed for end-users and, NSF funded large scale project involving the development of a distributed, services-based system that enables geoscientists to publish, integrate, analyze, and visualize their data.

In summary, compared to the related projects our contributions are: (1) Introducing the innovative techniques for high performance and responsive map-data rendering, (2) interactive and seamless data access and querying architectures and, (3) developing interoperable GIS via SOA and universally accepted standards (OGC, ISO-TC211 and W3C).

8. Work Plan
(1) Developing streaming and non-streaming versions of Web Map Services in accordance with universally accepted standards. (2) Extending WMS as Web Services –grid-enabled (3) Developing WMS Aggregator from basic WMS. (3) Extending OGC standards to enable service chaining for parallel processing without corrupting OGC standards’ completeness (required for parallel rendering processes). (4) Integrating the system with real Geo-science applications such as PI and VC applications and other CGL lab projects such as WS-Contect and HPSearch. (4.1) Developing the interactive web-based map tools to interact with the coupling of real Geo-Science applications and Aggregator WMS. Map tools are consists of static map tools and map animation tools.
The remaining is the performance and responsiveness tests.

References

[1] GIS Research at Community Grids Lab, Project Web Site: http://www.crisisgrid.org.

[2] Ahmet Sayar, Marlon Pierce, Geoffrey Fox OGC Compatible Geographical Information Services Technical Report (Mar 2005), Indiana Computer Science Report TR610

[3] Peng, Z.R. and M. Tsou, Internet GIS: Distributed Geographic Information Services for the Internet and Wireless Networks. 2003: Wiley

[4] Cox, S., Daisey, P., Lake, R., Portele, C., and Whiteside, A. (eds) (2003), OpenGIS Geography Markup Language (GML) Implementation Specification. OpenGIS project document reference number OGC 02-023r4, Version 3.0.

[5] ESRI, ArcIMS, 9 Architecture and Functionality, J-8694. ESRI White Paper, http://downloads.esri.com/support/whitepapers/ims_/arcims9-architecture.pdf. 2004.
[6] Autodesk. MapGuide http://usa.autodesk.com. [cited.

[7] MapServer, W. http://www.wthengineering.com/GIS/web_gis.htm. [cited.

[8] de La Beaujardiere, J., Web Map Service, OGC project document reference number OGC 04-024. 2004.
[9] Vretanos, P. (2002) Web Feature Service Implementation Specification, OpenGIS project document: OGC 02-058, version 1.0.0. Volume,
[10] Fox, G. and M. Pierce. Web Service Grids for iSERVO. in International Workshop http://www.eps.s.u-tokyo.ac.jp/jp/COE21/events/20041014.pdf on Geodynamics: Observation, Modeling and Computer Simulation University of Tokyo Japan October 14 2004. 2004
[11] Fran Berman, Geoffrey C, Fox, Anthony J. G. Hey., Grid Computing: Making the Global Infrastructure a Reality. John Wiley, 2003.
[12] de La Beaujardiere, J., Web Map Service, OGC project document reference number OGC 04-024. 2004.
[13] Vretanos, P. (2002) Web Feature Service Implementation Specification, OpenGIS project document: OGC 02-058, version 1.0.0. Volume,
[14] Apache Tomcat, http://tomcat.apache.org/.
[15] Apache Axis, http://ws.apache.org/axis/.
[16] Tiampo, K. F., Rundle, J. B., McGinnis, S. A., & Klein, W. Pattern dynamics and forecast methods in seismically active regions. Pure Ap. Geophys. 159, 2429-2467 (2002).
[17] Rundle, P.B, J.B. Rundle, K.F. Tiampo, A. Donnellan and D.L. Turcotte, Virtual California: Fault Model, Frictional Parameters, Applications, PAGEOPH, submitted
[18] Pallickara, S. and G. Fox. NaradaBrokering: A Middleware Framework and Architecture for Enabling Durable Peer-to-Peer Grids. in Lecture Notes in Computer Science. 2003: Springer-Verlag.
[19] Deegree projects home page http://deegree.sourceforge.net/
[20] UMN MapServer project home page http://mapserver.gis.umn.edu/
[21] Beth Plale, Dennis Gannon, Dan Reed, Sara Graves, Kelvin Droegemeier, Bob Wilhelmson, Mohan Ramamurthy, “Towards Dynamically Adaptive Weather Analysis and Forecasting in LEAD”, To appear ICCS workshop on Dynamic Data Driven Applications, Atlanta, Georgia, May 2005.
[22] GEON (Geosciences Network): A Research Project to Create Cyberinfrastructure for the Geosciences. http://www.geongrid.org
[23] Kelvin K. Droegemeier, et al. Linked environments for atmospheric discovery (LEAD): A cyberinfrastructure for mesoscale meteorology research and education. in 20th Conf. on Interactive Information Processing Systems for Meteorology, Oceanography, and Hydrology, . 2004. Seattle, WA.
[24] Sosnoski, D. “XML and Java Technologies”, performance comparisons of the Java based XML parsers. Available at http://www-128.ibm.com/developerworks/xml/library/x-injava/index.html
[25] OGC (Open Geospatial Consortium) official web site http://www.opengeospatial.org/
[26] Sosnoski, D. “XML and Java Technologies”, performance comparisons of the Java based XML parsers. Available at http://www-128.ibm.com/developerworks/xml/library/x-injava/index.html
User Portal

Interactive Tools

OGCand-ISO/TC-211standards

WFS

WMS

WMS Aggregator

1

2

WMS

WMS

WFS

WFS

1

2

3

GIS

Figure � SEQ Figure * ARABIC �1�: Detailed architecture

Figure � SEQ Figure * ARABIC �2�: Illustration of the (a) cached data extraction and (b) rectangulation. map image composed of NASA satellite base maps and earthquake seismic records

R3

R2

R1

R1

R2

R3

Cached Data

(a)

(b)

Xtracted from cached data

R1:WMS1

R2:WMS2

R3:WMS3

Main request

User Portal

Interactive

Utility Tools

WMS

Aggregator

WMS

DB

DB’

WMS

WFS

WFS

t1.1

t1.2

t1.3

t’1.3

t’1.2

T

Figure � SEQ Figure * ARABIC �3�: Performance test illustrations.

Capability Aggregator

Map Rendering

Request Handler

 -Query partitioning

 -and assembly

1

2

3

 GetCapability

 GetMap

 GetFeatureInfo

2

1

3

1

