
Ahmet Sayar

Summary of Thesis Proposal

1. Statement of the Problem and Relevancy

In Science domains information/data is inevitably distributed among several data resources. Science

applications need to access and integrate data and specialized computational capabilities (visualization,

statistical analysis, data mining etc.) of wide range of relational and un-relational data sources.

Accessing and integrating data from different providers using different heterogeneous technologies is a

difficult task which has been worked upon for decades. Furthermore, multiple data sources not only

need to be integrated but also transformed into comprehensible representations through cascaded

inter-service communications. The attributes of the data/information which are building these

comprehensible representations should be interactively accessed and queried.

The literature shows many proposals for integration of data, ranging from federated databases to

mediators (such as SRB-Storage Resource Broker) and ontology. The adoption of a conventional

integration methodology does not lead to a solution for comprehensible data integration. They do not

consider the graphic aspects to represent schemas nor the diversity and richness of semantic

representation of the data. One can achieve data integration to some extent by using conventional

techniques but one can not integrate the data at the representation level. We call the representation

level as layer-level (or view-level) and propose an architectural framework to integrate data at that

level.

In addition to this main problem, integrating distributed and heterogeneous Science data at the

presentation level and mapping them with Science Grid applications require quick response times. The

presentation level integration framework must enable accessing processing of large data sets in a

reasonable time period. This is a common problem of data integration proposals with respect to

performance. In the present report we focus on performance issues at the layer-level.

In summary, our main goal is creating a general framework mapping distributed and heterogeneous

data resources into global Science Grids in a performance efficient manner. To achieve this, we need to

access and integrate the data and present it to the Science Grids in accordance with their general needs.

We also need to create a general view-based integration interface for clients to utilize data, enable

integration and interoperation of data and Science Grids at view-level (layer-level) by hiding the

complexities of the system.

2. Context of Proposed Research in Literature

Other systems such as SRB (Storage Resource Broker) and FDBS (Federated Databases Systems) have

examined various general approaches to data federation. Unlike them we propose an alternative

solution based on what we call “capability” federation of Web services at the view-level and, leverage

third party data-integration approaches at the bottom level (see Figure 1).

At the view-level, data is abstracted as layers. Layers are also abstracted to final representation before

accessing to the decision makers. Its name depends on the domain. In our implementation domain we

call the final representation as map. It might be called observatory or space in Astronomy and,

molecules or atoms in Chemistry.

In our approach, we introduce two new types of services. These are DSVS and DSFS which are inherited

from OGC’s standards, but we enhanced them by implementing in Web Services principles. Web Service

enables them to be loosely coupled, chained and easily located by registering to catalog services. Each

service is described by generic and domain specific metadata descriptions (capability) and a Web Service

Description file (WSDL) that can be queried through Web Service invocations. DSVS and DSFS are

capable of exchanging and federating their capabilities dynamically. This helps to chain services and

workload management. Going beyond the enablement of service discovery, this approach enables at

least three important things. First, services of the same type that provide a subset of the request can be

combined into a “super-service” that spans the query space and has the aggregate functionality of its

member services. Second, the capability metadata can be used to determine how to combine services

into filter chains with interconnected input-output ports. Third (and building on the previous two),

capabilities of “super-services” can be broken into smaller, self-contained capabilities that can be

associated with specific services. This enables performance gains through load-balancing.

The proposed system presents data to users by means of user views that, from a user perspective, looks

exactly like the views of data in a DSVS aggregator (we call it aggregator WMS). User views in a DSVS

aggregator are mapped to underlying data objects that may be stored on any of the various DSVS or/and

DSFS in communication. Communication links are built based on capabilities-metadata. DSVS and DSFS

have their own capability-metadata in a standard schema. DSVS aggregator processes queries in terms

of these views, retrieving data as needed from the other systems in the federation, and delivering the

results as if the entire data is local.

The DSVS aggregator is actually a DSVS (for the sake of interoperability) with cost-based optimizer that is

aware of the distribution and heterogeneity of the back-end servers. In order to deliver an acceptable

performance we also propose an innovative load balancing with caching techniques (see the section 3.xx

and Figure xx for the GIS case). DSVS aggregator decomposes each query into sub-queries that can be

handled by the various DSVS and DSFS in the federation, sends each sub-query to the appropriate DSVS

or DSFS, and merges and delivers the overlaid result layers to the user through Science portal. Science

portal interface and available data layers are created according to Aggregator DSVS’s capabilities-

metadata.

We use wrappers (or adaptors) for leveraging other data integration systems (such as SRB and FDBS)

and any other third party data resources. A wrapper defines the communication mechanism that will be

used to access data and from a remote data source. More specifically, it is a mechanism that the DSFS

and DSVS servers (Aggregated WMS in our framework or FDBM in FDBS) use to communicate with

federated servers of other data integration systems. Since we use OGC compatible servers for our GIS

framework we need the wrappers just for interacting with non-OGC servers. We also wrap Google Map

and Dislin Plotting libraries as DSVS and integrate them to the Science Grids. In case of systems using

wrappers; if the source changes, the adaptor may have to change, but application may never see it.

Furthermore, adding a new source is easy, a new adaptor may need to be written, or even it may

already be exist online.

SRB

Server

 Data Aggregators

FDBM

Server

Other Data

Aggregator

W

R

A

P

P

E

R

S

Data CDM

D

S

V

S

DSL Layer

Aggre

Decision Makers

D

S

F

S

S

c

i

-

P

o

r

t

a

l

Data GML Layer-Image Map-Image GIS:

Data CML Layer-Image Molecule-Atom Image CIS:

Query / Decomposition

Data Flow / Merging

Layer Based Integration

Data Abstraction

Data Integration

A

g

g

r

e

g

a

t

o

r

View/Imag

e

Data VO-Table Layer-Image Space - Image
Astronomy:

Figure 1: Proposed DSIS Architecture integration at view and data levels. This is basically details of

orange rectangle in Section 3.x Figure 2.

CDM: Common Data Model - Global application schema, DSL: Domain Specific

Language -Structured Common Data Model

2.1. Locating the work in Literature

 In summary our research focuses on creating Grid-oriented view-services integrating data at the view-

level and providing them to Science Grids through web portals with interactive-smart view tools. Web

portals enable Grids simulation can be accessed in a remotely and run seamlessly. Further more

interactive-smart map tools hide the complexities of the system and make it easy to be used by scientist

or end-users from different backgrounds. We also associate the inputs and outputs of the Science Grid

simulations at the view level of data integration hierarchy`and, create three-layer structured views

illustrating the association of input and outputs of the Science simulations for the decision makers and

end-users.

The data access and integration part of our system shows similarities to the FDBS and the SRB. However,

it has some differences in the level of data/information integration hierarchy.

Federated Database Systems (FDBS): A federated database enables communication between multiple

DBMS or databases in a single SQL statement and makes the location of information transparent to the

user. Constituent databases are geographically decentralized and integrated remotely. A federated

database (or virtual database) is fully-integrated. To achieve this a logical composite of all constituent

databases in a federated database system used.

Federated Database (or virtual database) in DBMS corresponds to Aggregator DSVS in our integration

framework. They both serve for the same purposes.

DSVS and our system both make data abstraction. Data abstraction in our framework is representation

based and leveraged. For example, for GIS domain; any data abstracted as GML, and GML is abstracted

as layer, and layer is abstracted as map images, even map images are abstracted by overlaying on each

other.

Regarding data integration, this depends on the data abstraction techniques used. In order to integrate

data, FDBS uses mapping of the data base views represented in schema. The mapping techniques can be

generalized into two groups. In “Global as View (GAV)” the global schema is defined in terms of the

underlying schemas. In “Local as View(LAV)”, the local schemas are defined in terms of the global

schema. Since we use global schema for the data abstractions (GML for feature data and image types for

layers and maps) our approach looks like LAV.

Regarding the components integrated, FDBMS integrates data by federating databases. We not only

integrate the databases but also any other data servers such as WFS, WMS or even SRB servers. To this

end, we are relatively located at the upper level of the data integration hierarchy. Our next step will be

applying this approach to any other domain by adding domain specific layer to top of the current data

integration architectures such as SRB and FDBS.

Regarding data-flow in the system, FDBS provide two-way data flowing (transaction management). In

contrast, we enable just one-way data flow (data querying). In our approach, data querying is done by

decomposition based on the information kept in capabilities metadata. That is, query is decomposed to

sub-queries and each sub-query is sent to corresponding data server and, result sets are matched as an

answer to the main query.

SRB (Storage Resource Broker): SRB is the implementation architecture of the integrated/federated

digital libraries. They integrate data as digital objects. Digital objects are mostly files but URLs and SQL

command string and any string of bits collected from multiple different data sources. Digital objects are

geographically decentralized and integrated in a remote fashion.

SRB doesn’t define metadata in XML structure they store metadata in MCAT as relational databases. We

use XML structured capability metadata in distributed fashion. That is, each server keeps its metadata

locally and upgrades its capability metadata dynamically through inter-service communication capability

of our system. Inter-service communication is achieved by separate ports and standard services

(getCapabilities) enabling exchanging and federating other servers’ capabilities metadata.

Regarding data-flow in the system, SRB provide two-way data flowing (transaction management). In

contrast, we emphasize one-way data flow (data querying). SRB has central metadata handling

approach. Instead, we have distributed metadata handling approach.

We use two level data integration (view-level and data-level). We leverage SRB server into our data-level

integration by using wrapper. SRB is not competing but a complementary technology. As it is shown in

the figure we use wrappers to integrate SRB servers to the system.

We just deal with unified data access and query capabilities but SRB is dealing with data transferring and

replicating as well as data access and querying.

Capability concept in literature: We use capabilities defining service and data in view-level. It enables

inter-service communication through well-defined service interfaces and message formats

(“getCapabilities”). It is updated manually or dynamically. It consists of descriptor, service and provider

metadata. Inter-service communication is achieved without a third-party and enables chain of services.

In our system we propose two different groups of servers, DSVS and DSFS. These have different

capabilities schema and formats. Communications between servers are achieved through exchanging

the capability documents.

Capability is inspired from OGC WMS capability specification. It looks like Dublin Core metadata format

defining resources. Capability like structure is also used in Gannon’s approach (XPOLA), for Grid services’

security issues, describing dynamic Web/Grid resources.

3. Problem Solution in GIS domain

Grid-oriented map services and their integration to Geo-Science Grids

<< Previous document goes in HERE – with some updates at Section 2 as Geoffrey commented >>

http://complexity.ucs.indiana.edu/~asayar/proposal/CurrentResearchWork1.pdf

4. Expected contributions

We have developed a generic information management framework called Domain Specific Information

Systems (DSIS), Grid-oriented DSVS (specifically WMS in GIS domain) and integration framework for the

DSVS and Science Grids. DSIS and integration framework can be applied to any domain with their

domain specific and predefined DS-(Languages, capabilities and, VS and FS services). We also define

instructions and requirements how to build DSIS by defining DSVS, DSFS and DSL. We also formalize DSIS

supporting distributed access, query, and transformation through capabilities metadata, defining all the

data/information sources as interacting Web Services with standard metadata service ports.

GIS is our motivating domain. We provide capabilities federation through proposed Web Services’

capabilities metadata as distinct from data/Database federation/replication approaches. We define the

differences of our approaches compared to data federation and leverage their systems into DSIS. We

make distinction of data integrations based on the data-lifecycle in the integration hierarchy.

We define possible bottlenecks and optimization and enhancement opportunities for the distributed

heterogeneous information management systems. In that context, the compos-ability nature of our

DSVS and DSFS enable caching and load balancing for obtaining enhanced service outcomes. Capability

aggregation, dynamic capability exchanges and updates are the other issues serving optimization and

architecture enhancement purposes.

We also provide enhanced decision support with domain specific metadata languages and interactive

mapping tools with query capabilities. We propose an architecture framework to transform

heterogeneous and dispersed data into human readable forms (such as maps in GIS) and integrate

multiple information sources into interactive user interfaces such as digital photography, demographic

information, and information from simulations.

More Specifically for GIS Domain: We merge two important software worlds: GIS and Web Service

Architectures, we extend OGC capability specifications with the workload management, we create an

architectural framework for dynamic capability federation of Map Services enabling workload

management and service chaining, we create Web Service-based scientific plotting services and Map

Services and, integrate them into Science Grids, we create “smart map” tools as portlets for the Science

portals, we design high performance Web Service architecture for distributed Map Services to support

archived geospatial data, we create scientific plotting tools in Web Service principles for Geo-science

Grids, we create Grid-oriented Map Services and create an architectural framework to integrate Map

Services with the Geo-science Grids.

5. Future Work

We mostly focused on structured (different data models), syntactical (different languages and data

representations) and systemic (different hardware and operating systems) heterogeneity in data

integration issues at the view-level. Since we applied our proposed integration framework in OGC

Compatible GIS domain we did not take the semantic heterogeneity of the data into consideration.

General data model and semantics of the data are defined by OGC. We will be extending our framework

by researching on semantic issues to make our framework applicable over all Science domains such as

Astronomy and Chemistry.

For our proposed DSIS our motivating domain was GIS and, we have used GML for DSL, WMS for DSVS,

WFS for DSFS, and OGC’s capability definitions for capability metadata of DSVS and DSFS services. When

we try to apply the framework to other domains such as Astronomy domain, we will need to be using

SkyNode as DSFS, VOPlot and TopCat as DSVSs, VOTable and FITS as DSL, and VOResource as capability

metadata. Regarding Chemistry domain, there is no chance to find standardized servers corresponding

to DSVS, DSFS and capability metadata but they have a standard DSL called CML. We will be using CML

as DSL and may be JChemPaint as DSFS but we need to introduce a new online service definition for

DSFS. We also need to demonstrate proof of concepts for these domains.

As it is explained above, whenever we need to apply the proposed framework to any other domain, we

have to find the corresponding services and general data model in order for our framework to work.

Instead of doing this repetitive work for different science domains, we want to create general definitions

of DSVS and DSFS applicable to any domain. So, from our experience so far with GIS domain, we see that

we need to use ontology and semantic approaches to solve the data integration issues and creating

more generic framework working over various Science domains.

We also need to enable binding of services into pipelines with or without human intervention through

metadata by using Catalog services. Currently, we bind them before run-time by manipulating

capabilities metadata of DSVS and DSFS.

