1. Data Integration Approaches
1. Application Specific Solutions Approaches

2. Application-Integration Framework Approaches

a. ASIS at CGL
3. Digital Libraries Approaches
a. SRB approach at SDSC
b. Sompel’s Approach at LANL

4. Database Federation Approaches
a. Ogsa-DAI
1.1. Application Specific Solutions Approaches:
Perhaps the most common means of data integration is via special-purpose applications that access sources of interest directly and combine the data retrieved from those sources with the application itself. This approach always works, but it is expensive (in terms of both time and skills), fragile (changes to the underlying sources may all too easily break the application), and hard to extend (a new data source requires new code to be written).
1.2. Application-Integration Framework Approaches (ASIS)
Our approach is application integration framework based on common data model. It can also be called as component-based framework. Such systems typically employ a standard data or programming model, such as CORBA. We call the components of this architecture as Filter. Filters (like CORBA components) provide well-defined interfaces to the application for accessing data and other applications and for adding new data sources, typically by writing on adaptor for the data source that meets the frameworks’ adaptor interfaces. These frameworks protect the application somewhat from changes in the data sources (if the source change the adaptor may have to change, but application may never see it). Adding a new source may be easier (although a new adaptor may need to be written, the change is more isolated, and the adaptor may already exist and be available for purchase) by using already exist adaptors or end-Filters such as plotting services taking tabular data and plot images in different formats.

The application programmer is not required to have detailed system knowledge, so applications will typically be easier to write. However, system does not necessarily address data integration issues; if combination, analysis, or comparison of the data received from the various sources is needed, the application developer must provide that code.

1.3. Digital Libraries Approach
Main focus for the Digital Libraries is the publishing and discovering of the digital entities. Digital entities may be files, URL, SQL command string and any string of bits. Digital Library approach is a little different from the Data Grid approaches. It provides curation services such as providing schema for organization descriptions, enabling movement of data, putting and removing data to/from database and providing schema extensions for newly added data. Digital Library approach also provides data access services such as discovery, browsing, presentation and manipulation. Digital libraries, which collect results from multiple different data sources in response to a user's request, represent another style of data integration.
1.4. Database Federation Approach
The term “Database federation” refers to an architecture in which middleware, consisting of relational database management system, provides uniform access to a number of heterogeneous data sources. The data sources are federated, that is, they are linked together into a unified system by the database management system. Database Federation provides users with a powerful high-level query language that can be used to combine, contrast, analyze, and otherwise manipulate their data. A single arbitrarily complex query can efficiently combine data from multiple sources of different types, even if those sources themselves do not process all the functionality needed to answer such a query. In other words, a federated database system can optimize queries and compensate for SQL function that may be lacking in a data source.
In the following Chapter we compare our approach (ASIS) with the other data integration approaches listed above.
2. ASIS (Application Specific Information System)

-Application-Integration Framework Approach
Our proposed approach is based on human interactions to exchange a merchandise or stuff. Let’s think about two people, one is customer and the other is seller. Buyer wants to know everything about the seller and its products to make sure if it is worth to buy something. Seller gives the buyer all the information he wants in a document and buyer reads it and make a decision about buying. If he makes his decision to buy then, he makes his second request in an appropriate way by describing the product’s properties to define what he wants, how much and in what color etc. Even the seller doesn’t produce or manufacture the stuff he sells, he also get them from other providers by acting as a client and doing similar message exchanges. As you realize this chain does not stop.
We have first implemented an OGC compatible GIS system for ServoGrid projects, compared it with other data grid and integration approaches and tried to figure out the possible extensions to the system to make it applicable to all domains such as Astronomy and Chemistry.
ASIS propose an alternative solution to heterogeneous data integration. Solution enables inter-service communication through well-defined service interfaces, message formats and capabilities metadata. Data and service integration is done through “capability” federation of these services which are implemented in Web Services. In ASIS approach, each service is described by generic and domain specific metadata descriptions that can be queried through Web Service invocations. Going beyond the enablement of service discovery, this approach enables at least three important things. First, services of the same type that provide a subset of the request can be combined into a “super-service” that spans the query space and has the aggregate functionality of its member services. Second, the capability metadata can be used to determine how to combine services into filter chains with interconnected input-output ports. Third (and building on the previous two), capabilities of “super-services” can be broken into smaller, self-contained capabilities that can be associated with specific services. This enables performance gains through load-balancing.

ASIS consists of Filter Services having common interfaces in Web Services. Being a Web Service enables Filter Services to publish their interfaces, locate each other and chain together easily. Filters have inter-service capabilities and chainable. If the Filter is capable of communicating and obtaining data from other Filters, and updates (or aggregates) its capability metadata with these data (after capability files exchange), then it can claim that it serves those data. Filter Services are information/data services that enable distributed data /information access, querying and transformation through their predictable input/output interfaces defined by capability document. Filter located in the same community network can update their capability metadata dynamically through “getCapabilities” service interface of the Filters. Dynamically updating capabilities of filters enable removal of obsolete data or down Filters.
Simple data access scenario: 2 phase request needed to get data. First request is to get list of data provided and their attributes, service interfaces available, information about the provider, and available protocols to access data. Each service interface accepts requests in predefined formats. In more concrete, client makes first “getCapabilities” request and then, “getData” request. After the “getCapabilities” request, client sees what data server provides in what properties etc. Client’s second request is created based on the properties defined for each data defined in the capability metadata.
ASIS server chaining scenario: All Filters know what kind of information they expect and how to create requests for invoking successor Filter to get required data in specific constraints. Each Filter acts as a server and a client to complete the chain. For a concrete example of chaining, we can think about accessing the California map data overlaid with the state boundary lines and the roads data as an image.
Let’s say we have four Filters called F1, F2, F3 and F4. Their initial data provided are listed in the second column in Table 1. Let’s assume F1 and F2, F4 and F2, and, F3 and F1 exchange their capabilities through capability exchange interface and update their capabilities with their peer Filters.
Table 1: Direct and indirect data provided by Filters after sample chaining scenario.

Filter Name:
Data Provided:

Data Provided (Filter Chaining)
F1

X

earth, state boundaries and road

F2

earth (raster)

earth and road

F3

state boundaries (vector)

state boundaries

F4

road (vector)

road

Client connects to F1 and can access all the data even if F1 doesn’t provide any data from the first hand.

Here are some properties of data integration that we are not dealing with. We don’t deal with workflow issues for integrating Filters. Links are automatically created differently for each request triggered by any client. Decision about the next Filter for the chain is done at each Filter in the chain depending on their data definitions in their capabilities metadata. We don’t deal with logical-physical address mappings, data replication issues. We directly use physical addresses of the Filters which are responsible from its own physical resources. We don’t deal with authentication, authorization and access control issues. But depending on the application ASIS system can be extended with this capability.
2.1. Comparing ASIS with Database Federation Approach
2.1.1. Ogsa-DAI Database Federation:
Ogsa-DAI provides common API for accessing heterogeneous Databases in grid environment. Database can be XML Database or relational Database. Ogsa-DAI is specifically designed for OGSA architecture. Ogsa-DAI also provides data pipelining between different set of activities that operate on a data stream coming out of, or going into, a data resource through XML based document called “perform”. Ogsa-DAI also supports filter like data streaming and pipelining capabilities. The client access the streaming processing system through Ogsa-DAI by sending “perform” document to Ogsa-DAI. In our case, client access to system first making “getCapabilities” request to front end-Filter, and see the available data/information provided. After that, client makes its requests successively according to attributes defined in the XML tag element in the capability document.
In Ogsa-DAI’s perform document, they have SQL query and rawset query and they assume the server to which they are communicating provides requested data. In our case, we have standard Filter interfaces, and we define (or use if defined by any standard bodies) standard schema for metadata, data and requests to common interfaces. After defining these standards, Filters communicate with each other through the common interfaces and common requests for the common data model. Each Filter knows how to handle standard request for the standard data model. We don’t define SQL query on the requests because each Filter has its own implementation of accessing different databases or file systems. These details are hidden in the end-Filters providing actual data from their databases.

Regarding data and storage models, Ogsa-DAI use any data stored in XML or relational Databases and, files stored at file systems. Distributed data access and query are done over the data represented in the same data model. It does not work for different data in different model. Data in any resource is provided to the grid through GDSs (Grid Data Services). Applications can use the core OGSA-DAI GDS components directly to access individual data stores, or can use a distributed query processor, OGSA-DQP, to coordinate access to multiple database services.
Regarding metadata and metadata storage models, Ogsa-DAI services provide metadata about the DBMS, e.g. whether it is Oracle, DB2, or MySQL, etc., DBMS system that is being exposed to the Grid. Also metadata is provided about the capabilities of that DBMS that are being exposed to the Grid through the service interfaces as well as any inherent capabilities of the service themselves, such as third-party delivery and transformations that are available to operate on data retrieval from a Database. For relational Databases, the database schema may be extracted from the service, which may be helpful to higher level services such as distributed query processing. Besides the metadata-catalog service (MCS), they also have registry service for the Grid Data Service Factories (GDSF). A GDSF is defined to represent the point of presence of a data resource on a Grid. It is through GDSF that a data resource’s capabilities and metadata are exposed. GDSFs may register to expose their metadata to aid service/data discovery to the DAI Service Group Registry (DAISGR).
Simple data access scenario: A client contacts a DAISGR first to locate the GDSFs that meet its requirements. The client then accesses suitable GDSFs directly to find out more about their properties and the data resources they represent. The client then may ask one of these GDSFs to instantiate a GDS to allow access to the data resource it represents. Accessing the data resources is achieved by sending the GDS a GDS-Perform document. For the ASIS’s simple data access scenario see the Chapter 2.
Regarding the performance, Ogsa-DAI and ASIS is based on Web Services architecture. Web Services don’t have good support for transferring binary data. To eliminate the performance bottleneck of Web Services, Ogsa-DAI uses GridFTP and ASIS uses one of the messaging middleware, NaradaBrokering developed at CGL (Community Grids Lab).
2.2. Comparing ASIS with Digital Library Approaches
2.2.1. SRB Approach:
The SRB is implemented as a federated client server system, with each server managing/brokering a set of storage resources. Storage resources include digital libraries, Mass Storage System (MSS), UniTree, Data Migration Facility (DMF) and file systems. SRB consists of three components, MCAT services, SRB servers to access to storage repositories and SRB clients, connected to each other via a network. SRB provides uniform access to distributed heterogeneous data resources by attributes. It uses MCAT (Metadata Catalog Service) to enable attribute based querying and data access.
SRB uses MCAT for its metadata services. MCAT’s metadata consists of digital object metadata (type, format, lineage and domain specific attributes), system level metadata (access control, replication and location) and schema-level metadata (relationship among attributes). MCAT supports attribute based access to data collections, items, and other system resources, and provides a set of APIs for querying, and updating metadata catalog. MCAT is implemented as a relational database with referential integrity constraints. It currently uses Oracle, DB2 and Sybase. An MCAT server requires the use of a database in which to store the metadata it holds.
In order to integrate any data to the system, ASIS convert it to ASL (Application Specific Language). ASL is an XML based common data model. Using XML based common data provides some advantages. XML based hierarchical data model enables common language and communication across operating system and platforms to exchange and federate information. In order to make this conversion, we use adaptors in the end-Filter services deployed at the service invocation points of Databases. We don’t need standalone catalog services such as MCAT in SRB, instead, each component (Filter Service) keeps and handles its metadata in its local file system as an XML based capabilities file. Filter Services can update and aggregate their capabilities file through their capability exchange ports.
Since we use predefined capabilities and common data model (fixed schema for metadata and data model) we do not necessarily need the catalog services such as MCS and MCAT, and metadata creation and update. This property of our system makes our proposed architecture easy to use and understand, but it requires additional internal and domain specific implementation extension or changes when the application users need to use the same architecture for some other domains. We have two fundamental elements in the proposed architecture. These are metadata in capability document and common data model in ASL. They change from domain to domain and should be well defined in an XML schema file to enable capabilities federation of Web Services and accessing and querying the data through the Filter-chain.
Regarding data and data storage model, SRB has a uniform storage interface. SRB provides a mapping from defined storage to native interface supported by each underlying storage resource via resource-specific drivers (implements each interface for each resource). SRB is a federated server system, with each SRB server managing/brokering a set of storage resources. It is possible to configure the system such that a storage resource is managed by more than one SRB server (possible co-located). This provides support for fault tolerance in case one of the controlling SRB servers fails. Storage resources are registered within SRB as physical resources. SRB also has notion of logical resources. Logical resources impose some restriction on a physical resource. For example, a physical resource may be a Unix file system, and a logical resource may be a directory within that file system. A logical resource may also be one or more physical resources. Operations to solve data within such a logical resource result in a copy of the data being stored within each of the physical resources. This allows for automatic replication of data sets. Each SRB server controls a distinct set of PSRs. Conversely, each PSR is controlled by a single SRB Server. Client APIs typically refer to LSRs, and not PSRs. Collections are implemented using LSRs, while data items are added to collections. (Compare)

SRB and ASIS make metadata integration in different ways. In ASIS case, federation is done at the descriptive metadata. Since all the Filters have their capabilities metadata in predefined format, it is not hard to integrate data from two different capabilities files into one. In SRB case, SRB servers are allowed to use different metadata schema specifications. In order to integrate metadata in different schema, they use MAPS (Metadata Attribute Presentation Structure). It include query, update and result structures. For federating two different catalogs, first, both catalogs should be converted to attribute sets, then, using MAPS again converting back to the local catalog format.

Simple data access scenario: 1) SRB server spawns SRB agent to authenticate the user/Application (SRB client) by comparing it with information stored in MCAT. 2) Find the location in MCAT. 3) Check user request against permissions stored in MCAT. 4) SRB agent contacts user with the result of his request. 5) SRB agent communicates with the user through a port specific to this client session, and it can handle one or more request from the client. For the ASIS’s simple data access scenario see the Chapter 2.
SRB server chaining scenario: 1) Step 1-3 are the same as in the simple case. 2) SRB agent contacts remote SRB agent via SRB server on the remote machine where the data is stored. 3) The second SRB agent returns the pointer to the data item to the first SRB agent which passes it on to the user. 4) The SRB client can then interact with the data item directly. The federated SRB scheme allows one SRB server to act as a client to another SRB server. This setup both in ASIS and in SRB may also improve performance and reliability. For the ASIS’s server chaining scenario see the Chapter 2.
2.2.2. Sompel’s Digital Library Approach:
Sompels’s DL approach is summarized as creating architecture for scholarly communication as a global, network-based workflow. Instead of Filters and ASL in ASIS, Sompel defines “repositories” and “digital objects” respectively. Repository is a networked system that provides services pertaining to a collection of Digital Objects. Repositories have common service interfaces. These are “Obtain”, “Harvest” and “Put”. Obtain routine supports the request of services pertaining to individual Data Object. “Harvest” exposes surrogates for incremental collecting/harvesting. “Put” supports submission of one or more surrogates into the repository, thereby facilitating the addition of digital objects to the collection of repository. “Obtain” corresponds to “getData”, “harvest” corresponds to “getCapabilities”. ASIS is different in achieving metadata harvesting. For the metadata harvesting/updating/aggregating, Filters communicate with each other over the common interface (getCapabilities) and update their capability files based on the updates in capability files coming from the Filters in direct communication. There are three main approaches to metadata aggregation. These are based on direct/indirect communication of Resources or Filters. Direct communication for metadata exchange is done through pull or push approaches. Indirect metadata exchange is done through Catalog-Registry Service. In initial implementation, ASIS supports direct communication for metadata exchange by using pull approach through “getCapability” Filter interface. In Sompel’s Digital Library approach, metadata harvesting is done by push approach through “put” repository interface.
Regarding storage model, they propose many different storage types such as digitized book repositories, teaching object repositories, learning object repositories, dataset repositories etc. Each one has different metadata defining the data collections provided. Repositories are active nodes in a global environment, not as passive local nodes. Repositories are about facilitating the use and re-use of materials in many contexts. ASIS has mainly similar approach but different application about the storage repositories. ASIS can access any storage repository by using reusable adaptors. Adaptors change the data in different format into common format called ASL.
Sompel’s DL approach’s data model is the abstraction of the Digital Objects. Digital Objects are consisting of Digital data and key metadata. Digital Objects might have sub digital objects. Each digital object might have its own metadata differentiated by their IDs. Information for the value chains and service are held in surrogates. The surrogate consists of serialization of digital objects and some other information used at “put” “obtain” and “harvest” service interfaces. Surrogates are in the XML/RDF format. Each digital object has a surrogate based on a common data model in that community. A surrogate is basically an RDF document and composed of “dataStream” and/or “Entity”. Data streams are defined with location and format information. Entity represents digital objects. An entity element includes some other sub elements explaining recursion information for any other digital object. If it defines the local object then it has two levels of identification structure. One uses key metadata ID for the digital object and other uses “providerInfo”.

Regarding server chaining, Sompel’s approach is similar to ASIS’s approach. Application/User doesn’t need to use workflow engine or script to create or run the chain. Chain (they call “value chain”) is hidden in the surrogates. Surrogates are updated through the common interfaces (“put” “obtain” and “harvest”) of the resources. Chain is defined in the “Entity” element in the surrogate document with the “Lineage” sub element. In a value chain, what used to be “providerInfo” for an origin surrogate becomes lineage for the resulting surrogate.
Sample server chaining scenario (Scholarly communication workflow): An author writes a paper and put it into her institutional repository. Furthermore, she might cite 10 papers available from other repositories. Although the content of the cited paper is the same, in different citing papers, it will have different context. This new paper can also be cited too, and the value chain does not stop. All these documents and papers might be in different format provided by different heterogeneous repositories but accessed and published through the common resource interfaces.
