
[bookmark: _Toc174843656]High Performance Federated Service-Oriented Geographic Information Systems

By Ahmet Sayar

Research Committee:
· Prof. Geoffrey C. Fox (Principal Advisor)
· Prof. Randall Bramley
· Prof. Kay Connelly
· Prof. Melanie Wu

Indiana University – June, 2007
Computer Science - Community Grids Lab (CGL)

[bookmark: _Ref188159791][bookmark: _Toc189815994]Abstract
Expansion of World Wide Web has brought better accessibility to information sources. However, in the same time, the big amount of different formats, data heterogeneity, and machine un-readability of this data have caused many problems. Data heterogeneity is related to both the data types and storage formats. As geospatial data is stored in a variety of systems and formats, one important issue for geospatial Information Grid applications is service interoperability and data heterogeneity. In other words, the seamless integration and sharing of geospatial data from distributed heterogeneous data sources has been the major challenge of the Information system communities.
Geospatial information is critical to the effective and collaborative decision making in earth-related disaster planning, crisis management and early-warning systems. The decision making in GIS increasingly relies on analyses of spatial data in map-based formats. Maps are complex structures composed of layers created from distributed heterogeneous data and computation resources belonging to the separate virtual organizations from various expert skill levels.
We propose infrastructure for understanding and managing the production of knowledge from distributed observation, simulation and analysis through integrated data-views in the form of multi-layered map images. Infrastructure is based on common data model, standard GIS Web-Service components and a federator. Federator federates GIS services and enables unified data access/query, display and analysis over integrated data-views.
After giving a complete architecture for GIS domain, we generalized the problem domain and abstracted the architecture for the other domains in terms of principles, components and architectural requirements.
We also studied high-performance design techniques in Service-oriented information systems in which interoperability is granted by structured/annotated common data models. Measurement and analysis are done over the real geo-science applications.

Table of Contents

Abstract	2
List of Tables	10
Acknowledgements	11
Introduction	12
1.1.	Motivation	13
1.2.	Why Federated Service Oriented Design	14
1.2.1.	Architectural Design Features	15
1.2.2.	High-performance Design Features	18
1.3.	Summary of Contributions	20
1.4.	Research Issues	21
1.5.	Organization of Dissertation	23
Chapter 2	25
Literature Survey	25
2.1.	Background	25
2.1.1.	Geographic Information Systems (GIS)	25
2.1.2.	GIS Web Services	28
2.1.3.	Open Geospatial Standards	30
2.2.	Related Works	31
2.2.1.	Linked Environments for Atmospheric Discovery (LEAD)	31
2.2.2.	Geosciences Network (GEON)	32
2.2.3.	Laboratory for Advanced Information Technology and Standards (LAITS):	33
Chapter 3	36
Web Service Components for Service-oriented Geographic Information System	36
3.1.	Geo-data and Common Data Models	37
3.2.	Extension of Standard Specifications with Web Services	40
3.3.	System Framework and Components	43
3.3.1.	Web Feature Service	44
3.3.2.	Web Map Service	48
3.3.2.1.	GetCapabilities Services	49
3.3.2.2.	GetMap Services	50
3.3.2.3.	GetFeatureInfo Services	56
3.3.3.	Browser/event-based Interactive Map Client Tools	61
3.3.3.1.	Enhancing the system interaction with AJAX approach - Web Service & AJAX synchronization middleware	66
3.3.3.1.1.	Architecture: Intermediary Synchronization Framework.	68
3.3.3.1.2.	A Case scenario: Overlays of Google Maps and OGC WMS	71
Chapter 4	75
Federated Service-oriented GIS Framework	75
4.1.	Federation Framework	76
4.2.	Data-Flow and Hierarchical Data Definition	78
4.3.	Chaining of the Components through capability metadata exchange	81
4.3.1.	OGC’S Considerations on Service chaining	84
4.3.2.	Proposed Chaining techniques	87
4.3.2.1.	Federating WMS into the hierarchical data	89
4.3.2.2.	Federating WFS into the hierarchical data	92
4.4.	Abstraction of the Framework for the General Domains	92
4.4.1.	Generalization Framework	93
4.4.2.	Components abstraction – ASFS and ASVS	95
4.4.3.	Standard Service Interfaces and Mediators	99
Chapter 5	101
Applications of the Proposed System	101
5.1.	Los Alamos National Laboratory, NISAC SOA Architecture	101
5.2.	Pattern Informatics (PI) Application	109
5.3.	Virtual California (VC) Application	114
Chapter 6	119
High-performance Design Features, Measurements and Analysis	119
6.1.	General Performance Issues in Interoperable Service-oriented GIS	120
6.1.1.	Using Semi-structured Data Model	121
6.1.2.	Though Data Characteristics and Attributes	122
6.2.	Ordinary GIS Systems Performance (baseline test results with naïve approaches)	124
6.3.	High Performance Design and Evaluation of the Proposed System	129
6.3.1.	Data-oriented Enhancement Approaches	129
6.3.1.1.	Streaming Data Transfer	130
6.3.1.2.	Pull Parsing and Application Specific Rendering	134
6.3.1.3.	Overall Performance Evaluations over data-oriented performance enhancement approaches	137
6.3.2.	Federator-oriented Performance Enhancement Approaches	140
6.3.2.1.	Pre-Fetching	141
6.3.2.1.1.	Fetching module (PM)	144
6.3.2.1.2.	Performance Evaluation	145
6.3.2.2.	Client/Session-based Dynamic Caching	149
6.3.2.2.1.	Architectural Details	150
1.3.2.2.2.	Why Client-based Dynamic Caching	153
6.3.2.3.	Load-balancing through Query Decomposition and Parallel Processing	155
6.3.2.3.1.	Cached-data Extraction and Rectangulation	156
6.3.2.3.2.	Query Decomposition	159
6.3.2.3.2.1.	Blind Query Decomposition	159
6.3.2.3.2.2.	Smart Query Decomposition Using Client-based Caching	160
6.3.2.3.3.	Parallel-Processing	162
6.3.2.3.4.	Overall Performance Evaluation	167
Chapter 7	183
Conclusion and Future Work	183
7.1.	Thesis Summary	183
7.2.	Summary of Answers to Research Questions	183
7.3.	Future Research Directions	183
APPENDICES	185
APPENDIX A: Sample Request Instances to standard WMS Service Interfaces	185
i.	GetCapability Request Instance	185
ii.	GetMap Request Instance	186
iii.	GetFeatureInfo Request Instance	187
APPENDIX B: A Template Capabilities.xml file for WMS.	188
APPENDIX C: A sample WMS Capabilities.xml Instance	189
APPENDIX D: A sample WFS Capabilities.xml Instance	192
APPENDIX E: A Simplified WMS Web Services Service Definition file (WSDL)	195
APPENDIX F: A Simplified WFS Web Services Service Definition file (WSDL)	199
APPENDIX G: Sample GetFeature Request for WFS - for earthquake fault data	202
APPENDIX H: Sample GML document for earthquake fault data. This is simplified document to give an idea about the common data model.	203
APPENDIX I: Sample GetFeature Response from WFS to WMS	205
APPENDIX J: Generic XSL file for HTML creation from the GML in order to create responses for the getFeatureInfo	207
REFERENCES	209

List of Figures

Figure 1: Layered display – a map is composed of distributed multiple set of layers. Figure is from [Koontz].	28
Figure 2: GIS framework with the proposed Web Service components and data flow. See also Figure 3.	45
Figure 3: Illustration of client (WMS)-WFS interaction steps to get feature data.	47
Figure 4:GetCapabilities operation steps. See Appendix C for a sample WMS capabilities file instance	51
Figure 5 : GetCapabilities Request Schema. See Appendix A for an instance of this request schema	51
Figure 6: GetMap operation steps.	52
Figure 7 : GetMap Request Schema. See Appendix A for an instance of this request schema	54
Figure 8: Sample output of the above map images generating code	56
Figure 9: GetFeatureInfo operation steps.	60
Figure 10: A snapshot of response to getFeatureInfo. It is actually an attribute querying of earthquake seismic data layer shown on the map image.	60
Figure 11: GetFeatureInfo Request Schema. See Appendix-A for an instance of this request schema.	61
Figure 12: Event-based interactive map tools capable of interacting with any map server developed in open geographic standards.	65
Figure 13: Standard interactive map tools extended with capabilities of integrating map images with outputs of geo-science grid applications.	66
Figure 14: (A) Pure AJAX Approach, (B) Web Services Approach, and (C) Hybrid (AJAX + Web Services) Approach.	70
Figure 15: Integration of Google Maps with OGC WMS by using architecture defined in Figure 14.	73
Figure 16: data life cycle in the federation framework.	78
Figure 17: Federated GIS	83
Figure 18: WFS-based federation of feature data	83
Figure 19: Illustration of chaining of OGC Web Services	90
Figure 20: Application Specific Information System (ASIS)	99
Figure 21: NISAC SOA Demonstration Architectural Diagram and Data Flow	110
Figure 22: Sample Florida State Electric Power and Natural Gas Components as overlays on a Satellite Picture provided by NASA OnEarth WMS Server. Electric power components are connected with red, natural gas components are connected with blue lines.	114
Figure 23: A general GIS Grid orchestration scenario involves the coordination of GIS services, data filters, and code execution services. These are coordinated by HPSearch	118
Figure 24: WMS Client or so called event-based interactive map tools. Google Map layer is superimposed by the plotting of the PI outputs. It shows probability of earthquake happenings. Red ones show high probabilities.	119
Figure 25: Virtual California Operation steps founded over proposed Service-oriented GIS framework	123
Figure 26: Event-based interactive user interface extended for Virtual California needs. It enables creating map movies by playing framework (created from time-series data) successively. Each framework is actually a map image.	124
Figure 27: Unbalanced load sharing. Server assigned R2:“((a+b)/2, (b+d)/2), (c, d)” gets the most of the work.	129
Figure 28:The ordinary system test set-up. Any-data is converted to common structured data (GML) and rendered as map images.	131
Figure 30: Adjusted performance values over Figure 27 for the ordinary systems.	134
Figure 29: (a) Performance result of the ordinary system. (b) Sample output-seismic data is plotted over NASA Satellite map images	133
Figure 31: Streaming data transfer using Naradabrokering publish-subscribe topic based messaging middleware.	137
Figure 32: Comparisons of Streaming vs. Non-Streaming data response timings from source to federator or WMS.	140
Figure 33: Performance comparison of two XML data processors, pull parsing and Document Object Model by using dom4j.	144
Figure 34: Average response, data capturing and map rendering timings for different data sizes. The values are obtained over the enhanced system with the proposed data-oriented techniques.	146
Figure 35: The comparison of average response times: Naïve systems vs. enhanced systems with the proposed data-oriented performance enhancement techniques (Chapter 6.3.1.1 and Chapter 6.3.1.2).	147
Figure 36: Pre-fetching architecture embedded to the federated GIS system	150
Figure 37: Performance of the pre-fetching technique	154
Figure 38: Performance comparison of the map rendering in the proposed GIS system with pre-fetching and ordinary ways.	155
Figure 39: (a) Cached data extraction, (b) rectangulation, and (c) query decomposition/partitioning for parallel processing.	163
Figure 40: Positioning of the successive main query and stored client-based cached data	164
Figure 41: Partitioning a rectangle along the coordinate-y	169
Figure 42: Parallel processing and caching architecture in brief. See also Figure 37.	169
Figure 44: Sample GetFeature request for the partitioned region of bbox (-110, 35 -100, 40). Request is done for global hotspot (earthquake seismic data)	172
Figure 43: Example scenario of the partitioning a region into 5 sub-regions through the bbox value of a rectangle.	171
Figure 45: Assigning partitions to threads and capturing/processing in parallel	174
Figure 46: Test setup for federator oriented approaches.	175
Figure 47: Comparison of average data transfer times for various levels of data sizes and partitioning level.	179
Figure 48: Comparison of average response times for different partitioning and data sizes.	181
Figure 49: Comparison of response times at different partitioning levels – Naïve approach vs. proposed approach.	182
Figure 50: Parallel processing overheads based on different levels of partitioning.	184
Figure 51: Illustrating the performance enhancement of using caching with parallel processing with ½ cached data case.	188

[bookmark: _Toc189815995]List of Tables
Table 1: From GIS to ASIS components’ mapping	102
Table 2: Components and common data model matching for generalization of GIS to ASIS. Two selected domains are Astronomy and Chemistry.	104
Table 3: The round-trip times (or response times) of the ordinary system.	132
Table 4: Data access times (from federator or WMS) while using (1) streaming and (2)non-streaming data transfer techniques.	139
Table 5: The performance values of DOM and Pull parsing (Xpp) over GML data. Dashed-line values imply memory exception.	143
Table 6: The performance results in average timings.	145
Table 7: The standard deviation values for the average timings given in	145
Table 8: The comparison of average response times: Enhanced systems vs. naive systems.	146
Table 9: Performance results for the response times when the pre-fetched data is used.	153
Table 10: Comparison of the pre-fetching (Figure 35) and ordinary (on-demand fetching) techniques	154
Table 11:Average times for data capturing, map rendering and overall response for different number of partitioning and different data sizes.	176
Table 12: Standard deviation for data capturing, map rendering and overall response for different number of partitioning and different data sizes.	177
Table 13: Data transfer times for different levels of partitioning and data sizes.	178
Table 14: Average response times for different data sizes and partition levels, and listing of best partitions for each data sizes.	179
Table 15: Response times comparison values - Naïve approach and the proposed approach at different partitioning levels.	182
Table 16: Overhead times due to making partitioning for parallel processing at various partitioning levels.	183
Table 17: Performance results for the sample case scenario in which half of the data is provided by the cached data, and other half is obtained from WFSs and processed by 10-thread parallel processing.	186
Table 18: The standard deviations for the average times given in Table 15.	186
Table 19: Comparison of the response times for the hybrid (caching and parallel processing) and ordinary non-caching single-threaded system.	187

[bookmark: _Toc189815996]Acknowledgements

[bookmark: _Ref189373222]

Chapter 1
[bookmark: _Ref189373302][bookmark: _Toc189815997]Introduction

Geospatial information is critical to the effective and collaborative decision making in earth-related disaster planning, crisis management and early-warning systems. The decision making in Geographic Information Systems increasingly rely on analyses of spatial data in map-based formats. Maps are complex structures composed of layers created from distributed heterogeneous data and computation resources belonging to the separate virtual organizations from various expert skill levels.
We propose a Service-oriented architecture for understanding and managing the production of knowledge from the distributed observation, simulation and analysis through integrated data-views in the form of multi-layered map images. Infrastructure is based on common data model, standard GIS Web-Service components and a federator. Federator federates GIS services and enables unified data access/query and display/analysis over integrated data-views through event-based interactive display tools. Integrated data-views are defined in the federator’s capability metadata as composition of layers provided by standard GIS Web-Services. Our grid approach is based on the WS-I+ interoperability standards.
1.1. [bookmark: _Toc189815998]Motivation
Geographic Information Systems (GIS) are systems for creating, storing, sharing, analyzing, manipulating and displaying spatial data and associated attributes.
The general purpose of GIS is extracting information/knowledge from the raw geo-data. The raw-data is collected from sensors, satellites or other sources and stored in databases or file systems. The data goes through the filtering and rendering services and presented to the end-users in human recognizable formats such as images, graphs, charts etc. GIS are used in a wide variety of tasks such as urban planning, resource management, emergency response planning in case of disasters, crisis management and rapid responses etc.
Over the past decade, GIS have evolved from the traditional centralized mainframe systems to desktop systems to modern collaborative distributed systems. Centralized systems provide an environment for stand-alone applications in which data sources, rendering and processing services are all tightly coupled and application specific. Therefore, they are not capable of allowing seamless interaction with the other data or processing/rendering services. On the other hand, the distributed systems are composed of geographically distributed and loosely coupled autonomous hosts that are connected through a computer network. They aim to share data and computation resources collaborating on large scale applications.
Modern collaborative GIS require data and computation resources from distributed virtual organizations to be composed based on application requirements, and accessed and queried from a single uniform access point over the refined data with interactive display tools. This requires seamless integration and interaction of data and computation resources. The resources span over organizational disciplinary and technical boundaries and use different client-server models, data archiving systems and heterogeneous message transfer protocols.
Furthermore, GIS particularly used in emergency early-warning systems like homeland security and natural disasters (earthquake, flood etc) and crisis management applications require quick responses. However, because of the characteristics of geo-data (large sized and un-evenly distributed such as distribution of human population and earthquake seismic data), time-consuming rendering processes and limited network bandwidth, the performance and responsiveness stand as the toughest challenges in distributed modern GIS [Peng].
These motivated us to research on a federated Service-oriented responsive Geographic Information System framework enabling sharing and integration of heterogeneous data and computation resources for the collaborative decision support applications requiring quick response times.
1.2. [bookmark: _Toc189815999]Why Federated Service Oriented Design
The proposed federated Service-oriented information system framework supports collaborative decision making over integrated data views, described in layer-structured hierarchical data provided by a federator. The users access the system as though all the data and functions come from one site. The data distribution and connection paths stay hidden and formulated as hierarchical data defined in federator’s capability metadata. The users access the system through integrated data-views (maps) with the event-based interactive mapping display tools. Tools create abstract queries from the users’ actions through action listeners and communicate with the system through federator.
Federation is based on federating service-oriented standard GIS Web Services capabilities metadata and their standard service interfaces about data access/query and rendering. Creating such a federated design has some advantages in data sharing, reliability, and system growth (interoperability and extensibility).
Capability is a metadata about the data and services together. It includes information about the data and corresponding operations with the attribute-based constraints and acceptable request/response formats. Compared to Web Service Description Files (WSDL), Web Services provide key low level capability but do not define an information or data architecture. These are left to domain specific capabilities metadata and data description language (GML). Capability also provides machine and human readable information that makes integration and federation of data/information easy. It also enables developing application based standard interactive re-usable client tools for data access/query and display.
1.2.1. [bookmark: _Toc189816000]Architectural Design Features
Federated Service-oriented GIS framework is composed of two parts. One part is consists of interoperable Service-oriented GIS components compliant with Open Geographic Standards, and other part is federator composing those components according to the application requirements by providing integrated data-views in its capability metadata.
Regarding the first part, service descriptions, standards service APIs and capability definitions are defined in standard specifications published by Open Geographic Standards. According to standards we developed two types of services. These are map-data rendering services (Web Map Services (WMS)) and data providing services (Web Feature Services (WFS)–developed by Aydin G.). In the system there are two types of data, vector data provided by WFS in the form of XML-encoded common data model (GML) and binary map-images provided by WMS. GML is a data description language which is XML encoding of the heterogeneous data. It consists of two parts, content (core data) and presentation (attribute and geometry elements). The common data model’s properties enable data to be displayed, queried and easily integrated.
In summary for the first part, we basically developed a GIS framework according to the standard specifications and then, enhanced it with Web Service-based Service Oriented Architecture (SOA) principles through WS-I standards. The standard GIS Web Services’ (WMS and WFS) definitions are also extended with the streaming data transfer capability by introducing topic-based publish/subscribe message oriented middleware into the system. The system uses Web Service interface as negotiation protocol and data transfers are done through publishers and subscribers on the same topic agreed on by negotiation process.
The second part is the federator which federates the standard GIS Web Services’ capabilities metadata and presents a single database image to the user through application-based hierarchical data defined in its federated capability metadata. This enables unified data access/query/display from a single access point through abstract queries from event-based interactive map tools (or even from the console or command-lines). Event-based interactive map tools are generic tools enabling seamless interaction with the system through federator or any other compatible WMS.
Application-based hierarchical data is defined as integrated data-view in the federator’s capability metadata. It actually defines a static workflow starting from the federator and ending at the original data sources (WFS serving GML or WMS serving map layers). The services are linked through the references defined in their capability metadata. The user’s interaction with the system is carried over the integrated data views through event-based interactive map tools. Integrated data views are defined in the hierarchical data format as explained below:
Application ->Map -> Layer -> Data {GML and/or binary map images} ->Raw data (any type).
Map is application-based human recognizable integrated data display, and composed of layers. A layer is a data rendering of a single homogeneous data source. Layers are created from the structured XML-encoded common data model (GML) or binary map images (raster data). Heterogeneous data source are integrated to the system through the mediators in the form of GML (WFS-based mediation) or binary map images (WMS-based mediation). The mediators have resource specific adaptors for request and response conversions and appropriate capability metadata describing the data and resources.
Our experiences with GIS showed that federated Service-oriented GIS-style information model can be generalized to many application areas such Chemistry and Astronomy. We call this generalized framework Application Specific Information System (ASIS) and give blueprint architecture in terms of principles and requirements. Developing such a framework requires first defining a core language (such as GML) expressing the primitives of the domain, second, key service components, service interfaces and message formats defining services interactions, and third, the capability file requirements (based on core-language) enabling inter-service communications to link the services for the federation.
1.2.2. [bookmark: _Toc189816001]High-performance Design Features
The high-performance design issues addressed in the proposed framework can be grouped into two. First group is regarding the extension of service descriptions and specifications of Open Geographic Standard specifications, and second group is regarding the federated design.
The first group of design issues is related to the extension and enhancements over Open Geographic Standards (OGC). We extended OGC’S online service descriptions with the streaming data transfer capabilities and called them streaming GIS Web Services. These services are the main building blocks of the federated Service-oriented GIS framework. At the service API level they provide standard functionalities and interfaces according to standards but the data payloads are transferred with the topic and publish/subscribe based messaging middleware. Each service has a publisher module and a subscriber module enabling the streaming transfer. Web Service interfaces are used for negotiation enabling client (subscriber) and server (publisher) to agree on the IP-port and topic of the broker through which data will be streamed.
The second group of design features is regarding the federator. The federation framework inspired us developing some performance-oriented designs such as pre-fetching, caching and parallel processing enabling quick responses. Since the geo-data is in massive sizes, un-evenly (geo-location) distributed and variable sized, application of these techniques requires us to introduce novel approaches. These design approaches are addressed in the following paragraphs.
We introduced one-time session-based caching. In this approach, instead of caching whole data the federator caches only the recently fetched data and uses it for serving the successive requests coming from the same session. At the end of serving every-other request, federator replaces the cached data with the recently fetched data. The technique is based on sessionID transfer through the SOAP messages. This design enables application to run on any ordinary servers not having large storage capacity as in Google Servers or any other high-performance computing servers.
Parallel processing approach is developed on the proposed caching approach mentioned earlier. It is based on decomposition of un-cached data region and assigning the partitioned regions to the separate threads. Each thread runs in parallel and creates small maps correspond to their assigned partitions. The number of partitions is defined by locality information obtained by utilizing session-based caching.
Another performance-oriented design feature is the pre-fetching. It is mutually exclusive of the other design features caching and parallel processing which are applied together. Pre-fetching is explained as fetching the data before it is needed. It basically overcomes the network bandwidth problem and repeated data conversions overheads. The pre-fetching is done by federator for the performance critical data defined in the capability metadata. The pre-fetched data is kept in federator’s local file system, and the requests are served from this intermediary storage.
We test the responsiveness of the system by applying these performance enhancing designs, and analyze the results by comparing the baseline tests results obtained by using naïve conventional GIS approaches (no-caching, single-threaded on demand data access/query). Our aim is turning compliance requirements into competitiveness and providing high-performance responsive geographic information systems under the interoperability and extensibility requirements.
1.3. [bookmark: _Toc189816002]Summary of Contributions
We developed a framework for federated Service-oriented Geographic Information Systems. Under this title, we addressed interoperability issues by integrating Web Services with Open Geographic Standards for supporting interoperability at both data, service and application levels. We also enhanced the standard GIS Web Service components with the streaming data-transfer capability by using publish/subscribe based messaging middleware architecture.
On top of the proposed service-oriented GIS data-grid, we introduced a federator enabling unified data access/query/display from a single access point through integrated data-views as a composition of distributed heterogeneous GIS data sources. Under this title, we introduced hierarchical data for integrated data-views defined in federator’s capability metadata.
We have also investigated performance efficient designs regarding federator, data transfer and rendering, and done detailed benchmarking over real GIS application requiring quick response times. We compared and contrast the proposed streaming GIS Web Services with non-streaming counterparts. We have developed pre-fetching algorithm for archived data access and display, and compared it with on-demand fetching.
We have introduced novel parallel processing technique with attribute-based query partitioning for unevenly distributed variable-sized data processing. In order to do that we have proposed set of techniques such as mapping browser-based sessions to Web Services and introducing session based caching carried out between federator and event-based interactive mapping tools. We have also introduced the techniques for workload forecasting by using session-based caching. This enabled us to find out the best number of partitions for the parallel processing giving the best performance results.
Finally, we have defined the principles for generalizing federated GIS to the general science domains as Application Specific Information Systems (ASIS).
Regarding the system software contribution, we have developed streaming and non-streaming versions of Web-based GIS Map Server (WMS) with Open Geographic Standards and in Web Service principles. We also developed a federator supporting high-performance designs such as pre-fetching and parallel processing with client/session-based caching. We have also developed generic browser/even-based interactive map tools for data access, query and display.
1.4. [bookmark: _Toc189816003]Research Issues
In order to develop federated Service-oriented GIS framework supporting event-based unified data access/query/display from a single access point we address the following research issues.
Interoperability and extensibility: We first investigate the adoption of Open Geographic Standards to GIS to create an interoperable geographic information system with standard data models, service description and service API, and service capabilities metadata. Second, we apply Web-Service principles to develop Service-oriented Architecture for GIS data-grid.
Federation: Another research issue will be investigating a framework for capability file-based federation of GIS data-grid services enabling unified data access/query/display through event-based interactive tools over integrated data-views. Federation is done by capability metadata federation of proposed GIS Web Services by the federator.
We investigate how to make capability federation to develop application-based hierarchical data definitions in federated capability file. We first define GIS Web Services (extension of OGC standards) and their service API allowing inter-service communication through capability metadata exchange. We also investigated the standard event-based interactive query and display tools for the standard GIS data services enabling unified data access/query/display over integrated data-views.
We also investigate the principles for generalizing the proposed federated GIS system for general science domains such as Chemistry and Astronomy in terms of components and framework requirements. This includes defining required services types, generalizing the service interfaces and message formats, defining capability format meeting the requirements for inter-service communications to link and cascade the services for the federation.
Performance and Responsiveness: Interoperability requirements bring up some compliance costs. These are due to using XML-encoded common data model and GIS Web Services (SOAP over HTTP protocol for message exchange).
We first investigated the performance efficient designs for XML structured data transfer and processing (parsing and rendering). Second, we research on federator oriented design features to support high-performance for Geographic Information Systems requiring quick response times.
1.5. [bookmark: _Toc189816004]Organization of Dissertation

The first chapter consists of an overview of the Geographic Information Systems, architectural and high-performance design features of the federated service-oriented GIS, summary of the outstanding issues that relate to the research outlined in this thesis, and discussion on the contribution of the thesis.
The remaining of the thesis is organized as follows. Chapter 0 consists of two parts. First part gives background information about Geographic Information Systems and Web Services based Service-oriented architectures. Second part reviews some of the related projects.
Chapter 0 explains the design principles and components of the information Grid architecture. Our system is an example of the Grids of Grids paradigm [Fox04] which consists of three major architectural components. Components are developed in accordance with Open Geographic Standards and integrated with Web Service principle at both data and application level.
Chapter 0 investigates a Service-oriented federation architecture built over the proposed GIS components given in Chapter 0. It enables unified data access/query and display over integrated data views. Last part studies the design principles/requirements of the proposed framework for the general science domains and gives blue-print architecture.
The proposed information system framework, Web Map Services and event-based interactive decision making tools have been used in several large-scale GIS projects. Chapter 0 discusses three of them.
Chapter 0 first introduces common performance issues in interoperable Service-oriented Geographic Information Systems and then, presents high performance design features and their evaluations. The performance issues mostly stem from using structured/annotated common data model and XML-encoded Web Service protocols. Corresponding high-performance design features concentrate on data rendering, handling/transferring and federator-oriented novel load balancing and caching techniques.
In Chapter 0, we give answers to the research questions identified in Chapter 0, outline future research directions and conclude the dissertation.

[bookmark: _Toc189816005]Chapter 2
[bookmark: _Ref189392218][bookmark: _Toc189816006]Literature Survey
1. [bookmark: _Toc189661290][bookmark: _Toc189661778][bookmark: _Toc189716511][bookmark: _Toc189718601][bookmark: _Toc189814262][bookmark: _Toc189814636][bookmark: _Toc189816007]
2. [bookmark: _Toc189661779][bookmark: _Toc189716512][bookmark: _Toc189718602][bookmark: _Toc189814263][bookmark: _Toc189814637][bookmark: _Toc189816008]
2.1. [bookmark: _Toc189816009]Background
This chapter gives the definitions and explanations of some key terms and concepts in the proposed GIS Grid domain. These are mostly related to GIS, geo-data, required service functionalities and components, interoperability and standardization issues involving Open Geographic Standards, structured common data models and Web Services implementation of Service-oriented (SOA) distributed GIS.

2.1.1. [bookmark: _Toc189816010]Geographic Information Systems (GIS)
GIS introduce methods and environments to visualize, manipulate, and analyze geospatial data. The nature of the geographical applications requires seamless integration and sharing of spatial data from a variety of providers. Interoperability of services across organizations and providers is a main goal for GIS and also Grid computing [Foster04, Berman03].
GIS Grid services can be grouped into three different categories; these are data services, processing services and, registry (catalog) services. Data services are tightly coupled with specific data sets and offer access to customized portions of the data. Processing services provide operations for processing or transforming data in a manner determined by user-specified parameters. Registry or catalog services allow users and applications to classify, maintain, register, describe, search and access information about Web Services.
GIS provide the capability to manage and manipulate geospatial information, including rendering of maps and map-based information. Increasingly, GIS has become a critical tool for managing spatial data in a variety of disciplines. Indeed, creating, managing, analyzing and presenting spatial data is now a fundamental component of many scientific data analyses and decision-support systems, including in the Geo-Sciences. The main thrust of GIS is the integration of heterogeneous data based on co-location in space. Joining (or overlaying) data based on spatial relationships requires that data layers are converted into a common coordinate system [Koontz].
The primary function of a GIS is to link multiple sets of geospatial data and graphically display that information as maps with potentially many different layers of information (see Figure 1). Each layer of a GIS map represents a particular “theme” or feature, and one layer could be derived from a data source completely different from the other layers. As long as standard processes and formats have been arranged to facilitate integration, each of these themes could be based on data originally collected and maintained by a separate organization. Analyzing this layered information as an integrated entity (map) can significantly help decision makers in considering complex choices.

[image:]
[bookmark: _Ref189296977][bookmark: _Toc189659071]Figure 1: Layered display – a map is composed of distributed multiple set of layers. Figure is from [Koontz].

In Figure 1, each layer composing map (or integrated data/information) is an abstraction of different type of vector and raster data (see Chapter 3 for the definitions). For example, street data is set of line strings, buildings are represented in points and vegetation data is represented in polygon or poly-lines.
2.1.2. [bookmark: _Toc189816011]GIS Web Services
Web Services: The World Wide Web consortium (W3C – http://www.w3c.org) describes Web Services as: “A software system designed to support interoperable machine-to-machine interaction over a network. It has an interface described in a machine-processable format (specifically WSDL). Other systems interact with the Web service in a manner prescribed by its description using SOAP-messages, typically conveyed using HTTP with an XML serialization in conjunction with other Web-related standards”. Another definition is “A Web Service is an interface that describes a collection of operations that are network accessible through standardized XML messaging.” [Kreger].
Web Service standards [Booth04] are a common implementation of Service Oriented Architectures (SOA) ideals, and Grid computing has converging requirements. By implementing Web Service versions of GIS services, we can integrate them directly with scientific application Grids [Foster04, Aydin].
Web Services give us a means of interoperability between different software applications running on a variety of platforms. Web Services support interoperable machine-to-machine interaction over a network. Every Web Service has an interface described in a machine-readable format. Web Service interfaces are described in a standardized way by using Web Service Description Language (WSDL) [Christensen]. WSDL files define input and output properties of any service and services’ protocol bindings. WSDL files are written as XML documents. WSDL is also used for describing and locating Web Services. Web Services are defined by the four major elements of WSDL, “portType”, “message”, “types” and “binding”. Element portType defines the operations provided by the Web Services and the messages involved for these operations. Element message defines the data elements of the operations. Element types are data types used by the Web Service. Element binding defines the communication protocols. Other systems interact with the Web Service in a manner as described in WSDL using Simple Object Access Protocol (SOAP) [Donbox] messages. WSDL enables Web Services to be located and invoked remotely through registry and catalog services. Universal Description, Discovery and Integration (UDDI) specification [Belwood] can be used by the service providers to advertise the existence of their services.
SOAP is an XML based message protocol for exchanging the information in a distributed Web Service environment. It provides standard packaging structure for transporting XML documents over a variety of network transport protocols. It is made up of three different parts. These are the envelope, the encoding rules and the Remote Procedure Call (RPC) convention. SOAP can be used in combination with some other protocols such as HTTP. Our implementation of GIS services is OGC compatible and Web Services using SOAP over HTTP protocol.
The major difference between the Web Services and the other component technologies is that, the Web services are accessed via the ubiquitous Web protocols such as Hypertext Transfer Protocol (HTTP) and Extensible Markup Language (XML) instead of object-model-specific protocols such as Distributed Component Object Model (DCOM) [Redmond] or Remote Method Invocation (RMI) [Rmi] or Internet Inter-Orb Protocol (IIOP) [Kirtland].
2.1.3. [bookmark: _Toc189816012]Open Geospatial Standards
The standard bodies aim is to make the geographic information and services neutral and available across any network, application, or platform. Currently the two major geospatial standards organizations are the Open Geospatial Consortium (OGC) and the Technical Committee tasked by the International Standards Organization (ISO/TC211).
The OGC is an international industry consortium of more than 300 companies, government agencies and universities participating in a consensus process to develop publicly available interface specifications. OGC Specifications support interoperable solutions that "geo-enable" the Web, wireless and location-based services, and mainstream IT. OGC has produced many specifications for web based GIS applications such as Web Feature Service (WFS) [WFS] and the Web Map Service (WMS) [WMS, Kris03]. Geography Markup Language (GML) [GML] is widely accepted as the universal encoding for geo-referenced data (see Chapter 3 for more detail). On the other hand ISO Standards proposes a standard framework for the description and management of geographic information and geographic information services. OGC has introduced standards by publishing specifications for the GIS services.
Technical Committee 211 (Geographic Information/Geomatics) of the International Organization for Standardization (ISO) [see http://isotc211.org] develops the series of international standards for geospatial data, metadata and services. Overall scope of the series of standards is outlined in ISO 19101 (2002). This work aims to establish a structured set of standards for information concerning objects or phenomena that are directly or indirectly associated with a location relative to the Earth. These standards may specify, for geographic information, methods, tools and services for data management (including definition and description), acquiring, processing, analyzing, accessing, presenting and transferring such data in digital/electronic form between different users, systems and locations. ISO/TC 211 did not specify the actual implementation specifications for different platforms and the private software vendors. Instead, ISO/TC 211 defines a high-level data model for the public sector, such as governments, federal agencies, and professional organizations [Peng03].
In summary, OGC is interested in developing both abstract definitions of OpenGIS frameworks and technical implementation details of data models and to a lesser extent services. On the other hand, ISO/TC 211 focuses on high-level definition of geospatial standards from an institutional perspective [Peng03]. They have been working closely to align their work to produce compatible standards.
2.2. [bookmark: _Toc189816013]Related Works
2.2.1. [bookmark: _Toc189816014]Linked Environments for Atmospheric Discovery (LEAD)
Linked Environments for Atmospheric Discovery (LEAD) is a large scale project funded by NSF Large Information Technology Research grant for addressing fundamental IT and meteorology research challenges to create an integrated framework for analyzing and predicting the atmosphere. The proposed framework helps researchers to identify and access, prepare, manage, analyze or visualize a broad array of meteorological data and model output independent of format and physical location [Kelvin04].
For adaptive utilization of distributed resources, sensors and workflows LEAD is developing the middleware. The LEAD system is constructed as a service-oriented architecture and decomposes into services which communicate via well-defined interfaces and protocols [Plale06].
LEAD provides the scientists with necessary tools to build forecast models using available observations or model generated data and manages necessary resources for executing the model. The tools include supercomputer resources, automated search, selection and transfer of required data products between computing resources [Beth06]. One major feature of LEAD is support for adaptive analysis and prediction of mesoscale meteorological events. To provide such features LEAD data subsystem supports three important capabilities: 1 - automated data discovery by replacing the manual data management tasks with automated ones, 2 - a highly scalable data archiving system which allows transfer of large scale data products between resources, metadata descriptions of the available information and protected storage facilities, 3 – easy search and access interfaces for the data via a search GUI and underlying ontology [Beth06].
2.2.2. [bookmark: _Toc189816015]Geosciences Network (GEON)
The Geosciences Network (GEON) [Zaslavsky04] is a multi-university project funded by the National Science Foundation to develop cyber infrastructure to enable sharing of data sets and services in a distributed environment for the Earth Sciences. The GEON Grid is a distributed network of GEON nodes, each of which runs a GEON software stack that includes Web and Grid services to enable users to register data sets; register services; issue queries across multiple information sources, using spatiotemporal search conditions and ontologies; download data into personal spaces; invoke analysis services; and visualize output of queries and/or analysis. The architecture includes data mediation services, workflow services, and a portal. Much of the data is geospatial and spatiotemporal in nature and provides appropriate search interfaces, and efficient mapping interfaces for such data is an important requirement. The GEON Grid software stack will include ArcIMS [EsriArcIms] as one of its components to provide GIS and mapping functionality.
Geopsciences Network (GEON) provides ontology enabled applications mostly based on data registration, discovery, manipulation and display in the GIS domain [Bhatia00]. They also have myGEON concept functioning similarly as in the LEAD, and they have data display tools in a portal implemented by GridSphere [Novotny04].
GEON is based on a “service-oriented architecture (SOA)”. Advanced information technologies are being developed in the project to support “intelligent” searching, semantic integration, and visualization of multidisciplinary information spaces as well as 4D scientific datasets and geospatial data, and to provide access to high performance computing platforms, for data analysis and model execution. The GEON Portal also provides a Web-based interface to access the various resources.
2.2.3. [bookmark: _Toc189816016]Laboratory for Advanced Information Technology and Standards (LAITS):
The LAITS [Laits] is a project of Center for Spatial Information Science and Systems (CSISS) in George Mason University. The LAITS project is primarily working on integrating OGC Web Services with Globus-based Grid technology [Foster97] for geospatial modeling and applications. The objectives of the project are enabling the management of geospatial data by Grids, providing OGC standard compliant access to Grid-managed geospatial data, and enabling geospatial modeling and the production of virtual geospatial products in the Grid environment [Liping03]. For the test and demonstration of their architecture, they use NASA EOS data environment and coverages data provided by OGC WCS (Web Coverage Service) [Doyle]. Their aim for the complete architecture is using OGC WCS, WMS and WFS services in the Grid environment. Currently they have WCS services to demonstrate their work.
They also have a demo to access GIS data kept in the form of coverages in different DBs connected to different WCS. These OGC compatible WCS are implemented and wrapped as Grid services and called as GWCS (Grid Web Coverage Services). LAITS enhanced the WCS to process 4-D HDF-EOS data which is from LLNL (Lawrence Livermore National Laboratory) netCDF (network Common Data Format) [Rew1990] modeling data. In their proposed illustrated architecture data providers are deployed as WCS in NASA Ames, in LLNL and in LAITS servers. In their GCSW (Grid Catalog Services for Web) they store and serve information about the active coverage servers. They use OGC CSW (Catalog Services for Web) services to search for specified data server (in their applications data is coverage and provided by WCS). Data transfer is achieved by using GridFTP [Allock03].
The brain of the system is iGSM (Intelligent Grid Service mediator). iGSM dispatches user requests from WCS/WMS portal to the most appropriate GWCS/GWMS in the Virtual Organization. Portals tasks are implemented at iGSM [Chu06]. Portals instances and data-service providers meet at the iGSM. iGSM also does request conversion. Geospatial-data access requests from OGC WCS portal are transferred to an appropriate format for the Grid enabled WCS (GWCS). Catalog Service search is also done in iGSM. It is basically the brain of the system.
Regarding workflow or process pipelining, LAITS use its management and execution engine called BPELPower. It supports BPEL-based web service chain completely.
LAITS’s grid approach is based on Globus toolkit. On the other hand, our Grid approach is based on WS-I+ interoperability standards and Web Service principles. The implementation of SOA in the web environment is called Web services and in the Grid environment the open Grid Services. Currently the web service and grid service are converged with the introduction of Web Service Resource Framework (WSRF) [Wsrf].

[bookmark: _Ref189737400][bookmark: _Toc189816017]Chapter 3
[bookmark: _Ref189276347][bookmark: _Toc189816018]Web Service Components for Service-oriented Geographic Information System
A Geographic Information System is a collection of primarily data and observation driven disciplines, yet a mechanism to share collected data and developed software tools has not been widely established. The data collected are stored in several different formats on different platforms. Software developed in the community employs a variety of mechanisms for accessing such data and conduct analysis on them, with little or no collaboration and standards.
Heterogeneity of geographic resources may arise for a number of reasons, including differences in projections, precision, data quality, data structures and indexing schemes, topological organization (or lack of it), set of transformation and analysis services implemented in the source.
Proposed Information System Grid framework is based on Common data models, GIS Web Service components and Service-oriented architecture implemented with WS-I Web Service principles. In this chapter we first present the requirements for the common data models and their advantages of usage in such a framework (Chapter 3.1). Next, we present needs and advantages of extending/enhancing components as Web Services to develop a SOA framework for GIS (Chapter 3.2). Finally, we present system’s general architectural features in terms of its components, interactions and data-flow from the archived data stores to the end users (Chapter 3.3)
3. [bookmark: _Toc189661301][bookmark: _Toc189661790][bookmark: _Toc189716523][bookmark: _Toc189718613][bookmark: _Toc189814274][bookmark: _Toc189814648][bookmark: _Toc189816019][bookmark: _Ref188168233]
3.1. [bookmark: _Ref189736606][bookmark: _Toc189816020]Geo-data and Common Data Models
Geospatial data, in general, refers to a class of data that has a geographic or spatial nature, e.g., the information that identifies the geographic location and characteristics of natural or constructed features and boundaries on the earth.
Geospatial data represents real world objects (roads, land use, elevation) with digital data. Real world objects can be divided into two abstractions: discrete objects (a house) and continuous fields (rain fall amount or elevation). There are two broad methods used to store data in a GIS for both abstractions: Raster and Vector.
Raster data is called coverage data by OGC. Raster data type consists of rows and columns of cells where in each cell is stored a single value. Most often, raster data are images (raster images), but besides just color, the value recorded for each cell may be a discrete value, such as land use, a continuous value, such as rainfall, or a null value if no data is available. Raster data is stored in various formats; from a standard file-based structure of TIF, JPEG, etc. to binary long object (BLOB) data stored directly in a relational database management system (RDBMS) similar to other vector-based feature classes.
Common data format for the raster data in our system: In our GIS system we use image formats such as JPEG or TIFF to represent the raster data provided by third party OGC compatible Web Map Services or Coverage Portrayal Services (CPS) [Lansing02].
Vector data type uses geometries such as points, lines (series of point coordinates), or polygons, also called areas (shapes bounded by lines), to represent objects. Examples include property boundaries for a housing subdivision represented as polygons and well locations represented as points. Vector features can be made to respect spatial integrity through the application of topology rules such as 'polygons must not overlap'. Vector data can also be used to represent continuously varying phenomena.
Common data format for the vector data in our system: The data model developed by OGC is the Geography Markup Language (GML) and it is currently widely accepted as the universal encoding for geo-referenced data. GML is an XML grammar written in XML Schema for the modeling, transport, and storage of geographic information including both the spatial and non-spatial properties of geographic features; it provides a variety of kinds of objects for describing geography including features, coordinate reference systems, geometry, topology, time, units of measure and generalized values (see Appendix H).
 Just as XML helps the Web by separating content from presentation, GML does the same thing in the world of Geography. GML allows the data providers to deliver geographic information as distinct features. Using latest Web technologies, users can process these features without having to purchase proprietary GIS software. By leveraging related XML technologies such as XML Schema, XML Data Binding Frameworks, XSLT, XPath, XQuery etc. a GML dataset becomes easier to process in heterogeneous environments.
By incorporating GML in our systems as common data format we gain several advantages:
1. It allows us to unify different data formats. For instance, various organizations offer different formats for position information collected from GPS stations. GML provides suitable geospatial and temporal types for this information, and by using these types a common GML schema can be produced. See the (see Appendix H) for a sample GML.
2. As more GIS vendors are releasing compatible products and more academic institutions use OGC standards in their research and implementations, OGC specifications are becoming de facto standards in GIS community and GML is rapidly emerging as the standard XML encoding for geographic information. By using GML we open the door of interoperability to this growing community.
3. GML and related technologies allow us to build general set of tools to access and manipulate data. Since GML is an XML dialect, any XML related technology can be utilized for application development purposes. Considering the fact that in most cases the technologies for collecting data and consecutively the nature of the collected data product would stay the same for a long period of time the interfaces we create for sharing data won’t change either. This ensures having stable interfaces and libraries.
4. One approach to achieve machine to machine communications and autonomous computations.
5. It enables separating representation from the context.
6. Since it is XML based, it can be leveraged to other XML based systems and communication protocols such as XMLHttpProtocol (in other words AJAX) and Web Services [Sayar06]
7. It is an approach to achieving cross-language interoperability.
8. Using GML with the capability metadata as OGC defined is a kind of application of the semantic approaches to data and service integrations and coupling.
Due to the numerous advantages of using semi-structured data representation, other science domains also adapt using this kind of structured representation of data. For example, Chemistry domain uses CML (Chemistry Markup Language) [Cml], Astronomy domain uses VOTable (Virtual Observatory Tables) [Votable] and Mathematic science domain uses MathML (Mathematic Markup Language) [Mathml].
3.2. [bookmark: _Ref188417348][bookmark: _Toc189816021]Extension of Standard Specifications with Web Services
The proposed GIS framework is Service-oriented and has components as Web Services providing standard service interfaces and communicating with common messages formats defined in standard specifications. By integrating Web Services with Open Geographic Standards, we support interoperability at both data and application level and have the common advantages of SOA architectures listed below:
Distribution: It will be easier to distribute geospatial data and applications across platforms, operating systems, computer languages, etc. They are platform and language neutral. Web services can be used on different platforms than those on which they were implemented.
Integration: It will be easier for application developers to integrate geospatial functionality and data into their custom applications. It is easy to create client stubs from WSDL files and invoke the services. Web Services based frameworks are loosely coupled and component oriented. Because of the standard interfaces and messaging protocols the Web Services can easily be assembled to solve more complex problems.
Infrastructure: We can take advantage of the huge amount of infrastructure that is being built to enable the Web Services architecture – including development tools, application servers, messaging protocols, security infrastructure, workflow definitions, etc.
OGC Web Feature Service implementation specification [Vretanos] defines HTTP as the only explicitly supported distributed computing platform which requires use of one of the two request methods: GET and POST. Although SOAP messages are also supported, they are also required to be transported using HTTP POST method. However employing HTTP protocol and GET or POST introduces significant limitations for both producers and consumers of a service. As discussed above Web Services provide us with valuable capabilities such as providing standard interfaces to access various databases or remote resources, ability to launch and manage applications remotely, or control collaborative sessions etc. Developments in the Web Services and Grid areas provide us with significant technologies for exposing our resources to the outer world using relatively simple yet powerful interfaces and message formats. Furthermore sometimes we need to access several data sources and run several services and for solving complex problems. This is extremely difficult in HTTP services but rapidly developing workflow technologies for Web and Grid Services may help us orchestrate several services. For these reasons we have based our WFS implementation on Web Services principals.
Furthermore complex scientific applications require access to various data sources and run several services consecutively or at the same time. This is not in the scope of HTTP but can be supported using rapidly developing workflow technologies for Web and Grid Services. For these reasons we have based our Web Feature Service implementation on Web Services principals. Our goal is to make seamless coupling of GIS Data sources with other applications possible in a Grid environment.
GIS systems are supposed to provide data access tools to the users as well as manipulation tools to the administrators. In principle the process of serving data in a particular format is pretty simple when it is made accessible as files on an HTTP or FTP server. But additional features like query capabilities on data or real-time access in a streaming fashion require more complicated services. As the complexity of the services grows, the client’s chance of easily accessing data products decreases, because every proprietary application developed for some type of data require its own specialized clients. Web Services help us overcome this difficulty by providing standard interfaces to the tools or applications we develop.
No matter how complex the application itself, its WSDL interface will have standard elements and attributes, and the clients using this interface can easily generate methods for invoking the service and receiving the results. This method allows providers to make their applications available to others in a standard way.
Most scientific applications that couple high performance computing, simulation or visualization codes with databases or real-time data sources require more than mere remote procedure call message patterns. These applications are sometimes composite systems where some of the components require output from others and they are asynchronous, it may take hours or days to complete. Such properties require additional layers of control and capabilities from Web Services which introduces the necessity for a messaging substrate that can provide these extra features.
3.3. [bookmark: _Ref188417286][bookmark: _Toc189816022]System Framework and Components
The system is based on common data models provided by common standard service components and their service interfaces. Service interactions start with a discovery step which involves retrieving the capabilities document. Capability document is an XML encoded metadata file about both the service and data. Its formats and schema are defined by Open Geographic Standards (OGC specifications). Sample capabilities documents are given in Appendix-D for WFS and Appendix-C for WMS. All the interactions and service bindings are done through capability exchange. So, each service keeps its own capability defining its data providing and available operations on these data. For the sample interaction steps between WMS and WFS to get feature data from WFS, see Chapter 3.3.1.
The proposed Service-oriented GIS is illustrated in Figure 2. It is composed of two major types of GIS Web Services (see Chapter 3.3.1). These are Web Map Services and Web Feature Services. Optionally, in order to find and bind services in Service-oriented architecture, system can also be extended with Catalog/registry services.

[bookmark: _Ref188412099][bookmark: _Toc189659072]Figure 2: GIS framework with the proposed Web Service components and data flow. See also Figure 3.

In the system there are also two types of common data model. First one is provided by WFS in XML encoded GML data format and second one is provided by WMS in binary map images. For more detail about the common data models and their usage advantages see Chapter 3.
3.3.1. [bookmark: _Ref188418624][bookmark: _Ref188419089][bookmark: _Toc189816023]Web Feature Service
Web Feature Service is one of the major service standards defined by Open Geographic Standards (OGC) for creating a GIS framework. Web Feature Service implementation specification defines interfaces for data access and manipulation operations on geographic features using HTTP as the distributed computing platform. Via these interfaces, a web user or service can combine, use and manage geo-data from different sources by invoking several standard operations [Vretanos].
OGC specifications describe the state of a geographic feature by a set of properties where each property can be thought of as a [name, type, value] tuple. Geographic features are those that may have at least one property that is geometry-valued. This also implies that features can be defined with no geometric properties at all.
According to the Open Geographic Standard’s definition WFS provide 3 operations, getCapabilities, describeFeatureType and getFeature. In case of transactional WFS it provides 2 more service interfaces, transaction and lockFeature. For the sake of our purposes, we just mention about the basic WFS and describe their standard operations as below [Vretanos]:
- GetCapabilities: A Web Feature Service must be able to describe its capabilities. Specifically, it must indicate which feature types it can service and what operations are supported on each feature type.
- DescribeFeatureType: A Web Feature Service must be able, upon request, to describe the structure of any feature type it can service.
- GetFeature: A Web Feature Service must be able to service a request to retrieve feature instances. In addition, the client should be able to specify which feature properties to fetch and should be able to constrain the query spatially and non-spatially.
Illustration of client-server interaction: WFS services’ clients are mostly Web Map Services. Client’s interaction with WFS usually starts with a discovery step which involves retrieving the capabilities document. A client usually first sends a getCapabilities request to the WFS server to learn which feature types are serviced and what operations are supported on each feature type in what constraints. Upon receiving the list of available feature data available with their specific properties (given in capability file of WFS), client sends a describeFeatureType request to get the structure information of the interested feature type. Finally, client makes getFeature request with appropriate request created based on client’s purpose and WFS server’s capability metadata. However the most common queries used are GetFeature requests to retrieve particular features.

[image:]
[bookmark: _Ref188410724][bookmark: _Toc189659073]Figure 3: Illustration of client (WMS)-WFS interaction steps to get feature data.

Figure 3 illustrates three groups of coupled bars representing client and WFS interactions.
The first group of request/response at the top explains capability exchange between client and server. This is done with WFS’s GetCapabilities service interface. The clients (Web Map Server or users) start with requesting a capabilities document from WFS. When a GetCapabilities request arrives, the server may choose to dynamically create a capabilities document and returns this, or simply return a previously created XML document.
The second group of request/response in the middle explains requesting structured information (schema) about the interested feature data listed in capability metadata of WFS. This is achieved by using WFS’s DescribeFeatureType service interface. After the client receives the capabilities document he/she can request a more detailed description for any of the features listed in the WFS capabilities document. Upon invocation of this service interface, WFS returns an XML Schema that describes the requested feature as the response.
The third group of request/response at the bottom of Figure 3 explains request for feature data based on user defined constraints in an appropriate request format. This is done through WFS’s GetFeature service interface. After it is done with first two steps, the client may then ask WFS to return a particular portion of any feature data. GetFeature requests contain some property names of the feature and a Filter element to describe the query. The WFS extracts the query and bounding box from the filter and queries the related database(s) that holds the actual features. The results obtained from the DB query are converted to that particular feature’s GML format and returned to the client as a FeatureCollection object.
WFS allow clients to access and manipulate the geographic features without having to consider the underlying data stores. Clients’ only view of the data is through the WFS interface which allows the data providers to integrate various types of data stores with one WFS instance. Figure 2 displays this instances where the WFS server is accessed by different types of clients and has access to various types of spatial databases, file systems and any-type of storages. Clients interact with WFS by submitting database queries encoded in OGC Filter Encoding Implementation [Vretanos01] and in compliance with the Common Query Language [Rao00]. The query results are returned as GML FeatureCollection documents. In this context, WFS also behave as mediator services to provide feature data in common data model (Geographic Markup Language) through standard service interfaces. For the technical details about implementing Web Service based WFS see Galip’s thesis [Galipthesis].

3.3.2. [bookmark: _Ref189283136][bookmark: _Toc189816024]Web Map Service
Web Map Service (WMS) [WMS, Kris03] is the key service to the information visualization in GIS domain. WMS produces maps from the geographic data in GML from WFS or binary data mostly from Coverage Portrayal Services (CPS) [Lansing02].
A map is not the data itself. Maps create information from raw geographic data, vector or coverage data. Maps are generally rendered in pictorial formats such as jpeg (Joint Photographic Expert Group), GIF (Graphics Interchange Format), PNG (Potable Network Graphics). WMS also produces maps from vector-based graphical elements in Scalable Vector Graphics (SVG) [Ferraiolo2003].
Web Map Service (WMS) enables visualizing, manipulating and analyzing geospatial data through maps displayed on browser based interactive GUI (see Chapter 3.3.3). Map Servers typically compose maps in the layers. The layers may come from distributed sources: Web Feature Services provide abstract feature representations that can be converted to images, and other Map Servers may contribute map images such as NASA WMS [OnEarth]. WMSs can be federated and cascaded to create more detailed and comprehensible map images.
WMS provides three main services (Appendix A); these are getCapabilities (Chapter 3.3.2.1), getMap (Chapter 3.3.2.2) and GetFeatureInfo (Chapter 3.3.2.3). GetCapabilities and getMap are required services to produce a map but GetFeatureInfo is an optional service.
3.3.2.1. [bookmark: _Ref188684241][bookmark: _Toc189816025]GetCapabilities Services
The purpose of the mandatory GetCapabilities operation is to obtain service metadata, which is a machine readable (and human-readable) description of the server’s information content and acceptable request parameter values. Figure 5 presets getCapabilities request schema.
WMS provide its data in the layer format. GetCapabilities request and corresponding service interface allows the server to advertise its capabilities such as available layers, supported output projections, supported output formats and general service information. Before a WMS Client requests a map from WMS, it should know what layers WMS provides in which bounding boxes. The capability file is kept in the local file system and sent to clients upon getCapabilities request (see Figure 4). For the sample capabilities file instances see C and D.
[image:]
[bookmark: _Ref188685876][bookmark: _Toc189659074]Figure 4:GetCapabilities operation steps. See Appendix C for a sample WMS capabilities file instance

[bookmark: _Ref105263518][image: à͂è͂x]
[bookmark: _Ref106393629][bookmark: _Toc189659075]Figure 5 : GetCapabilities Request Schema. See Appendix A for an instance of this request schema

3.3.2.2. [bookmark: _Ref188684257][bookmark: _Toc189816026]GetMap Services
The getMap service interface allows the retrieval of maps. Maps are provided in different various formats based on user-defined parameters and layer attributes. All the supported formats for map-image layers and corresponding layer specific attributes and constraints are defined in WMS Capabilities document. Before invoking getMap service interface, clients first obtained capabilities document by invoking getCapabilities service interfaces (see Chapter 3.3.2.1). The image is returned back to the WMS Client as an attachment to SOAP message. If the WMS encounters any problem during handling of the request, it sends an exception message in SOAP back to the WMS Client.
Major operation steps to produce maps are illustrated in Figure 6. getMap request schema to create valid requests are given in Figure 7.
[image:]
[bookmark: _Ref188687062][bookmark: _Toc189659076]Figure 6: GetMap operation steps.

WMS first parses the request and gets the parameter values. WMS first determines what layers are requested, in which bounding box, in which form, and so forth. After determining all the request parameters, it communicates with WFS services providing requested feature data by using their getFeature service interfaces and requested feature data in GML format. If the parameter defining returned image format in getMap request is Scalable Vector Graphics (SVG), then WMS creates SVG from returned feature data by using its geometry elements. If the requested image is not in SVG format, we first create the SVG image and then convert it into the desired image formats (such as PNG, GIF, or JPEG). Apache Batik provides libraries for this conversion. Batik is a Java(tm) technology based toolkit for applications or applets that use images in the SVG format for various purposes, such as viewing, generation or manipulation. By using these schema files we derive geometry elements from the GML file to visualize the feature data. These geometry elements in GML are basically Point, Polygon, LineString, LinearRing, MultiPoint, MultiPolygon, MultiGeometry, etc.
[image: 䉈͏䉐͏x]
[bookmark: _Ref106393634][bookmark: _Toc189659077]Figure 7 : GetMap Request Schema. See Appendix A for an instance of this request schema

To create the images from the features returned from the WFS, we have used Java Graphics2D and Java AWT libraries. For each layer we create a different graphics object. If you assign each layer to different graphics object than Java libraries allow you to overlay these graphic objects in various combinations.
Alternatively, WMS uses SVG conversion to create map-image layers. When this way is used, WMS uses its internally defined XSL file to convert standard GML files into SVG by using XSLT machine. We developed standard XSL (see Appendix J) file to convert XML coded GML feature collections into SVG files. After having SVG, these image objects then converted into any image format such as JPEG, TIFF PNG etc. [Sayartech]
Below you see the sample code fragment showing how to create and overlay map images. Here, raster data is coming from HTTP Servlet based WMS server (defined in URL) and the other data represented as features are coming from our implementation of WFS.
URL url = new URL(
 Wmsaddress+”?request=GetMap&width=" +
 width + "&height=" + heigth +
 "&layers="+layername+ ”&styles=&srs=EPSG:4326&format=”+format+”&bbox=" +
 bbox);
BufferedImage im = ImageIO.read(url);
Graphics2D g = im.createGraphics();
…
 if(istherePoint)
 (
Check all the geometry data of the feature, Point, LineString Polygon etc.
) String[] points = getPointsFromFeatureData();
if(isthereLineString)
 String [] LineStrings = getLineStringFromFeatureData();
if(isthereLineRing)
 String [] LineRings = getLineRingFromFeatureData();
if(istherePolygon)
 String [] polygons = getPolygonsFromFeatureData();
… (
If you find any geometry data above
 such as Points, LineStrings
, convert the numbers in the
 GML file for the feature data
 into appropriate format to draw shape
s
 for representing these geometry elements and display
 them by using graphics2D object
. If you use the same grpahics2D data the layers will be overlaid
.
)
if(polygons!=NULL){
for(int i=0; i<polygons. length; i++){
 int [][] xypoints = wm.getXYpoints(polygons[i]);
 g.setColor(Color.darkGray);
 g.drawPolygon(xypoints[0], xypoints[1], xypoints[0].length);
}
}
if(LineRings!=NULL){
for(int i=0; i< LineStrings. length; i++){
 int [][] xypoints = wm.getLinesInStr(LineStrings[i]);
 g.setColor(Color.darkGray);
 g.drawPolyline(xypoints[0], xypoints[1], xypoints[0].length);
 }
}
…
g.dispose();

[image:]
[bookmark: _Toc171109040][bookmark: _Toc189659078]Figure 8: Sample output of the above map images generating code

How to send binary map images with SOAP messages:
1. Server side:
Below sample code shows how to attach a map image to SOAP message in response to getMap request. We assume map image name is maimage.jpeg. WMS server first creates a data handler from the image and cast it as an object, and return.

Object map = file2DataHandlerObject (APPLPATH+"/mapimage.jpeg");
public Object file2DataHandlerObject(String filePath) {
 try {
 DataHandler dhSource = new DataHandler(new
 FileDataSource(filePath));
 return (Object) dhSource;
 } catch (Exception ex) {
 ex.printStackTrace();
 return null;
 }

2. Client side:
Client has client stubs for WMS services created earlier from WMS’s Web Service Description File (WSDL). It uses its client stubs and get the map as an attachment to SOAP message. It first extracts the attachment and then data handler from the attachment. It created map images as byte array through data handler.

 java.lang.Object value = null;
 value = binding.getMap(request);

 byte[] bs = null;
 Object[] attachments = binding.getAttachments();

 for (int i = 0; i < attachments.length; i++) {
 AttachmentPart att = (AttachmentPart) attachments[i];
 DataHandler dh = att.getActivationDataHandler();
 BufferedInputStream bis = new BufferedInputStream(dh.getInputStream());

 bs = new byte[bis.available()];
 bis.read(bs, 0, bs.length);

 bis.close();

3.3.2.3. [bookmark: _Ref188684269][bookmark: _Toc189816027]GetFeatureInfo Services
The GetFeatureInfo operation is designed to provide clients of a WMS with more information about features in the pictures of maps that were returned by previous Map requests. GetFeatureInfo is used when a user needs further information about any feature data on the map. It’s return type is user readable text or HTML. If WMS provides this operation for the feature layers then it is called queryable WMS. A server may support GetFeatureInfo on some of its layers, but need not support it on all layers. Service interface is invoked with an appropriate request instance whose schema file is given in Figure 7.
It is only supported for those layers for which the attribute queryable="1" (true) has been defined or inherited in WMS’s capabilities file.
The GetFeatureInfo works as follows (see also Figure 9):
The user supplies an (x, y) cartesian coordinates and the layers of interest and gets the information back in the form of HTML, GML or ASCII format.
The basic operation provides the ability for a client to specify which pixel is being asked about, which layer(s) should be investigated, and what format the information should be returned in. Because the WMS protocol is stateless, the GetFeatureInfo request indicates to the WMS what map the user is viewing by including most of the original GetMap request parameters (all but VERSION and REQUEST). From the spatial context information (BBOX, CRS, WIDTH, HEIGHT) in that GetMap request, along with the x, y position the user chose, the WMS can (possibly) return additional information about that position. The actual semantics of how a WMS decides what to return more information about, or what exactly to return, are left up to the WMS provider.
Figure 9 illustrates the successive process steps done by the WMS to respond to getFeatureInfo requests. The return format is a parameter user can define in his request. It is called “info_format”. GetFeatureInfo service interface supports two more info_formats as well. These are plain text and GML formats. Since HTML creation requires a generic XSL [xslurl] file and XSLT transformation, we have chosen this type of requests to demonstrate getFeatureInfo request processing as explained in Figure 9.
The Web Service address of the WFS is found by looking into capabilities file or searched at catalog/registry service shown as IS (Information Server at figure). All the processes explained in Section 3.3.2.2 for the getMap until getting requested features from WFS are same for the getFeatureInfo processing. Again all the remote invocations are done by using SOAP messages.
After getting the feature collections data from the WFS, instead of producing a map WMS extracts all the non-geometry elements and attributes in the returned GML file and create another text or HTML file based on request parameter. For the getMap request WMS deals with geometry elements of the returned GML file but for the getFeatureInfo WMS deals with non-geometry elements. From the list of non-geospatial elements, WMS creates a new XML file to be able to transform non-geometry elements into HTML. This XML file is simply another form of GML which includes just non-geometry elements, properties and attributes. After creating new XML file from the non-geo elements, WMS creates HTML file from newly created XML file by using generic XSL file and XSLT transformation machine. For the detailed documentation about the getFeatureInfo, please see our project page [crisisgrid]
[image:]
[bookmark: _Ref188884182][bookmark: _Toc189659079]Figure 9: GetFeatureInfo operation steps.

	

	[image:]

[bookmark: _Ref188605084][bookmark: _Toc189659080]Figure 10: A snapshot of response to getFeatureInfo. It is actually an attribute querying of earthquake seismic data layer shown on the map image.
[image: getfeatureinf]

[bookmark: _Ref106464120][bookmark: _Toc189659081]Figure 11: GetFeatureInfo Request Schema. See Appendix-A for an instance of this request schema.

3.3.3. [bookmark: _Ref189209081][bookmark: _Ref189209121][bookmark: _Ref189209189][bookmark: _Toc189816028]Browser/event-based Interactive Map Client Tools
The proposed GIS system is suggested to be used by browser/event-based interactive mapping tools. The tools provide structured multi-layered map images display (Error! Reference source not found.). Structured data display is composed of multiple layers and each layer is defined in the corresponding WMS service’s capabilities file. As you remember, capabilities files are metadata defining service + data together. In case of WFS, the data is defined as feature collections (see Appendix D), and in cased of WMS, the data is defined as layers (see Appendix C). Client tools enable users and decision makers to interact with the system through interactive event-based maps seamlessly and easily by hiding the system complexity. It also enables querying of the vector data in the multi-layered structured map images shown on the screen (see Figure 10). It does so by using WMS’s standard getFeatureInfo service interface.
Several capabilities are implemented for the user to access and display geospatial data. The client tools enable the user to zoom in, zoom out, measure distance between two points on the map for different coordinate reference systems, to get further information by making getFeatureInfo requests for the attributes of the features on the map, and drag and drop the map to display different bounding boxes. Users can also request maps for the area of interest by selecting predefined options clicking the drop-down list. The user interface also allows the user to change the map sizes from the drop-down lists or enable them to give specific dimensions. Zoom-in and zoom-out features let the user change the bounding box values to display the map in more or less details. Each time user change the bounding box values, user interface shows the updated bounding box values at the each side of the map.
The proposed client tools are generic and capable of interacting with any other WMS and WFS developed in Open Geographic Standards. GIS portal basically serves for the GIS end-users and decision makers. It has several capabilities for the decision makers to access and interpret geo-data seamlessly. GIS portal is built up with the various technologies; among these are Java, Java Servlet and Java Server Pages (JSP), Java-Script, CSS and Web Services.
Figure 12 shows generic interactive map tools and user interface enabling interactive data access/query and display over integrated data views which is called map images. The sample map in the figure shows California earthquake seiemic data superimposed over Google Map.
Figure 13 is application based decision making tools extended based on generic map tools. System is developed as modular and can be updated according to the application requirements in terms of parameters and output results. Sample project in the figure super impose earthquake forecasting outputs of Pattern Informatics project over the Google maps.
Map layers (their orders, numbers, attributes etc.) are manipulated through the parts A, C and D (Figure 13). Application output is manipulated through part B/E and utilizes the parameters given in part A. Part C is the output screen and enables interactive manipulation of the layers and interactive query of the feature data on the map. Part E is used for animating successive static map images to create map movies from time series feature data. Part A enables users to set bbox, map size, specific region to zoom-in, and the layers to be overlaid and project to work with. Part D consists of map tools enabling zoom-in, zoom-out, drag and drop, and data query of the map displayed in Part C. Part B enables users to enter parameters specific to Geo-Science application. For example for the Pattern Informatics application, users should enter the parameters “bin-size”, “time-steps”. Users can easily move to another project that they want to work by using drop-down list at the top-left corner.
Here are the listings of the major generic action listeners for the user-map interactions (see Figure 12).

<event_controller>
<event name="init" class="Path.InitListener" next="map.jsp"/>
<event name="REFRESH" class=" Path.InitListener " next="map.jsp"/>
<event name="ZOOMIN" class=" Path.InitListener " next="map.jsp"/>
<event name="ZOOMOUT" class="Path.InitListener" next="map.jsp"/>
<event name="RECENTER" class="Path.InitListener“next="map.jsp"/>
<event name="RESET" class=" Path.InitListener " next="map.jsp"/>
<event name="PAN" class=" Path.InitListener " next="map.jsp"/>
<event name="INFO" class=" Path.InitListener " next="map.jsp"/>
</event_controller>

Event “init” sets all to initial opening settings. Events "REFRESH", "ZOOMIN", "ZOOMOUT", "RECENTER", "RESET" and "PAN" causes getMap request to WMS to get layers in map images. Event “INFO” causes getFeatureInfo request to get further information about feature data displayed on map images.
 (
INTERACTIVE SCREEN
-ACTION LISTENERS
-
EVENTS
)[image: C:\Documents and Settings\Ahmet Sayar\Desktop\FAQ_Blog\gui.bmp]
[bookmark: _Ref189211449][bookmark: _Toc189659082]Figure 12: Event-based interactive map tools capable of interacting with any map server developed in open geographic standards.
B and E parts in Figure 13 are application based extensions to the standard map tools given in Figure 12. The figure illustrates Pattern Informatics application. Color bar and colored squares plotted over the map shows earthquake probability values sent out by PI application. (
Application-based extensions (Pattern Informatics extensions)
)
[bookmark: _Ref189212394][bookmark: _Toc189659083]Figure 13: Standard interactive map tools extended with capabilities of integrating map images with outputs of geo-science grid applications.

There are many related works in developing such a framework for interacting GIS systems and enabling end-users to use system seamlessly. Our contribution is developing a framework capable of interacting with Service-oriented GIS systems with AJAX [AjaxSerrano] technologies. The following chapter gives more details about this intermediary framework to synchronize Web Service and AJAX transport protocols (SOAP over HTTP vs. XMLHttpRequest) and corresponding request/response formats.
3.3.3.1. [bookmark: _Toc189816029]Enhancing the system interaction with AJAX approach - Web Service & AJAX synchronization middleware
This section explains the AJAX integration framework which is designed for browser based web applications using Web Services. Proposed framework enables users to utilize AJAX and Web Services advantages together. Our major focus on developing such a framework was GIS domain, but it can be applied to any browser/event-based interactive user interfaces communicating with Web Service components remotely.
As the Web platform continues to mature, we see an increasing number of amazing technologies that take the GIS visualization applications to new levels of power and usability. By integrating new powerful technologies into GIS systems, we get higher performance results with additional functionalities. The most recent development capturing the attention of the browser based application developers is AJAX (Asynchronous JavaScript and XML). In this chapter we present a generic and performance efficient framework for integrating AJAX models into the browser based GIS visualization Web Services systems.
AJAX is an important web development model for the browser based web applications. It uses several technologies which come together and incorporate to create a powerful new model. Technologies forming AJAX model such as XML JavaScript, HTTP and XHTML are widely-used and well-known. High performance Google mapping uses this new powerful browser based application model. Web Services are self-contained, self-describing, and modular. Unlike earlier, more tightly coupled distributed object approaches such as Common Objects Request Brokers (CORBA), Web Service systems support an XML message-centric approach, allowing us to build loosely coupled, highly distributed systems that span organizations. Web Services also generalize many of the desirable characteristics of GIS systems, such as standards for providing general purpose specifications for publishing, locating, and invoking services across the Web. Web Services also use widely-used and well-known technologies such as XML and HTTP as AJAX does. Since AJAX and Web Services are XML based structures they are able to leverage each other’s strength.
There are some GIS projects adapting only Web Services or only AJAX approaches into their GIS systems but not both. That is because of the idea that they are totally different technologies using different communication protocol and it is impossible to use them in the same framework. To give examples, ESRI, Cubewerx, Demis and Intergraph are adapting Web Servcie technologies and, Googe Maps and KA-Map [Mitchell] are adapting AJAX to their GIS systems.
ECMAScript [Ecma1, Ecma2] for XML E4X is the only related work involving AJAX and Web Services together. E4X is a simple extension to JavaScript that makes XML scripting very simple. It is actually the official name for JavaScript. The European Computer Manufacturers Association (ECMA) is the standards body where JavaScript is standardized E4X uses all other incorporated AJAX technologies without extension.
Via the E4X, you don’t have to use XML APIs such as DOM or SAX; XML documents become one of the native types that JavaScript understands. You can update XML documents from the JavaScript very easily. These properties of E4X enable creating calls to Web Services from the browser, but the only browser that supports E4X so far is the developer release of Mozilla 1.8. E4X helps to interact with Web Services but again it is just an extended version of JavaScript. Some issues regarding how to put request in SOAP messages and how to manipulate returned SOAP messages are still complicated. If you use E4X for a web applications based on AJAX model, you cannot use the application on every browser. This is another drawback of the system.
In our approach, you don’t have to extend any technology involved in the AJAX model. We use all the technologies in AJAX with their original forms. This gives the developers and users the ability to integrate and customize their applications easily.
We first present the intermediary component to synchronize AJAX and Web Service protocols in terms of request and responses. Later, we give a sample scenario.
3.3.3.1.1. [bookmark: _Toc189816030]Architecture: Intermediary Synchronization Framework.
AJAX uses HTTP GET/POST requests (through JavaScript’s XMLHttpRequest) for the message transfers (see (A) in Figure 14). Web Services use Simple Object Access Protocol (SOAP) as a communications protocol (see (B) in Figure 14) In order to be able to integrate these two different message protocols, we must convert the message formats into a common format or make them interoperable. Since there is no ready to use common protocol to handle messages communications between AJAX and Web Services, we implemented a simple message conversion technique (see (C) in Figure 14). This essentially works by having the XMLHttpRequest communicate with a Servlet, which in turn acts as a client to a remote Web service. This allows us to easily convert between SOAP invocations and HTTP POSTS. It also has the benefit of avoiding JavaScript sandbox limitations: normally the XMLHttpRequest object in the browser can only interact with its originating Web server.
[image:]

 (
Figure
14
:
(A) Pure AJAX Approach, (B) Web Services Approach, and (C) Hybrid (AJAX + Web Services) Approach
.
)

The client browser makes a request to the server broker (via a JSP page), which in turn makes a request to the Web Service by using previously prepared Web Service client stubs. The response from the Web Service is then transformed by the service broker, and presented to the client browser. Below we will go in more detail to explain all these steps.
In more detail:
Client first creates an XMLHttpRequest object to make a remote scripting call.
 - var http = new XMLHttpRequest();
Then, define the end-point as an URL to make a call. The URL address should be local. This an intermediary proxy service to make appropriate requests for the GIS Web Service.
 - var url = “proxy.jsp”;
Then, make a call to the local proxy service end point defined above by the user given parameters.
 - http.open (“GET”, url + ”?bbox = “ + bbox +…[other parameter-value pairs]……)
proxy.jsp is an intermediary server page to capture request (HttpServletRequest) and response (HttpServletResponse) objects. Proxy JSP includes just one line of codes to forward the HttpServletRequest and HttpServletResponse parameters coming from the first page via XMLHttpRequest protocol.
- jb.doTask(request,response)
“request” and “response” parameters come from the user interface page. This first page includes some JavaScript, XHTML, CSS and JSP to capture the user given parameters and to display the returned result on the screen.
“jb” is a Java class object which handles creating appropriate requests by using its request-response handlers and Web Service client stubs. Request-response handler also handles receiving and parsing response object coming from GIS Web Services interacted with.
After having received response from the GIS Web Service, “jb” object sends the returned result to XMLHttpRequest object in the first page.
 - PrintWriter pw = response.getWriter();
 - pw.write(response);
XMLHttpRequest object at the user interface page captures this value by making a call as below
 - http.onreadystatechange = handleHttpResponse
This generic integration architecture can be applied to any kind of Web services. Since return types of each Web services are different and they provide different service API, you need to handle application specific implementations and requirements in browser based client side.
In the following section, we prove the applicability and efficiency of the proposed integration framework by giving a usage scenario.
3.3.3.1.2. [bookmark: _Toc189816031]A Case scenario: Overlays of Google Maps and OGC WMS
Integration is basically coupling AJAX actions with the Web Services invocations, and synchronizing the actions and returned objects from the point of end users. The usage scenarios explained below use the generic integration architecture illustrated in Figure 14-C. In the usage scenarios there will be minor difference in the form of extensions. Differences come from the service specific requests created according to the service provider’s service API (published as WSDL), or handling returned data to display on the screen. But these are all implementation differences.
[image:]
[bookmark: _Toc189659085]Figure 15: Integration of Google Maps with OGC WMS by using architecture defined in Figure 14.

In addition to all of the approach illustrated here, we utilize from the Goole maps in OGC compatible GIS through developing intermediary Google Mapping Server (see Chapter 3.3.3 for sample GUIs). Web Map Service returns maps in the form of images such as JPEG, GIF and PNG. Web Map Service clients get the maps in image formats and overlays them. Ordinary Web Map Service clients cannot use maps coming from Google Map Servers. To solve this problem and use high performance Google maps in our Web Map Service applications and overlay different map layers coming from the common Web Map Service with the Google Maps, we created an intermediary Google Mapping Server. It takes Web Map Service compatible requests from the Web Map Service clients, converts these requests into a new form that real Google Map Server can understand. In contrast to Open Geospatial Consortium compatible getMap requests, Google Map server uses requests with different parameters such as zoom level, tile numbers and tile width.
Evaluation of the approach: If the GIS visualization client uses Web Services from the desktop browser application and Web Services are capable of responding fast enough, then using the AJAX model for calling Web Services gives high performance increases. Since both AJAX and Web Services use XML based protocols for the request and responses, they leverage their advantages. This framework enables application developers to easily integrate AJAX based browser applications into Web Services.
AJAX and Web Services are XML based structures and this property allows developers to utilize their advantages together. The proposed system enables AJAX based high performance web application approaches to utilize web services. If Web Service based applications have web based user interface for end users, then, using this framework makes displaying much faster. Users do not need to wait whole data to be received to render and display the results. Partial displaying is possible without refreshing the whole page. Instead of making request for whole page, only the interested part will be requested. This also reduces the workload of the network traffic.
In addition to its advantages, the proposed system has a couple of disadvantages. The proposed integration framework introduces some extra work for the browser based web application developers. Extra work mostly comes from the conversion of parameters to be able to make compatible requests to remote Web Services. In order to make valid requests, the proxy server should be deployed locally and client stubs for Web Service invocations should be created before running the application. Compared to pure AJAX based web application, the performance of the application is reduced by the intermediary proxy server during its conversion and message handling jobs, but the gains is much higher than the overhead times coming from the proposed intermediary service.

[bookmark: _Toc189816032]Chapter 4
[bookmark: _Ref189394337][bookmark: _Toc189816033]Federated Service-oriented GIS Framework
The framework proposes infrastructure for understanding and managing the production of knowledge from distributed observation, simulation and analysis through integrated data-views in the form of multi-layered map images. Infrastructure is based on common data model, standard GIS Web-Service components (presented in Chapter 3) and a federator. Federator federates GIS services and enables unified data access/query and display over integrated data-views.
By the federation, we mean providing one global view over several data sources and let them processed as one source. There are two general issues here. The first is the data modeling (how to integrate different source schemas); the second is their querying (how to answer to the queries posed on the global schema). Yet, there is no universal tool or method that could be used every time when needed. Nevertheless, there are some partial solutions in many research areas. [You can put here TSIMMIS, NCSA etc. as related works] but they are mostly lower level of data federation not dealing with data integration at view-level.
In this chapter, we mostly focus on federation of standard GIS Web Service components to enable uniform data access/query and analysis over integrated data views in the form of multi-layered map images. Although the framework is fine-grained for GIS domain we present the generalization architecture in terms of principles and requirements at the end of the chapter (Chapter 4.4).
4. [bookmark: _Toc189661314][bookmark: _Toc189661803][bookmark: _Toc189716536][bookmark: _Toc189718626][bookmark: _Toc189814289][bookmark: _Toc189814663][bookmark: _Toc189816034]
4.1. [bookmark: _Toc189816035]Federation Framework
The proposed federation framework is built over the Service-oriented GIS framework and its components presented in Chapter 3. Federation is based on federating service-oriented standard GIS Web Services capabilities metadata and their standard service interfaces for accessing, querying, and rendering data. Creating such a federated design has some advantages in data sharing, reliability, and system growth (interoperability and extensibility).
We don’t define common data models or/and online standard service components in GIS. These are already defined by Open Geographic Standards (OGC). We developed the components according to the open standard specifications for online services and data model, and applied them to our proposed information system framework by defining required extensions at implementation and application levels in compliance with WS-I+ Web Service standards (Chapter 3).
This chapter presents a federation framework based on common data models (GML), standard Web Service components (see Chapter 3) federator and event-based interactive decision making tools over integrated data views in the form of multi-layered map images. The general architecture is illustrated in Figure 17.

[bookmark: _Ref189809545][bookmark: _Toc189659087]Figure 17: Federated GIS

Federation is based on defining an application based hierarchical abstract data as multi-layered map images. The abstract data is defined by federator in its capability metadata. The hierarchical data is created by composition of layers (from WMS) and feature data (from WFS). The layer composition is achieved by capability metadata federation by using components’ standard getCapability service interfaces.
The framework enables users/decision-makers access the system as though all the data and functions come from one site. The data distribution and connection paths stay hidden and formulated as hierarchical data defined in federator’s capability metadata. The users access the system through integrated data-views (maps) with the event-based interactive mapping display tools (Chapter 3.3.3). Tools create abstract queries from the users’ actions through action listeners and communicate with the system through federator.
As it is shown in Figure 17, the federator is actually a WMS with extended capabilities and functionalities but still provides standard WMS service interface and functionalities. These are getCapabilities, getMap and getFeatureInfo standard Web Services explained earlier in Chapter 3.3.2.
Why Capability metadata:
Capability is a metadata about the data and services together (see APPENDICES B and C). It includes information about the data and corresponding operations with the attribute-based constraints and acceptable request/response formats.
It supplements the Web Service Description Language (WSDL) [wsdl], which specifies key low-level message formats but do not define an information or data architecture. These are left to domain specific capabilities metadata and data description language (GML) [gml]. Capabilities also provide machine and human readable information that enables integration and federation of data/information. It also aids the development of interactive, re-usable client tools for data access/query and display.
As we mentioned before we don’t define their structure and schema, we just use the open standard specifications definitions and present the required extensions for the federation through hierarchical data creation by service chaining.
4.2. [bookmark: _Toc189816036]Data-Flow and Hierarchical Data Definition
The geo-data is accessed via the chain of WFS and WMS services. Upper levels are mostly occupied by WMSs (render/display services) and lower levels are occupied by WFSs (feature data level- annotation). At the bottom level mediators are located. WFSs play the role of wrappers in the mediation system. Our integration system uses GML as global data model to represent and manipulate geographic data in vector format. GML is the geographic XML based language.
At the top level of this hierarchy there is application name actually a map name composed of multi-layers. The layers are listed under that tag (application) with standard descriptions and tags according to WMS’s capability schema. These details are given in Chapter 4.2 and 4.3.

Here we present our proposed extensions to the standard GIS components’ capabilities metadata for service federation and component chaining.
 [Put here your favorite figure from presentation slides]
Aggregator WMS provides layer sets 1 and 2 with its “getMap” Web Service (see sample request at Appendix A). Layer 1 is returned in image MIME type such as image/jpeg as DataHandler object attached to SOAP message. Layers belonging to layer set 1 are created from coverage data. Since we have not implemented coverage portrayal Service (CPS) we get them from other WMS (such as NASA WMS) but we can still add this data as if we provide by using OGC’s cascaded WMS properties, as mentioned earlier. Layer 2 is overlaid on layer 1. Layer 2 is created from vector data such as lines and points or any combinations of them. Layer 2 is provided by WFS. WFS keeps these data in the relational Databases.WMS sends a “getCapabilities” request (See Appendix A) to WFS to learn which feature types WFS can service and what operations are supported on each feature type. Depending on the returned capabilities files of the WFSs to which WMS connected, WMS updates its capability file with returned capability files.
Da (
Mediators
Internal Schema
Local Data Sources
GML
 and
 binary map images

Interoperable
GIS
services
WMS and WFS
View
-
1
3
View
-
n
View
-
2
- GIS
Web Services
Common data formats:
- GML
 (vector)
 and
binary images (raster)
Layer
-
 structured display
-images
Type-1: for
non
-Grid but OGC services
Type-2: for
non
-Grid
non
-OGC services
Any data any service
2
1
Hierarchical data
Multi-layered map images
Event-based unified data access/query display without a need for actual data integration
)ta life-cycle in the federation and our focus area:

 (
Figure
16
: data life cycle in the federation framework.
)

[say that green region will be axplained in the following generalization section. Here we sjip it and our research focus is just federation of standard GIS Grid components. We postpone the level-3 discussion to the following chapter]
In Figure 16, top part consists of layer level data integration and layer-overlaying. The middle part consists of GIS Web Services providing common data models with interoperable service interfaces. There are two common data services and two common data models respectively. As we mentioned in Chapter 3 there are two types of data. One is feature-vector data served by WFS and other is binary map images served by WMS. The bottom level consists of heterogeneous and service interfaces. At this level there are different kinds of storages (database and file systems).
There are several advantages in adopting the approach shown in Figure 16. First of all, the integration process does not affect the individual data sources functionality. These nodes can continue working independently to satisfy the requests of their local users. Local administration maintains the control over their systems and yet provides access to their data by the global users at the federation level. Here, we not only handle the data heterogeneity but also any operating system, hardware and, service and communication platform heterogeneities by developing mediators as WFS-based Web Service
Before going into more details I would like to explain our focus in this picture. We don’t deal with the bottom level data and service heterogeneity in this chapter. We take them as granted through proposed WFS-based mediation and WMS Web Services (as proposed in Chapter xx) providing standard service interfaces in expected common data models, and already explained their architectures in Chapter 3.3.1and 3.3.2.

4.3. [bookmark: _Ref189813630][bookmark: _Toc189816037]Chaining of the Components through capability metadata exchange

[bookmark: _Toc189659088]Figure 18: A simple scenario of the proposed federation.

Service chaining is a mechanism for assembling of services i.e., the process of combining or pipelining results from several complementary services to create customized data or knowledge. The service composition techniques provide mechanisms to combine the services to allow composite services to be defined and executed. It allows repetitive tasks to be automated and specialized services to be defined to target specific application areas in situation understanding and decision making. The service chaining-composition techniques can be grouped into three. These are client-coordinated service chaining, static chaining using aggregate services and workflow-manager service chaining [Alameh03]. In our proposed framework we use static-chaining by using federator service.
Regarding the remote service discovery and binding for the chaining, there are two general approaches. These approaches can be grouped as dynamic approaches and static approaches. Dynamic approaches are based on catalog-registry services (such as UDDI) and static approaches are based on pre-defined path of chained services described in semi-structured XML files (suchs as OGC’s capability metadata definitions for WMS and WFS).
In order to find the services to chain we use static chaining at the beginning by defining their address manually before run-time. After system start running, due to the inter-service communication capabilities of the system, chaining becomes partially dynamic. WMS and WFS exchange their capabilities and keep their own local capabilities file up-to-date. We use static service chaining approaches by using the capability metadata defined by OGC standard specifications.
Workflow managed service chaining is a balance between opaque static aggregate-service chaining and transparent client-coordinated chaining. It replaces aggregate services with smarter mediating services that act as gateways. These services offer access to data and processes, but they do not necessarily serve that data themselves. They retrieve it from other services. This type of service chaining is used for chaining Geo-Science Grid applications. This is out of scope for this paper. We use HPSearch as Job Manager and it provides scripting based workflow managing. Job manager shown in Error! Reference source not found. is actually a workflow-managed scripting based chaining and orchestration service.
This chapter focuses on GIS Web Service chaining. As we mentioned before, we use static-chaining technique using Aggregator WMS orchestrating data Grid shown as triangle in Error! Reference source not found.. We focus here pre-defined and capability based linking-chaining of the services without using UDDI [Belwood] registry catalog services. Aggregate services, which third-party providers usually supply, bundle static (predefined) chains of services and present them to the client as one. The chaining becomes totally opaque to the client, which sees only a single aggregate service that coordinates the individual services in the chain.
Why service chaining is needed: We can summarize the necessities and advantages of the service chaining in Information Grids as: (1) load balancing, (2) fault tolerant which is mostly related to the first one, (3) creating more specific and complex data/information, (4) filtering and re-naming of data/information and (5) enabling integration of mediator-adaptor services into the system. These are all needs to be explained in separate chapters but, in this chapter we focus on only the chaining techniques, i.e. how to do the OGC Web Services’ chaining.
4.3.1. [bookmark: _Toc189816038]OGC’S Considerations on Service chaining
OGC’s WMS and WFS services are inherently capable of being cascaded and chained in order to create more complex data and information according to their specifications. In order to standardize these issues OGC introduced Web Map Context (WMC) [Jerome05] standard specifications. Before that, OGC was recommending application developers to extend their services’ capabilities for the cascading. WMC is actually a companion specification to WMS, but for WFS there is not any definitions and standardization for the cascading. Therefore, for WFS to WFS cascading, developers still need to add cascading specific extension to their WFSs’ capabilities files.
WMC is needed when a map comprising layers from several distinct servers being built up in one viewer client, the creation of a platform-independent description of that map, the retrieval of that description by an entirely different Client, and the display of the map in the second Client. The present Context specification states how a specific grouping of one or more maps from one or more map servers can be described in a portable, platform-independent format for storage in a repository or for transmission between clients. This description is known as a "Web Map Context Document," or simply a "Context." Presently, context documents are primarily designed for WMS bindings. However, extensibility is envisioned for binding to other services [Jerome05].
A Context document is structured using XML and its standard schema is defined in the WMC specifications. A Context document includes information about the server(s) providing layer(s) in the overall map, the bounding box and map projection shared by all the maps, sufficient operational metadata for client software to reproduce the map, and additional metadata used to annotate or describe the maps and their provenance for the benefit of end-users.
There are several possible uses for context documents besides providing chaining and binding of services. The context document can provide default startup views for particular classes of user. For example specific applications require specific list of layers. The context document can store not only the current settings but also additional information about each layer (e.g., available styles, formats, SRS, etc.) to avoid having to query the map server again once the user has selected a layer. Finally, the Context document could be saved from one client session and transferred to a different client application to start up with the same context. In this document, we just focus on its binding functionalities.
As you see from the OGC definitions, currently they do not have mature system dn standards for chaining the services. They propose Web Map Context standards but in the future they plan to extend the capabity file and embed these definitions and elements of Context into WMS capability file. So, currently there are two possible ways one is extending the WMS capability file other is using Web Map Context’s standards defining chaining in a context document.
Cascading concept in OGC: The term “cascading WMS” is widely used but not standardized clearly by OGC. If a WMS provides a layer whose attribute “cascade” has a value different from 0 then that WMS is called cascading WMS. A cascading WMS is a WMS which can read other WMS and display layers from them.
A Layer is said to have been “cascaded” if it was obtained from an originating server and then included in the service metadata of a different server. The second server may simply offer an additional access point for the Layer, or may add value by offering additional output formats or re-projection to other coordinate reference systems. In the same way a feature data is said to be cascaded if it was obtained from an originating server and then included in the service metadata of a different server. Since WFS to WFS cascading is not standardized yet we do that by extending WFS capabilities as it is shown in Chapter Error! Reference source not found..
If a WMS cascades the content of another WMS, then it shall increment the value of the cascaded attribute for the affected layers by 1. If that attribute is missing from the originating server’s service metadata, then the Cascading WMS shall insert the attribute and set it to 1 [5, 6].
4.3.2. [bookmark: _Toc189816039]Proposed Chaining techniques
Chains are composed of sets of WMSs and WFSs supporting getCapability Web Service interface to exchange their capability document. Both types of services have their own standard capability schema (See APPENDIX 13 and 14). Chaining of the services is done basically through capability based inter-service communication. Communication is done between the chained services for the cascaded data and other interface level upgrades. A WMS can cascade multiple WMSs and WFSs. Contrary, a WFS can cascade only WFSs.
A snapshot of the chaining scenario is given in Figure 19. In the figure, possible chains are A, A+B, A+C, A+B+C. Chains B and C are similar to A with different combinations of WMS, WFS and adapter/mediator services. The chains are based on abstraction of data as layer and definition in the capability metadata. As we mentioned before our chaining approach is a static approach and based on aggregate service (AWMS in Figure 19).
The layer-data abstractions are organized into applications. The application in this respect means the set of layer-data which are the chains of WMSs and WFSs. Applications are defined in Aggregator WMS’s capabilities file. For example, see the layer list at the browser in Figure 19 for the Pattern Informatics application. Each one of these layers represents a different chain and defined in AWMS capabilities file. For the current demo in the below figure, user selects layers “NASA Satellite” and “World Seismic”.
Here is the rough definition of applications and layers as chains in Aggregator WMS. We give more details in the following sub-sections.
<!—This is shown as project names list at the top as shown in Figure above as dropdown list “Select Layers for “. Please see the below figure browser -->
<layer Type=”Applications” Name= “Pattern Informatics”>
	<!—This is shown as a layer name listed below selected project name -->
	<SubLayer type=”Chain” name=”Nasa Satellite”>
		<!-- Some other tags –see WMS schema definition file -->
	<Sub Layer type=”Chain” name=”Google Map”>
		<!-- Some other tags –see WMS schema definition file -->
	</SubLayer>
……..
	….
	<Sub Layer type=”Chain” name=”World Seismic”>
		<!-- Some other tags –see WMS schema definition file -->
	</SubLayer>
</Layer>
 (
WMS Client
AWMS
WMS
WFS
WFS
File Syst.
DB
 Adapter/Mediator
WFS Interface
File Syst.
A
B
C
Browser – static chains
1
2
3
4
5
6
7
8
)
 (
Figure
19
: Illustration of chaining of OGC Web Services
)

Regarding querying through the chain, each service (WMS or WFS) has standard service interfaces and a capability file and, request and responses are in OGC defined redefine formats. Therefore, query handling is done with the help of capabilities documents and query re-writing techniques. For more information about the querying see the Chapter Error! Reference source not found..
There are two types of services in our proposed GIS systems composing our framework, WMS and WFS. Therefore, in accordance with the data flow, all the possible alternative chaining of the services are grouped as:
	- WMS to WMS,
	- WMS to WFS,	
The first two are WMS initiated chaining and, chaining is achieved by using the same technique explained in chapter 4.3.3.1. Whereas, the last one is WFS initiated and its techniques is explained in chapter 4.3.3.2.

4.3.2.1. [bookmark: _Ref189805562][bookmark: _Ref189805792][bookmark: _Toc189816040]Federating WMS into the hierarchical data

There are two possible ways to define binding of services in this category. First one is using context document created according to Web Map Context specifications. Second one is extending WMS capabilities file for the cascaded layers. Here we will not explain the structures of the capabilities metadata and context document. We illustrate these options based on real application scenarios.
Let’s assume end-user selects the layers “Nasa Satellite” and “World Seismic”. “Nasa Satellite” is a good example of WMS to WMS cascading and, “World Seismic” is a good example of WMS to WFS cascading. Furthermore, chaining in the form of cascading and bindings are defined in Aggregator WMS. According to our architecture, Aggregator WMS doesn’t care and even doesn’t know whether the cascaded layers are re-cascaded at the following servers in the chain. It just looks at the cascaded server’s binding information and attributes of the cascaded data.For example, WMS at CGL (Community Grids Labs) cascade satellite data from WMS at NASA JPL (Jet Propulsions Labs). WMS at CGL lab does not case if the layers are re-cascaded at the NASA JPL.
This chapter presents two options to set up cascading from WMS to WMS and/or WFS. First option proposes a solution by using context document. Second option proposes a solution by extending WMS’s capabilities file via adding DataURL element to the cascaded data.

Option-1 Context document:
Context document idea is based on defining the chain in machine readable format. Below is the sample context document defining the chaining of the “Nasa Satellite” and “World Seismic” layers. We just give the definition of the cascading in machine readable format. We do not explain the bottom level implementation details.

<ViewContext version="1.0.0" id="OGCContext" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <General>
 <Window width="500" height="400" />
 <BoundingBox srs="EPSG:4326" minx="-180.00" miny="-90.00" maxx="180.00" maxy="83.62" />
 <Title>Maps for Pattern Informatics Application</Title>
 <Abstract />
 </General>
 ….
 (
WMS to W
F
S cascading
) <LayerList>
 <Layer queryable="1" hidden="0">
 <Extension infoFormat="text/xml" ID="4e4b-83e" editable="0" local="1" />
 <Server service="WFS" version="1.1.0" title="CGL_WFS">
 <OnlineResource xlink:href="http://cgl/wfs/services" />
 </Server>
 <Name>World Seismic</Name>
 <Title>Earthquake Seismic Data</Title>
 <Abstract>Sample WMS to WFS layer cascading</Abstract>
 <DataURL format="text/xml">
 <OnlineResource xlink:href="http://cgl/wfs/services" />
 </DataURL>
 <SRS>EPSG:4326</SRS>
 <FormatList>
 <Format current="1">image/png</Format>
 </FormatList>
 …..
 (
WMS to W
M
S cascading
) </Layer>
 <Layer hidden="0">
 <Extension infoFormat="text/html" ID="1fc-4e4b-83e" editable="0" local="1" />
 <Server service="WMS" version="1.1.1" title="CGL_WMS">
 <OnlineResource xlink:href="http://nasawmsserver/wms/services " />
 </Server>
 <Name>Nasa Satellite</Name>
 <Title>Nasa Satellite Data</Title>
 <Abstract>Sample WMS to WMS layer cascading</Abstract>
 <DataURL format="text/xml">
 <OnlineResource xlink:href="http://nasawmsserver/wms/services" />
 </DataURL>
 <SRS>EPSG:4326</SRS>
 </Layer>
 …..
 </LayerList>
 …
</ViewContext>

The unnecessary details at the above context file are truncated. We just use related elements and tags for the data cascading and service binding.

Option-2 capability extension:
This specific part of WMS 1 capability metadata (for the google map data) shows that Google map is going to be obtained from “href=http:// WebService_Address/” in the form of “image/gif” and in the bounding box defined in “EX_GeographicBoundingBox” sub element.

<Layer cascaded="1">
<Name>NASA Satellite</Name>
<Title> NASA Satellite </Title>
<EX_GeographicBoundingBox>
<westBoundLongitude>-180</westBoundLongitude>
<eastBoundLongitude>180</eastBoundLongitude>
<southBoundLatitude>-90</southBoundLatitude>
<northBoundLatitude>90</northBoundLatitude>
</EX_GeographicBoundingBox>
……
…
<DataURL>
		<Format>image/gif</Format>
		<OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink" xlink:type="simple"
 xlink:href=" http://toro.ucs.indiana.edu/cgi-bin/wms0.cgi?" />
</DataURL>
</Layer>

A Map Server may use DataURL to offer more information about the data underneath a particular layer. While the semantics are not well-defined, as long as the results of an HTTP GET request against the DataURL are properly MIME-typed, viewer clients and cascading Map Servers can make use of this.
4.3.2.2. [bookmark: _Toc189816041]Federating WFS into the hierarchical data
[Write something here.]

4.4. [bookmark: _Ref189740380][bookmark: _Toc189816042]Abstraction of the Framework for the General Domains
Our experiences with GIS have shown that federated, service-oriented, GIS-style information model can be generalized to many application areas such Chemistry and Astronomy. We call this generalized framework Application Specific Information System (ASIS) and give blueprint architecture in terms of principles and requirements.
When we tried to develop GIS like framework proposed in this thesis we need basically two types of standard service definitions in terms of service interfaces and their capability metadata defining service+data providing. Moreover, we need a domain specific common data model schema as in GIS domain called GML. Standard service characteristics should match to WMS and WFS. In other words, one group of service should provide application specific common data model (like GML) and others should provide comprehensible data representation corresponding to or created from the common data model or their combinations.
Here we give a course-grained architecture consists of abstract components and explain their data flow and components interactions. We mostly focus on principles and requirements to generalize GIS-like architecture to any other information system domains.
4.4.1. [bookmark: _Toc189816043]Generalization Framework
Based on our analysis of OGC Open Geographic Standard specifications in GIS domain, we have identified a number of generic system components enabling federated data and information filtering to support distributed access, querying and transformation (see Figure 12). These components are basically Web Map Service and Web Feature services which are filter-like services and provide standard Web Service interfaces. After having such a complete system for GIS, we investigate the possible principles and architectural requirements to the system to make it applicable to all domains such as Astronomy and Chemistry.
We called such generalization architecture as Application Specific Information System (ASIS) and illustrated in Figure 20.

[bookmark: _Ref189489890][bookmark: _Toc189659090]Figure 20: Application Specific Information System (ASIS)

ASIS propose an alternative solution to heterogeneous data integration. Solution enables inter-service communication through well-defined service interfaces, message formats and capabilities metadata. Data and service integration is done through “capability” federation of these services which are implemented in Web Services. In ASIS approach, there are two general group of services (ASFS and ASVS), and each service is described by corresponding generic metadata descriptions that can be queried through Web Service invocations. Going beyond the enablement of service discovery, this approach enables at least three important things. First, services of the same type that provide a subset of the request can be combined into a “super-service” that spans the query space and has the aggregate functionality of its member services. Second, the capability metadata can be used to determine how to combine services into filter chains with interconnected input-output ports. Third (and building on the previous two), capabilities of “super-services” can be broken into smaller, self-contained capabilities that can be associated with specific services. This enables performance gains through load-balancing.
ASIS consists of filter Web Services (ASFS and ASVS) having common interfaces and communicating with each-other through capability exchange interface. Being a Web Service enables filter services to publish their interfaces, locate each other and chain together easily. Filters have inter-service capabilities and chainable. If the Filter is capable of communicating and obtaining data from other Filters, and updates (or aggregates) its capability metadata with these data (after capability files exchange), then it can claim that it serves those data. Filter Services are information/data services that enable distributed data /information access, querying and transformation through their predictable input/output interfaces defined by capability document. Filter located in the same community network can update their capability metadata dynamically through “getCapabilities” service interface of the filters. Dynamically updating capabilities of filters enable removal of obsolete data or down filters.
4.4.2. [bookmark: _Toc189816044]Components abstraction – ASFS and ASVS
In ASIS, Filter Services are grouped into two: Application Specific Feature Service (ASFS) and Application Specific Visualization Service (ASVS). ASVS is abstraction of WMS and ASFS is abstraction component of WFS in GIS domain (see Table 1). These standard Web Service components have capability metadata defining the data provided and operations available on the data with domain specific constraints and attributes. The data related constraints and attributes are very closely related to the Application Specific Language (ASL) defining the common data model. ASL corresponds to Geographic Markup Language (GML) in GIS domain. As we mentioned before, ASIS is based on standard Web Service components, common data model and capability metadata (see Table 1).
ASL is a common data model structured in XML with query capability. It is basically an annotated data representation containing content and presentation tags. It is developed and recommended by the authorities in a specific domain, for example Open Geospatial Consortium (OGC) in GIS domain. If there is no available ASL defined as in Chemistry domain (see
Table 2) then ASIS developer must define it by himself. XML based hierarchical data model enables common language and communication across operation system and platforms to exchange and federate information. In order to make the proposed architecture feasible, all the data should be converted to ASL through an adapter deployed database end Filter Service such as Web Feature Service (WFS) in GIS domain. Filter Services provide data in consistent formats and define these formats and the ways to access them in their capability documents.

[bookmark: _Ref189538401][bookmark: _Toc189659122]Table 1: From GIS to ASIS components’ mapping

	GIS Component
	
	ASIS Component
	
	
Descriptions

	
	
	
	
	

	GML
	
	ASL
	
	Common Data Model

	WFS
	
	ASFS
	
	Feature data mediation

	WMS
	
	ASVS
	
	Display data mediation

	Capability.xml
	
	Metadata
	
	For ASFS and ASVS

ASVS both visualize information and provide a way of navigating ASFS and their underlying DB. ASVS provide human readable information such as text, graphs (scalable vector (SVG) or portable (PNG)) and images. ASFS are like annotation services providing heterogeneous data in common data model with attribute based query capability. ASFS basically serve data in ASL (domain specific XML-encoded common data model) containing content and representation tags. Heterogeneity in queries and data formats is handled through resource-specific mediators.
Application Specific (AS) Services in ASIS (Figure 20) are user defined services providing application specific data and services. These are like transformations, reasoning and data-mining tools for extraction knowledge from the feature data provided by ASFS in ASL format. To be more specific we can give Pattern Informatics Geo-physics applications as an example. In PI, ASIS needs to overlay multi-layered map images with earthquake forecast values as hot-spot plots in colored boxes showing magnitudes of expected earthquake seismicity. See sample output layer at Figure 24.
System can enable dynamic metadata update via catalog-registry services or P2P metadata exchange. In that case, whenever server is down or data is corrupted or event in any other change, other services will be notified and filter chain will be automatically fixed. We have not implemented that feature even in our completed GIS framework. This will be our future research work.
Investigating correspondents of ASIS components in different domains:
GIS is a mature domain in terms of information system studies and experiences. It has standard bodies defining interoperable online service interfaces and data models such as OGC ISO/TC210, but many others still do not have.
For example in Chemistry, specifications for distributed scientific applications are very immature, moreover, they have just data model specification Chemistry Markup Language (CML) which is not widely accepted and used.
Regarding Astronomy, they have standard body called International Virtual Observatory Allience (IVOA) for data formats and online services. FITS (Flexible Image Transfer), Images and VOTable [Williams02] are the data models. SkyNodes is a Database server with an ADQL (Astronomy Distributed Query Language) based SOAP interface returning VOTable based results. VOPlot and TopCat are the services to visualize the astronomy data in the format of VOTable, FITS and images. VOResource and UCD are the metadata definition and standards for the service descriptions [Yasuda04].
[bookmark: _Ref189538490]
[bookmark: _Toc189659123]Table 2: Components and common data model matching for generalization of GIS to ASIS. Two selected domains are Astronomy and Chemistry.

	 ASIS
Science
Domains
	Common data Model
ASL
	Components
ASFS ASVS
	
Metadata

	 GIS
	GML
	WFS
	WMS
	capability.xml schema

	 Astronomy
	VOTable, FITS
	SkyNode
	VOPlot
TopCat
	VOResource

	 Chemistry
	CML
	None
	NO standard
JChemPaint
	None

4.4.3. [bookmark: _Toc189816045]Standard Service Interfaces and Mediators
· 1, 2, 3 and 4 in Figure 20
The standard Service interfaces can be grouped into three. One is for capability metadata exchange; one is for query of data itself and one is for getting further information about the data attributes.
As mentioned before, capability helps client make valid requests for its successive queries. Capability basically provides information about the data sets and operations available on them with communication protocols, return types, attribute based constraints etc. Each domain has different set of attributes for the data and it is defined in ASL common data model. For example in GIS domain sample attributes might be bounding box values (defining a range query for data sets falling in a rectangular region) and coordinate reference system.
Standard requests/query instances for the standard service interfaces are created according to standard agreed-on request schemas. For the Web Map Service in GIS domain see Figure 5, Figure 7 and Figure 11 as samples of standard request schemas. Request instances contain some format and attribute constraints related to the ASL common data model. For example in GIS domain, getMap request define map images’ return format (JPEG, PNG, SVG etc), height, width, bounding box values etc. Format, height and width are related to display, but bounding box values are related to the attributes of the data defined in its ASL representation provided by ASFS (or WFS in GIS). In that specific example of getMap request, ASVF both visualize information through getMap service interface and provide a way of navigating ASFS and their underlying DB. ASVS make successive queries (with user-defined bounding box values in getMap query) to the related ASVSs to get the ASL data and render it to create final display for its clients.
In ASIS, the task of mediators is to translate requests to the standard service interfaces to those of the information/data sources’, and transform the results provided by the information source back to the ASIS’s standard formats. In ASFS case it is ASL and in ASVS case it is any kind of display format such as images.
Acting as a proxy of information source, the mediators communicate with an information source in its native language and API, and communicate with the ASIS in a commonly agreed language (ASL) and Web Service API (such as getCapabilities, GetFeature and DescribeFeatureType in GIS). In this way, “wrapping” each information/data source into the translation software makes the particular sources manageable.
The mediators-wrappers enable data sources integrated to the system conform to the global data model (AS), but enable the data sources to maintain their internal structure and, at the end, this whole mediator system provides a large degree of autonomy. Instead of actual physical data federation, system makes distributed querying and response composition on the fly.

[bookmark: _Toc189816046]Chapter 5
[bookmark: _Ref189393109][bookmark: _Toc189816047]Applications of the Proposed System
Our proposed service-oriented federated GIS framework architecture and its components WMS Web Services, browser/event-based interactive decision making tools been used in several GIS projects. This chapter discusses three of them. One is Los Alamos National Laboratory (LANL) project (Chapter 5) and other two are Solid Earth Virtual Observatory Grid (SERVOGrid) projects [Servo, Cce] (Chapter 5.2 and Chapter 5.3).

5. [bookmark: _Toc189661329][bookmark: _Toc189661818][bookmark: _Toc189716551][bookmark: _Toc189718641][bookmark: _Toc189814304][bookmark: _Toc189814678][bookmark: _Toc189816048][bookmark: _Ref189194999][bookmark: _Ref189204182]
5.1. [bookmark: _Toc189816049]Los Alamos National Laboratory, NISAC SOA Architecture
The National Infrastructure Simulation and Analysis Center (NISAC) at Los Alamos National Laboratory (LANL) develop advanced modeling and simulation tools for analysis of the critical infrastructure. These tools allow authorities to understand interdependencies, vulnerabilities, and complexities of the infrastructure and help develop policies, investment plans, education and training etc for crisis situations [Meyer03].
The Interdependent Energy Infrastructure Simulation System (IEISS) [Bush03], embodied as analysis software tools developed at Los Alamos National Laboratory with the collaboration of Argonne National Laboratory (ANL), aims at developing a comprehensive simulation study of the nation’s interdependent energy infrastructures to address wide variety of intra-and inter-infrastructure dependency questions. The IEISS analysis tool has physical, logical, or functional entities that have variety of attributes and behaviors that mimic its real-world counterpart.
Traditionally IEISS runs as a desktop application with local input data supplied as XML files collected from various sources, and the result is locally generated. The data are either being kept in databases such as Environmental System Research Institute (ESRI) [Esri] spatial database, or in proprietary XML files. The person who runs the application collects the data to local machine and runs the simulation. The results are usually shared with e-mails. However this approach has several limitations; every time the simulation is to be run the data have to be copied to the local file system, there is no way of running the simulations remotely and getting the results instantly.
We have worked with IEISS people at LANL and applied our GIS Grids ideas to create a Service-oriented Architecture for Los Alamos National Laboratory, National Infrastructure Simulation and Analysis Center. We have integrated several Web Services including Web Map Service and interactive event-based decision making and map-data display tools with IEISS (Interdependent Energy Infrastructure Simulation System) [Bush04]. In our sample SOA demonstration we were able to invoke IEISS to simulate interdependencies between electrical and natural gas infrastructure components using a provided sample data set. The data do not actually correspond to real-world infrastructure maps however it allowed us to demonstrate that the normally desktop based simulation applications could be integrated into a Grid architecture using Web Services approach.
In summary, we have created an architecture consisting of several Web Services which exposes IEISS as a Web Service and shows the analysis results on an interactive online mapping application.
Figure 21 visualizes the components with its application specific extensions. Major data flow in it is as expressed in Figure 2. Figure 22 shows a snapshot of system client interaction GUI and a sample output. Output image shows overlays of feature data layers on a satellite picture provided by the NASA OnEarth WMS Server [OnEarth]. Feature data in that application are electric and natural gas infrastructure components provided by WFS in GML common data model in XML files.
The components of this architecture are as follows:
Feature Database: This is our MySQL spatial database which holds various geospatial features such as California faults and earthquake data, US state borders, global seismic hotspots etc. For the NISAC SOA demonstration we have acquired a sample XML file which contains natural gas and electric power components for the State of Florida. This sample data is inserted into feature database as two distinct feature types. This allows us to make geospatial queries on the feature data and obtain the desired components as GML documents.
[image:]
[bookmark: _Ref189197979][bookmark: _Toc189659091]Figure 21: NISAC SOA Demonstration Architectural Diagram and Data Flow

Web Feature Service: Provides interfaces to access and query the Feature
Database and receive the geospatial features. The features are provided as GML Feature Collections which then can be used as map overlays or for geo-processing etc. We have created lightweight WFS in this project (WFS-L) which receives the new model XML created by IEISS, converts to GML and publishes to NB.
UDDI Registry: This service provides an API for publishing and discovery of geospatial and visualization services. It extends existing Universal Description, Discovery and Integration (UDDI) [Belwood] Information Model to provide GIS domain specific Information Services.
Web Map Client: It provides a user interface that displays the map overlays and allows client interaction with the maps. It also synchronizes and control all the user interactions with the system.
Web Map Server: Relays the client requests to the WFS, and receives the response as GML documents. WMS then converts GML to map images (JPG, TIFF, SVG etc.) and forwards these to the Web Map Client.
NaradaBrokering: This is a standalone publish/subscribe service. Allows providers to publish their data products to topics and forwards this data to the subscribers of a particular topic. We use NaradaBrokering as the messaging substrate of the system. All GML and XML data transport is done through this service.
Context Service [Bunting03]: The Context Service provides a dynamic, fault tolerant metadata hosting environment to enable services to share information within a workflow session to correlate their activities.
Context Respondent Handler: The Context Response Handler is used to communicate with the Context Service. It allows Context Service to inform its consumers about results of the operations.
gml2model Tool: Geospatial data exchange format for the system is GML. According to the user’s selection WFS encodes requested geospatial feature data in GML and publishes to a certain NaradaBrokering topic. A NaradaBrokering Subscriber tool is used to save GML FeatureCollection published by WFS into a file. IEISS requires input data to be in a certain format called XML Model. We wrote a tool called gml2model to convert GML FeatureCollection documents to IEISS XML Model format.
shp2gml Tool: One type of the IEISS outputs is ESRI Shape files which show calculated outage areas etc. We use an open source tool called shp2gml by open source deegree project [deegree] to convert these shape files to GML, which are sent to WMS Client by the lightweight WFS. Data

Flow in this architecture is explained here (Figure 21):
0. WFS and WMS publish their WSDL URL to the UDDI Registry
1. User starts the WMS Client on a web browser; the WMS Client displays the available features. User submits a request to the WMS Server by selecting desired features and an area on the map.
2. WMS Server dynamically discovers available WFS that provide requested features through UDDI Registry and obtains their physical locations (WSDL address).
3. WMS Server forwards user’s request to the WFS.
4. WFS decodes the request, queries the database for the features and receives the response.
5. WFS creates a GML FeatureCollection document from the database response and publishes this document to NaradaBrokering topic ‘/NISAC/WFS’; WMS Server and IEISS receive this GML document.
WMS Server creates a map overlay from the received GML document and sends it to WMS Client which in turn displays it to the user. After receiving the GML document IEISS NB Subscriber invokes gml2model tool; this tool converts GML to XML Model format to be processed by IEISS.
6. User invokes IEISS through WMS Client interface for the obtained geospatial features, and WMS Client starts a workflow session in the Context Service. On receiving invocation message, IEISS updates the shared state data for the workflow session to be “IEISS_IS_IN_PROGRES” on the Context Service. Both IEISS and WMS Client communicate with Context Service via asynchronous function calls by utilizing Context Respond Handler Service. IEISS runs and produces an ESRI Shape file that has the outage areas for the given region.
7. IEISS invokes shp2gml tool to convert produced Shape file to GML format. After the conversion IEISS updates shared session state to be “IEISS_COMPLETED”. As the state changes, the Context Service notifies all interested workflow entities such as WMS Client. To notify WMS-Client, the Context Service publishes the updates to a NB topic (/NISAC/Context://IEISS/SessionStatus) from which the WMS-Client receives notifications.
8. WMS makes a request to the WFS-L for the IEISS output
9. WFS-L publishes the IEISS output as a GML FeatureCollection document to NB topic ‘NISAC/WFS-L’. WMS Server is subscribed to this topic and receives the GML file then converts it to map overlay,
10. WMS Client displays the new model on the map

[image:]
[bookmark: _Ref189200605][bookmark: _Toc189659092]Figure 22: Sample Florida State Electric Power and Natural Gas Components as overlays on a Satellite Picture provided by NASA OnEarth WMS Server. Electric power components are connected with red, natural gas components are connected with blue lines.

Figure shows a sample IEISS output; here the blue region depicts the affected outage area. This image is generated by the Web Map Service. The blue region is the affected area calculated by IEISS because of a possible problem with the energy infrastructure.
5.2. [bookmark: _Ref189158082][bookmark: _Toc189816050]Pattern Informatics (PI) Application
The Pattern Informatics (PI) [Tiampo, Patterninfo] method uses observational data to identify the existence of correlated regions of seismicity. The method does not predict earthquakes, rather forecasts the regions or so-called hotspots where earthquakes are most likely to occur in the relatively near future.
PI algorithms Geo-science applications developed at the University of California-Davis by SERVOGrid team member Prof. John Rundle and his group. PI analyzes earthquake seismic records to forecast regions with high future seismic activity. It also identifies the characteristic patterns associated with the shifting of small earthquakes from one location to another through time prior to the occurrence of large earthquakes.
There have been two major types of approaches for forecasting earthquakes. The first approach is based on empirical observation of precursory changes such as seismic activity, ground motions and others. The second approach is statistical patterns of Seismicity [Holliday05]. The hypothesis behind these approaches is that the earthquakes will occur in regions where typically large earthquakes have occurred in the past. The Pattern Informatics (PI) approach suggests that a more promising approach to this hypothesis is that the rate of the occurrence of small earthquakes in a particular region can be analyzed to assess the probability of much larger earthquakes [Rundle03].
PI tries to discover patterns given past data to predict probability of future events. The process of analysis involves data mining which is made using results obtained from a Web Feature Service. The Web Map Service is responsible for collecting parameters for invoking the PI code. These parameters are then sent to an HPSearch [Hpsearch, Gadgil05] engine which invokes the various services to start the flow.
Additional components of the architecture: In addition to the components mentioned for IEISS in Chapter 5, there is one more component called HPSearch. It is simply a scripting technique for managing distributed workflows. Different Geo-Science applications require different set of parameters for the users to utilize the system. This set of parameters and their order are defined earlier by the Job manager and user portal knows how to invoke it. Users provide required parameters through the project’s user interface. After the application finish the task, job manager send the output link to the user.
Figure 23’s steps are summarized below. This is the basic scenario that we use for integrating Pattern Informatics, Regularized Deterministic Annealing Hidden Markov Model (RDAHMM) [Rabiner, Granat], and other applications.

Flow in this architecture is explained here (Figure 23):
0. WFS and WMS publish their WSDL URLs to the UDDI Registry.
1. User starts the WMS Client on a web browser; the WMS Client displays the available features. User submits a request to the WMS Server by selecting desired features and an area on the map.
2. WMS Server dynamically discovers available WFSs that provide requested features through UDDI and obtains their physical locations (WSDL address).
3. WMS Server forwards user's request to the WFS.
4. WFS decode request, query the database for features and receives the response.
5. WFS creates a GML FeatureCollection document from the database response and publishes this document to a specific NaradaBrokering topic.
6. WMS receives the streaming feature data through NaradaBrokering's agreed upon topic. WMS Server creates a map overlay from the received GML document and sends it to WMS Client which in turn displays it to the user.
7. WMS submits flows for execution by invoking the HPSearch. This request also includes all parameters required for execution of the script. The HPSearch system works in tandem with a context service for communicating with WMS.
8. Initially, the context corresponding to the script execution is marked "Executing".
9. Once submitted, the HPSearch engine invokes and initializes (a) the various services, namely the Data Filter service, that filters incoming data and reformats it to the proper input format as required by the data analysis code, and the Code Runner service that actually runs the analysis program on the mined data. After these services are ready, the HPSearch engine then proceeds to execute (b) the WFS Web Service with the appropriate GML query as input.
10. The WFS then outputs the result of the query onto a predefined topic. This stream of data is filtered as it passes through the Data Filter service and the result is accumulated by the code runner service.
11. The code runner service then executes the analysis code on the data and the resulting output can either be streamed onto a topic, or stored on a publicly accessible Web server. The URL of the output is then written to the context service by HPSearch [Hpsearch1].
12. The WMS constantly polls the context service to see if the execution has finished.
13. The execution completes and the context is updated.
14. The WMS downloads the result file from the web server and displays the output.
[image:]
[bookmark: _Ref189202265][bookmark: _Toc189659093]Figure 23: A general GIS Grid orchestration scenario involves the coordination of GIS services, data filters, and code execution services. These are coordinated by HPSearch
[image:]
[bookmark: _Ref189202875][bookmark: _Toc189659094]Figure 24: WMS Client or so called event-based interactive map tools. Google Map layer is superimposed by the plotting of the PI outputs. It shows probability of earthquake happenings. Red ones show high probabilities.

We used NASA OnEarth Map server as cascaded WMS and get earth satellite image.
In short, we run PI code through the proposed browser/event-based interactive user interface and plot the possibilities of the earthquake happenings in color-coded grid over the previously created seismic and earth map (see Figure 24). Seismic data are kept in WFS and accessed/queried based on the user provided attribute based search criteria.

5.3. [bookmark: _Ref189158095][bookmark: _Toc189816051]Virtual California (VC) Application
VC [Rundle2002] is earthquake simulation model for the California. The simulation takes into account the gradual movement of faults and their interaction with each other. It includes 650 segments representing the major fault systems in California, including the San Andreas Fault responsible for the 1906 San Francisco earthquake [Quaketables].
VC is a program to simulate interactions between vertical strike slip faults using an elastic layer over a viscoelastic half-space. It relies on fault and fault friction models.
At the application/simulation level, VC has 2-phase run. In the first phase user runs the application by giving required parameters and get the result as the best cost. If he likes the cost he runs the second-phase with the returned best cost and some other parameters given through VC GUI to get the forecast values [Donnellan]. The result forecast values are played in a movie streams (see the below sample run with JMF -Java Media Framework- client). Each frame in the stream is actually a three-layer structured static map.
There is no additional component needed besides the components explained before.
Flow in this architecture is explained here (Figure 25):
a. GIS users interact with the system through the user interface provided by WMS Client and/or GIS Portal. GIS user enters the parameters to get specific region of the world as a map from the WMS server.
b. WMS Client makes a request to the WMS on behalf of the user. It submits a request to the WMS Server by selecting desired features and an area on the map. WMS returns a map in the form of an image or an exception in case of an error.
c. In order to create user specific maps, WMS Server forwards user’s request to the WFS to get requested feature data. WFS decodes the request, queries the database for the features and receives the response. Feature data is returned to the WMS server as a set of feature collections.
1. After receiving and displaying the maps returned from the WMS server, the user starts running VC simulation code through GIS Portal. The GIS Portal provides the user with the ability to setup the experiment and the parameters associated with each set of run.
2. The user sets application specific parameters such as bounding box and the time frame of the experiment’s data. These values are bundled as script execution parameters and sent to the HPSearch engine.
3. The HPSearch engine then runs the script with the specified parameters. For each run, the service selects an instance of the VC runner service and initializes it.
4. Once all initialization is done, the HPsearch engine invokes the streaming WFS service.
5. The WFS sends the requested seismic records to the VC Runner service. The VC Runner service filters the input data. This step also converts date to float format. Once all the data has been accumulated, the VC Runner service runs the VC code on the input data using the input parameters. Usually each instance of the VC Runner service will work with different set of parameters.
6. The output of the VC runs is stored in output files.
7. On completion the VC runner stores the best cost that was computed per run in the context service. The best cost is the smallest value and will be used for determining the set of input parameters that needs investigated further.
8. The services then notify the HPSearch engine of the completion
9. HPSearch engine queries the context service to retrieve the best cost and then again writes to the context service the location of the output file that corresponds to the best cost.
10. The WMS constantly monitors the context service to see if the computation was completed. Once the computation is complete, it retrieves the location of the output file that corresponds to the best cost.
11. Finally the output file is retrieved (via FTP) and the output is used for visualization purposes.
12. Depending on the data and the geophysics application GIS Portal superimpose returned data as a new layer or makes some animated map or movie streams. In case of VC application, returned output data is multi-casted to a specific IP and port as movie streams.

 (
a
b
2
1
7
9
10
11
8
6
5
4
3
WSContext Service
HPSearch Engine
VC Runner Service
VC Runner Service
VC Runner Service
VC Runner Service
Output File
Output File
Output File
Output File
WMS Client
/
GIS Portal
WMS
c
DB
WFS
DB
Us
er
Browser
Figure
25
: Virtual California Operation steps founded over proposed Service-oriented GIS framework
)

Outcomes from the VC demo are map movies like animations. Links to a sample movie for Virtual California is listed below.
For this sample case, there are 1144 records in the output file returned by VC Runner Service shown in Figure 25.
http://complexity.ucs.indiana.edu/~asayar/gisgrids/docs/VCDemo_03.swf (Flash version)

http://complexity.ucs.indiana.edu/~asayar/gisgrids/html/work/VC_01.avi (Avi format)

 (
VC Runner Services
 See them in
Figure
25
VC-Map Movie creation interface.
Choose periodicity of time series data framework play
)
 (
Figure
26
: Event-based interactive user interface extended for Virtual California needs. It enables creating map movies by playing framework (created from time-series data) successively. Each framework is actually a map image.
)

[bookmark: _Toc189816052]Chapter 6
[bookmark: _Ref189393194][bookmark: _Toc189816053]High-performance Design Features, Measurements and Analysis
This chapter presents the common performance issues and high-performance design features in service-oriented, federated and interoperable GIS systems in which the interoperability is granted by structured data model. As the common data model, OGC [ogc] defined Geographic Markup Language (GML) [GML] is used. Developing a federated information system inspired us enhancing the whole system performance by applying novel parallel processing and caching techniques applied together in large scale interoperable information systems (see Chapter 6.3.2). In addition to this, we proposed some other innovative performance enhancement techniques (see Chapter 6.3.1) such as streaming data transfers, and enhanced parsing and rendering of semi-structured geo-data sets (GML). At the end of each chapter explaining these techniques, performance tests and analysis are provided.
The organization of the rest of the chapter is as follows. Chapter 1.1 summarizes and reviews the general performance issues of interoperable service-oriented GIS systems in which interoperability is granted by using XML-structured common data model and Web Services. Chapter 1.2 presents the limits of the ordinary GIS systems without having any performance enhancements which will be our comparison base for our proposed techniques and enhancements. Throughout the document, with the term “ordinary system” we mean a system built over naive approaches such as on-demand, single-threaded and no-caching systems. The last chapter (Chapter 6.3) explains our approaches to developing high performance GIS systems, and provides performance evaluations by comparing with the ordinary systems. We approach the performance issues from the two aspects. One is data-oriented and the other is federator-oriented. The data-oriented approaches deal with transferring large-sized XML structured data in common model, and high performance parsing and rendering algorithms. The federator-oriented approaches deal with the performance enhancement techniques based on data characteristics. For the infrequently changing archived data handling we propose pre-fetching technique (Chapter 6.3.2.1). On the other hand, for the frequently changing archived data, we propose a novel technique composed of client-based caching (Chapter 6.3.2.2) and parallel processing through query decomposition (Chapter 6.3.2.3).
6. [bookmark: _Toc189661335][bookmark: _Toc189661824][bookmark: _Toc189716557][bookmark: _Toc189718647][bookmark: _Toc189814310][bookmark: _Toc189814684][bookmark: _Toc189816054][bookmark: _Toc174843657]
6.1. [bookmark: _Toc189816055]General Performance Issues in Interoperable Service-oriented GIS
[bookmark: _Toc174843658]Performance issues in interoperable service-oriented GIS can be generalized into two groups:
· Issues regarding semi-structured data model (GML).
· Issues regarding domain specific data characteristics. In GIS, the data is described with location attribute defined in (x, y) coordinates. Based on the location value, the data is characterized as un-evenly distributed and variable sized. See Figure 27-b.
6.1.1. [bookmark: _Ref177074577][bookmark: _Toc189816056]Using Semi-structured Data Model
Using semi-structured data model enables interoperability and inter-service communication. XML’s emergence as the de facto standard for encoding tree-oriented, semi-structured data has brought significant interoperability and standardization benefits to distributed computing. On the other hand, performance has been still a persistent concern for large scale applications, because of the size issues and processing overheads [Lu2006]. The processing is detailed as parsing and differentiating (separating) the core-data from the attributes and other tags to create required application specific data formats.
Structured data representations enable adding some attributes and additional information (annotations) to the data. These attributes and additions are mostly due to the interoperability and security reasons. XML representations of data tend to be significantly larger than binary representations of the same data. The larger document size means that the greater bandwidth is required to transfer of data, as compared to the equivalent binary representations. The larger size often implies greater processing costs as well, since much of the overhead involved in communication processing is going to be based on the data volume.
There are two well-known and commonly-used paradigms for processing XML data, the Document Object Model (DOM) and the Simple API for XML (SAX). DOM builds a complete object representation of the XML document in memory. This can be memory intensive for large documents, and entails making at least two passes through the data. SAX operates at one level lower. Rather than actually constructing a model in memory, it informs the application of elements through callbacks. This also requires at least two passes through the data. These are all expensive and resource (such as CPU and memory) consuming processes and they don’t provide enough performance for the large scale applications.
In the document these issues are called data-oriented performance issues, and the proposed solution approaches are presented in Chapter 6.3.1
6.1.2. [bookmark: _Toc174843659][bookmark: _Ref177074598][bookmark: _Toc189816057]Though Data Characteristics and Attributes
The different domains have different data types having different characteristic to be handled. As an example, in GIS domain, which is our motivating domain, science applications need to manipulate geo-data. Geo-data is described with its location ((x, y) coordinates) on the earth. Based on the location attribute, geo-data is un-evenly distributed (such as human-population and temperature distributions) and variable sized. Because of these characteristics, it is not easy to implement some well-known performance enhancing techniques as applied in other science domains. Since it is not possible to know the work-load earlier, the classic load balancing algorithms do not work for the variable sized and unevenly distributed data. The work is decomposed into independent work pieces, and the work pieces are of highly variable sized. This issue is illustrated in Figure 27 for the case of using one-step-binary query partitioning based on the location attribute of the data. As it is illustrated in the figure, there are four worker nodes, and the worker node assigned to R2 gets the heaviest part of the total work, and therefore the expected performance gain from usinf classic load balancing will not be obtained.
The geo-data is queried based on their attributes. Since all the data is described by their locations, in order to get the data sets falling in a specific region, the bounding box (bbox) values are used. The regions are defined in bboxes. A bbox defines a rectangular shape in a two-sim coordinate plane, and it is formulated as (minx, miny, maxx, maxy). For example, Figure 27 shows a region formulated in bbox value (a, b, c, d).

 (
Figure
27
:
Unbalanced load sharing
. Server assigned
 R2:
“((a+b)/2, (b+d)/2), (c, d)” gets the most of the work.
) (
R1
R2
R3
R4
(c,d)
(a,b)
((a+c)/2, b)
(a,b)
(c,d)
(a)
(b)
(c, (b+d)/2)
(c, (b+d)/2)
((a+c)/2, b)
)
[bookmark: _Toc174843660]

These performance issues are dealt with in Chapter 6.3.2 which is called federator-oriented performance issues. We approach to the problem by keeping record for each client separately (we call it client-based caching) and utilizing locality and nearest neighborhood principles to share the work load to worker nodes as just as possible. Moreover, shares are created through query decomposition over bbox attribute of the main query.
In order to evaluate our proposed system design and performance enhancement techniques, we will be comparing the results with the baseline performance results given in the following chapter.
6.2. [bookmark: _Toc189816058]Ordinary GIS Systems Performance (baseline test results with naïve approaches)
In order to solve data and service heterogeneities for the GIS computation and data services OGC and ISO/TC-211 standards are used. These standards recommend using structured common data model called GML for the representation of location based geo-data. The standard bodies aim is to make the geographic information and services neutral and available across any network, application, or platform. Currently the two major geospatial standards organizations are the Open Geospatial Consortium (OGC) and the Technical Committee tasked by the International Standards Organization (ISO/TC211).
With the ordinary system we mean a GIS developed with widely used technique without using any novel advanced techniques to handle the data. Most of the implementations are based on single-threaded and on-demand processing. Deegree project [deegree] and Minnesota Map Server [minmapserv] can be given as sample projects. In order to compare and contrast our novel approaches to the ordinary systems approaches, we tested and presented their performance results at Table 3 and Figure 29.
Figure 28 shows the test setup for the system. This figure also illustrates a simple GIS system with major service components and data flow from the originating data sources to the end-users.

[image:]
 (
Figure
28
:
The ordinary system test set-up. Any-data is converted to common structured data (GML) and rendered as map images.
)

Over this setup system response time is measured and displayed in Table 3 and Figure 29. The average response times shown in the figures include times for querying, transforming, rendering and displaying spatial data. The average response time is formulated as below:
time(measured) = time(result is displayed) – time(client makes request).
Moreover, (time(measured)) can be further detailed as below (also see Figure 28):
· [time(client makes request).] Client makes requests through the interactive smart map tools.	
· WMS parse and render requests and define set of actions required based on the requests and its capabilities file.
· WMS Creates map images (from the returned datasets) and returns them to the clients:	
· Defines the set of WFSs [WFS] and other WMSs [WMS] to communicate with to build the response in accordance with its capability file and client provided parameters.
· Creates requests for WFSs and other WSMs
· Invokes WFSs’ getFeature Web Service interfaces for vector data encoded in Geographic Markup language (GML) [GML].
· Invokes other WMSs getMap Web Services for raster data rendered in map images
· Transferring GML data (feature collections) from WFS and WMS
· Parsing and rendering returned GML data sets
· Aggregating and overlaying layers according to the request and capability file.
· Sending the map images to the WMS Client.
· [time(map is displayed)] Client shows the returned maps on his browser

[bookmark: _Ref177898449][bookmark: _Toc189659124]Table 3: The round-trip times (or response times) of the ordinary system.
	
	Average
	 Log of
	

	Data Size
	Response
	Avg response
	Standard

	KB
	Times (msec)
	msec
	Deviation

	1
	2,375.24
	3.38
	152.40

	10
	2,578.69
	3.41
	252.49

	100
	7,973.16
	3.90
	374.12

	200
	13,612.78
	4.13
	417.19

	500
	30,868.52
	4.49
	482.83

	1000
	59,635.69
	4.78
	343.76

	5000
	288,594.12
	5.46
	333.07

	 (a)
 (
Figure
29
: (a) Performance result of the
ordinary
 system. (b) Sample output
-seismic data is plotted over NASA Satellite map images
)
	[image:](b)

In order to be able to make more reasonable comparisons, we adjusted the timing values given in Table 3 by taking their logarithmic values and plotted them in Figure 30.

[bookmark: _Ref179058207][bookmark: _Toc189659099]Figure 30: Adjusted performance values over Figure 29 for the ordinary systems.

This performance results teach us valuable lessons in terms of the capabilities and limits of the general distributed and interoperable GIS systems. From the figure we draw following conclusions. First, for the small data payloads (less than 500KB) the response time is acceptable. However for larger data payloads the performance gets worse and the response time gets relatively longer. On the other hand, scientific applications require handling (transferring, parsing, rendering and displaying) large scale data.
From our experience we saw that depending on the total data size, over %90 of the time(measured) comes from the step called “transferring GML data (feature collections) from WFS and WMS”. Because of that, even if we use the most efficient and fast parsing and rendering algorithms (such as using pull parsing or application specific XPath querying), it won’t improve performance very much as long as the data transfer time still stays that much high as shown in the Figure 29.
6.3. [bookmark: _Ref177210054][bookmark: _Toc189816059][bookmark: _Toc174843661][bookmark: _Ref177185587]High Performance Design and Evaluation of the Proposed System
Our approaches to the performance issues are grouped into two. The first group of approaches deals with the general performance issues result from using semi-structured data encodings (such as GML), and large size data exchange, parsing and rendering (Chapter 1.3.1). The second group of approaches is regarding the federator oriented design and techniques to enhance the overall system performance (Chapter 1.3.2).
6.3.1. [bookmark: _Toc174843662][bookmark: _Ref177074280][bookmark: _Ref177210347][bookmark: _Toc189816060]Data-oriented Enhancement Approaches
Distributed GIS systems typically handle a large volume of datasets. Therefore the transmission, processing and visualization/rendering techniques need to be responsive to provide quick, interactive feedback. There are some characteristics of GIS services and data that make it difficult to design distributed GIS with satisfactory performance. One of them is that GIS services often transmit large resulting datasets such as structured data, images, or large files in tabular-matrix formats.
In order to provide interoperability and extensibility we use common data format represented and formulated in XML. This degrades the performance even worse for large scale applications. The major hurdle of the proposed federated GIS framework is encoding, transferring and rendering the data in common data model. In the following two sub-sections we present our approaches to these issues. One is regarding large scale structured data transfer (Chapter 6.3.1.1) and other is regarding the large scale data parsing (Chapter 6.3.1.2).
6.3.1.1. [bookmark: _Ref175499248][bookmark: _Toc189816061]Streaming Data Transfer
Our experience shows that although we can easily integrate several GIS services into complex tasks by using Web Services, providing high-rate transportation capabilities for large amounts of data remains a problem because the pure Web Services implementations rely on SOAP [Donbox] messages exchanged over HTTP. This conclusion has led us to an investigation of topic-based publish-subscribe messaging systems for exchanging SOAP messages and data payload between Web Services. We have used NaradaBrokering [Pallickara2003] which provides several useful features besides streaming data transport such as reliable delivery, ability to choose alternate transport protocols, security and recovery from network failures.
Naradabrokering is a message oriented middleware (MoM) [Tran] system which facilitates communications between entities through the exchange of messages. This also allows us to receive individual results and publish them to the messaging substrate instead of waiting for whole result set to be returned.
In case of transferring the GML result set in the form of string causes some problems when the GML is larger than some amount of size (500KB see Figure 29-a). Since the WFS returns the resulting XML document as an <xsd:string>, this has to be constructed in memory and the size will depend on several parameters such as the system configuration and memory allocated to the Java Virtual Machine etc. Consequently there will be a limit on the size of the returned XML documents. For these reasons we have investigated alternative ways for data transport and, researched the use of topic based publish-subscribe messaging systems for streaming the data. Our research on NaradaBrokering shows that it can be used to stream large amount of data between nodes without significant overhead. Additional capabilities such as reliable messaging and support for different transport protocols already inherent in NaradaBrokering show that it is a powerful yet easy to integrate messaging infrastructure. For these reasons we have developed a novel Web Map Service and Web Feature Service that integrate OGC specifications with Web Service-SOAP [Donbox] calls and NaradaBrokering messaging system. Architecture is shown in Figure 31.

 (
Topic-wfs
(A)WMS Server
WFS Server
Narada Brokering Server
UDDI
client
server
registry
 GML
 GML
3
2
1
getFeature
(topic, IP, port)
Publisher
Subscriber
w
s
d
l
w s d l
3: Actual data-transfer
1,2: Binding
)
 (
Figure
31
: Streaming data transfer using Naradabrokering publish-subscribe topic based messaging middleware.
)

Connection lines 1 and 2, and UDDI (Universal Description, Discovery and Integration) [Belwood] service are displayed in the figure for showing classic publish-find-bind triangle of the Web Service based Service Oriented architecture. We don’t go into details of these interactions and UDDI registry service in this document but these can be summarized as following. WFS services publish their existence and service providing with their WSDL service description files (line-1). Clients (such as WMS) find appropriate WFS by searching UDDI registries (line-2). After finding appropriate service, clients are bind to that service by creating their client stubs. Instead of using lines 1 and 2, clients can also directly communicate with the services if they know the service’s WSDL file earlier.
In case of streaming through Naradabrokering, the clients make the requests with standard SOAP messages (line-3) but for retrieving the results a NaradaBrokering subscriber class is used. Through first request to Web Service (called getFeature), WMS gets the topic (publish-subscribe for a specific data), IP and port to which WFS streams requested data. Second request is done by NaradaBrokering Subscriber. In this way, even in the case of that the whole data is not received. WMS can draw the map image with the returned data. This depends on the WMS’s internal implementation.
Table 4 gives a comparison of the streaming and non-streaming data access approaches for the different data sizes. These values are obtained by applying the proposed framework on Pattern Informatics (PI) [Patterninfo] geo-science application using earthquake seismic data records. These are GML data access times including query conversion at WFS, result set conversion from database to GML and transfer times from WFS to federator or WMS.

[bookmark: _Ref177221339][bookmark: _Toc189659125]Table 4: Data access times (from federator or WMS) while using (1) streaming and (2)non-streaming data transfer techniques.
	
	Streaming
	Non-Streaming

	Data Size (KB)
	Average Time for Streaming Transfer
	Average Response Time
	Standard deviation
	Average Time Non-Streaming
	Average Response Time
	Standard deviation

	10
	31.3
	2425
	38
	1518.8
	3912.5
	77

	30
	100
	2661
	27
	1356.1
	3917.1
	38

	100
	320.1
	2945
	50
	1473.8
	4098.7
	71

	300
	826.7
	3405
	48
	1835.7
	4414
	39

	1000
	2414.2
	4570
	360
	3506.8
	5662.6
	31

[bookmark: _Ref179262270][bookmark: _Toc189659102]Figure 32: Comparisons of Streaming vs. Non-Streaming data response timings from source to federator or WMS.

We can deduce from the table that for the larger data sets when using streaming our gain is about 25%. But for the smaller data sets this gain becomes about 40% which is mainly because in the traditional Web Services the SOAP message has to be created, transported and decoded the same way for all message sizes which introduces significant overhead.
6.3.1.2. [bookmark: _Ref177899929][bookmark: _Toc189816062]Pull Parsing and Application Specific Rendering
Proposed system includes data rendering/filtering tasks assigned to Web-based Map Services to create comprehensible data representations derived from the semi-structured common data (GML). These comprehensible representations are called maps. Regarding the rendering of large GML data and creating map images we use parsers.
There are three general parsing techniques proposed for processing XML structured data. These are document model, push model and pull model. There are also other hybrid alternatives built on these main approaches. In order to process data in XML structured common data model we use pull parsing technique.
Pull parsing, as exemplified by the XML Pull Parser [Alexander], is an efficient paradigm similar to SAX in that it does not build a complete object model in memory. It differs in that the tags and content are returned directly to the application from calls to the parser, rather than indirectly in the form of callbacks. The pull approach of this parsing model results in a very small memory footprint (no document state maintenance required – compared to DOM), and very fast processing (fewer unnecessary event callbacks - compared to SAX).
Pull parser only parses what is asked for by the application rather than passing all events up to the client application as SAX parsing does. You can see the article where pull parsing is compared with other leading Java based XML parsing implementations [Sosnoski].
Pull parsing does not provide any support for validation. This is the main reason that it is faster than its competitors. Since all the services are OGC compatible and created in Web Service principles, validation is not necessarily needed. In OGC, services describe themselves by capability document and servers know each other by exchanging these document. If you are sure that data is valid (as in our case), or if the validation errors are not catastrophic to your system, or you can trust validity of the capabilities document of the server you are in contact, then using XML Pull Parsing gives the highest performance results. For example in communication between WFS and WMS, since it is known that WFS provides feature data in OGC’s GML format [GML], it is very advantageous skipping validation and using “pull parsing”.
For application specific comparison of Pull parsing and DOM see Table 5 and Figure 33. The performance values are measured in milliseconds and data sizes are in MBs. Performance test is done with 1GB allocated JAVA Virtual Machine. Dashed-line values in the table represent not-enough memory exceptions thrown. The figure illustrates the timing values for the data size till 100MB. Above this threshold value for the Virtual Machine allocated 1GB memory, DOM become useless.
Test case: For the XML data we use earthquake seismic data records encoded in GML. Each earthquake seismic record has some attributes and some geometry elements. In our tests we will parse the GML data in XML documents and extract the geometry elements. In case of DOM, parsing and extraction are done separate as it is shown in two columns in Table 5. In case of pull parsing, geometry data is extracted from GML with parsing and extraction applied all together.

[bookmark: _Ref187960201][bookmark: _Toc189659126]Table 5: The performance values of DOM and Pull parsing (Xpp) over GML data. Dashed-line values imply memory exception.
	
	
	DOM (dom4j)
	Pull Parsing

	Data Size
(MB)
	
	Average
Parsing
Time
	StdDev
	Avg
Render
Time
	Average
Total Time
Pars/Rend
	StdDev
	Average
Total Time
	StdDev

	0.001
	
	394.29
	18.68
	75
	469
	21.32
	15.59
	0.87

	0.01
	
	429.32
	36.46
	65
	494
	20.87
	72.81
	7.41

	0.1
	
	484.41
	18.18
	141
	625
	23.04
	183.06
	23.25

	1
	
	663.94
	18.09
	96
	760
	31.58
	270.47
	40.09

	5
	
	1,247.00
	36.74
	175
	1,422
	47.66
	671.74
	76.05

	10
	
	2,126.63
	20.73
	1,430
	3,557
	61.51
	1,025.67
	51.49

	100
	
	1,159,614
	13,122.6

	7,059.72
	93.16

	150

	11,047.89
	107.80

	200

	14,949.12
	253.15

As it is mentioned dashed lines in Table 5 represent memory exceptions. It means system does not have enough memory for completing its work. Since there is extreme performance difference between using DOM and pull parsing techniques, we plot their logarithmic values to illustrate the performance gains of using pull parsing more clearly.

[bookmark: _Ref177221996][bookmark: _Toc189659103]Figure 33: Performance comparison of two XML data processors, pull parsing and Document Object Model by using dom4j.

6.3.1.3. [bookmark: _Toc189816063]Overall Performance Evaluations over data-oriented performance enhancement approaches
This chapter presents overall performance gains obtained by applying data-oriented performance enhancement techniques mentioned in previous chapters (Chapter 6.3.1.1 and Chapter 6.3.1.2). We also compared the performance results with the baseline performance results given in Figure 29.
We again use the system test set-up shown in Figure 28.
[bookmark: _Ref186975778]
[bookmark: _Ref187524108][bookmark: _Toc189659127]Table 6: The performance results in average timings.
	
	Average Timings

	Data KB
	Data Capturing
	Map Rendering
	Total time Map Creation*
	map images’ transfer time
	Response time for end-users**

	10
	797.85
	927.35
	1741.17
	61.88
	1808.13

	100
	1384.86
	1168.29
	2567.35
	62.22
	2635.46

	500
	3770.16
	1153.96
	4934.94
	60.15
	5001.29

	1000
	6794.94
	1360.41
	8155.35
	68.38
	8225.73

	5000
	31237.41
	2116.12
	33350.80
	70.26
	33419.31

	10000
	61777.20
	2675.87
	64441.96
	62.15
	64506.78

* Total time for map creation = WFS to WMS data capturing + Map Rendering.
** Response time for end-users = Total time for map creation at WMS + map images transfer time to end user

[bookmark: _Ref186979503][bookmark: _Toc189659128]Table 7: The standard deviation values for the average timings given in
Table 6
	
	Standard Deviations

	Data KB
	Data Capturing
	Map Rendering
	Total time Map Creation
	map images’ transfer time
	Response time for end-users

	10
	48.39
	123.29
	132.36
	26.33
	140.32

	100
	73.86
	383.61
	384.61
	21.90
	313.48

	500
	80.81
	230.33
	234.03
	20.74
	238.94

	1000
	93.24
	207.60
	199.49
	24.59
	200.27

	5000
	211.45
	346.06
	432.43
	22.19
	394.48

	10000
	152.54
	252.97
	279.04
	18.64
	283.24

[bookmark: _Toc189659104]Figure 34: Average response, data capturing and map rendering timings for different data sizes. The values are obtained over the enhanced system with the proposed data-oriented techniques.

[bookmark: _Ref186979515][bookmark: _Toc189659129]Table 8: The comparison of average response times: Enhanced systems vs. naive systems.
	
	Naïve Approaches
	Enhanced with proposed data approaches

	Data KB
	Response Time (msec)
	Standard Deviation
	Response Time (msec)
	Standard Deviation

	10
	2578.69
	252.49
	1808.13
	140.32

	100
	7973.16
	374.12
	2635.46
	313.48

	500
	30868.52
	482.83
	5001.29
	238.94

	1000
	59635.69
	343.76
	8225.73
	200.27

	5000
	288594.12
	333.07
	33419.31
	394.48

	10000
	574825.16
	836.46
	64506.78
	283.24

[bookmark: _Toc189659105]Figure 35: The comparison of average response times: Naïve systems vs. enhanced systems with the proposed data-oriented performance enhancement techniques (Chapter 6.3.1.1 and Chapter 6.3.1.2).

We still need to improve the system performance to make it applicable to high performance GIS applications requiring quick response times such as early warning systems and crisis management. In order to improve the performance further, we propose federator-oriented performance enhancement techniques in the following chapter.
6.3.2. [bookmark: _Toc174843663][bookmark: _Ref177074177][bookmark: _Ref177199158][bookmark: _Toc189816064]Federator-oriented Performance Enhancement Approaches
The federator in the proposed federated GIS system inherently enables load balancing and parallel processing and this helps with enhancing the overall system performance. This chapter presents the techniques and system design to develop high performance federated GIS system through the federator.
The system design changes depending on the characteristics of the data application use. For the infrequently changing data (static archived data) we propose pre-fetching (Chapter 6.3.2.1) technique. For the frequently changing data (similar to the real-time data) we propose a novel technique composed of client-based caching and parallel processing through query decomposition (in Chapter 6.3.2).
In summary, pre-fetching is purely for overcoming the natural bandwidth problem, caching helps the system with preventing to redo the jobs of querying and rendering, and parallel processing helps with workload sharing and parallel job run. Depending on the data characteristics, federator uses only one or the combination of these techniques. These techniques will be explained in the following sections with their performance evaluations and analysis.
6.3.2.1. [bookmark: _Ref175566997][bookmark: _Toc189816065]Pre-Fetching
In the proposed integration framework we deal with the archived data in GML format. Archived data does not change often. Therefore, it is not reasonable transferring and rendering the same data again and again for every request coming from the different or even the same users. In order to solve this problem we propose pre-fetching. Pre-fetching is used to overcome the performance degradation of transferring large sized data from source (database) to destination. It also indirectly enables getting rid of the data transformation overhead at WFS. As it is mentioned before, WFS transform any-data kept in databases into common data model (GML) every time it gets a request.
Pre-fetching is briefly defined as getting the data before it is needed. We accomplish the pre-fetching by the data transfer technique explained in Section 6.3.1.1. The general architecture for the pre-fetching is shown at Figure 36. A performance result of the pre-fetching and comparisons to the on-demand fetching techniques are displayed in Figure 37 and Figure 38 respectively. Since pre-fetching is independent of the real-time application and run in an asynchronous manner, it does not degrade the proposed framework’s overall performance. It’s running times defined by the periodicity parameter of the Pre-fetching module (PM) (see Figure 36).
The OGC’s standard WMS and WFS specifications are based on HTTP Get/Post methods, but this type of services have several limitations such as the amount of data that can be transported, the rate of the data transportation, and the difficulty of orchestrating multiple services for more complex tasks. Web Services help us overcome some of these problems by providing standard interfaces to the tools and applications we develop.
As in the proposed data exchange framework defined in Section 6.3.1.1, the pre-fetching module make the requests with standard SOAP messages but for retrieving the results a NaradaBrokering subscriber class is used. Through the “getFeature” interface of WFS Web Services, pre-fetching module gets the topic name (publish-subscribe for a specific data), IP and port on which WFS streams the requested data. Second request is done by NaradaBrokering Subscriber using the returned parameters. GML data is provided by streaming WFS (implemented by G. Aydin) [Vretanos]. It uses standard SOAP messages for receiving queries from the clients; however, the query results are published (streamed) to a NaradaBrokering topic as they become available. In order to do that, we define the “task” and “timer”. Task defines pre-fetching job, and timer defines the running periodicity of the task. Different data might have different periodicities set. Pre-fetching is done over the critical data. The critical data is the GML data affects the performance because of their sizes.
There will be two separate locations for the pre-fetched data. One is temporary into which pre-fetched data is stored. Another is stable which will be used for serving the clients' requests. Even if the system is busy with the pre-fetching job, it keeps itself up and running for the clients by using the stable storage. When the data transfer is done to the temporary location, all the data at that location will be moved to stable location. Reading and writing the data files at the stable locations will be synchronized to keep the data files consistent. This cycle is repeated at some time intervals pre-defined by periodicity parameter of Pre-fetching Module (PM).

 (
Federator
User Portal
Interactive Tools
WFS
Processor
1
2
WMS
WMS
WFS
WFS
1
2
PM
NB
Temp Storage
GML
Synch move
Local File System
PF: Pre-fetching module NB: NaradaBrokering WMS: Web Map Service WFS: Web Feature Service
)

 (
Figure
36
: Pre-fetching architecture embedded to the federated GIS system
)

In order for the pre-fetching algorithm to work properly, pre-fetching module fetches the data as a whole; no constraint should be defined in the query. On the other hand, the requests from clients contain some query constraints. These queries and their constraints are handled at the A WMS side. Queries are processed by using parser techniques and XPATH queries over the pre-fetched data.
6.3.2.1.1. [bookmark: _Toc189816066]Fetching module (PM)
The pre-fetching module (PM) is composed of two components. One is “timer” defining the periodicity that PF will be running, and other is “task” defining what to do. The periodicity should not be less than the time to transfer one set of critical data. Assigning a periodicity at PM is the most critical task. This is defined under the considerations of data characteristics and developer’s experience on the domain specific application.
Since the system is developed in JAVA, we use Timer and TaskTimer JAVA class libraries to implement the routinely running pre-fetching module.
Here is the “task” defined in a pseudo code:
...... public void pseudo_TASK() {
............ Vector CDMdataList = new Vector();
............ CDMdataList = getListPerformanceCritical_GMLDataNames();
............ String tempDatastore = applpath + "/prefetchedData";
............ String stableDatastore = applpath + "/prefetchedDataUsed";
............ //Fetching all the data in CDM format (GML) - with NB
............ fd.FetchDataWithStreaming(NBip,NBport,NBtopic,
..wfs_address,tempDatastore,CDMdataList);
............ //After pre-fetching is done move the data to stable storage
............ fd.moveData(tempDatastore, stableDatastore);
...... }
We also define timer determining the periodicity of task to run. The below sample code sets the periodicity of “task” defined above to 3 days. It means PF will be running once every three days.
Timer timer = new Timer();
timer.schedule(task, 0, 40000);
Timer class schedules the specified task for repeated fixed-delay execution, beginning after the specified delay. Subsequent executions take place at approximately regular intervals separated by the specified period.
There are two concerns in developing an efficient pre-fetching architecture. First one is limited storage capacity for a node. The size of the pre-fetched data is constrained by local node’s storage capacity. Second one is regarding the pre-fetched data characteristics. Some archived data is updated so often that they look like real-time data. In that case, pre-fetching becomes unfeasible and cannot be benefited. For this type of data (archived but updated frequently), we propose a novel parallel processing approach applied together with the caching (see Chapter 6.3.2.3).
6.3.2.1.2. [bookmark: _Toc189816067]Performance Evaluation
We test the proposed pre-fetching technique over the proposed federated GIS system by using real-world Pattern Informatics (PI) geo-science applications (see Figure 36). PI is an earthquake forecasting application and uses archived earthquake seismic records stored at WFS as feature collections encoded in GML (XML encoded structured data model for geo-data).
We basically test the system as illustrated in Figure 36. Red-curve (short) illustrates the round-trip path for the pre-fetching and black-curve (long) illustrates the round-trip path for the on-demand fetching. For the simplicity we will be using only one critical data to apply pre-fetching.
In summary, we give the performance results for the proposed pre-fetching approach and compare it with the ordinary on-demand fetching approach in Figure 38 and Table 10. In case of on-demand fetching approach, one end is database and other end is user browser (see the black (dark)-curve in Figure 36). Performance results show the response times.

[bookmark: _Ref187564548][bookmark: _Toc189659130]Table 9: Performance results for the response times when the pre-fetched data is used.
	GML Data Size MB
	Average Processing
	StdDev
	Average Transfer
	StdDev
	Average Response
	StdDev

	0.01
	19,215.60
	477.71
	46.30
	15.39
	19,261.90
	481.57

	0.1
	19,040.74
	670.65
	71.57
	29.74
	19,112.30
	673.69

	0.5
	19,191.24
	630.50
	31.24
	8.30
	19,222.48
	631.35

	1
	19,387.64
	307.45
	39.84
	10.01
	19,427.48
	305.94

	5
	20,107.54
	514.46
	38.46
	10.66
	20,146.00
	516.50

	10
	20,113.19
	548.52
	52.71
	27.13
	20,165.90
	546.53

	50
	22,830.33
	505.86
	52.19
	15.88
	22,882.52
	509.98

	100
	22,934.52
	598.25
	55.90
	12.66
	23,990.43
	603.59

[bookmark: _Ref175956806][bookmark: _Toc189659107]Figure 37: Performance of the pre-fetching technique
[bookmark: _Ref177298148][bookmark: _Ref177938326][bookmark: _Ref179070460][bookmark: _Toc189659131]Table 10: Comparison of the pre-fetching (Figure 37) and ordinary (on-demand fetching) techniques
	Data Size MB
	Average Response
Pre-fetching
	StdDev
	Average Response On-demand
	StdDev

	0.01
	19,261.90
	481.57
	1,808.13
	140.32

	0.1
	19,112.30
	673.69
	2,635.46
	313.48

	0.5
	19,222.48
	631.35
	5,001.29
	238.94

	1
	19,427.48
	305.94
	8,225.73
	200.27

	5
	20,146.00
	516.50
	33,419.31
	394.48

	10
	20,165.90
	546.53
	64,506.78
	283.24

	50
	22,882.52
	509.98
	316,906.00
	623.08

	100
	23,990.43
	603.59
	643,344.00
	548.65

[bookmark: _Ref177222679][bookmark: _Toc189659108]Figure 38: Performance comparison of the map rendering in the proposed GIS system with pre-fetching and ordinary ways.
As it is expected the pre-fetching increased the performance and responsiveness of the system for accessing, querying and rendering archived data. Compared to on-demand fetching (ordinary), pre-fetching removes the times spent on conversion (from database to GML at WFS side) and transferring GML data. In case of cascaded data (going through multiple chained services to access the original data source), performance gains even becomes much larger. Furthermore, the higher the data size, the higher the performance gains.
Our criterion for selecting the technique to apply depends on two measurements. One is the minimum time required to fetch a whole critical data from the source and another is the time periodicity in which data is updated in its storage. If the data changes less than a time periods in which whole critical data is fetched, then the data is called frequently changing.
6.3.2.2. [bookmark: _Ref187618860][bookmark: _Toc189816068]Client/Session-based Dynamic Caching
The idea is based on allocating separate chunk of caching area to each active client and serving each client from its own allocated area. Client’s cache is kept up-to-date as in working window concept in operating systems. Server differentiates the clients based on their IDs defined in the request.
In this context, we use client and session interchangeably. One client might have more than one session by assigning different IDs to his messages to the server. For example, when event-based interactive mapping tools are used, those IDs are assigned automatically whenever user opens a new browser.
We introduced this novel idea for performance reasons. It removes the repeated jobs and helps efficient load balancing over the un-predicted workload by utilizing the locality [Denning] and nearest neighborhood [Belur] principles. It also helps us finding out the best efficient number of partitions for parallel processing and reducing the overhead timings for handling unnecessary number of partitions. Locality principle in this context is explained as following. If a region has a high volume of data, then the regions in close neighborhood also expected to have high volume of data. The simplest example to give is the distribution of human population data across the earth. The urban areas have higher human population than the rural areas, and oceans (2/3 of the world) have no human populations etc.
For large scale applications it might be impossible to cache whole data at intermediary servers to lower the response times. Furthermore, keeping data at different places force application developers to be more careful to keep the data consistent. It also brings maintenance and handling costs to the service administrators. Instead of doing this, we propose a selective client-based dynamic caching. In the following chapter we explain the architectural details about how to develop such a framework.
6.3.2.2.1. [bookmark: _Toc189816069]Architectural Details
Architecture is based on recently used data sets and clients requesting them. The research issues this chapter deals with are summarized as (1) how server differentiate the clients and (2) what to cache and how to cache.
What to cache: Maps are composed of multiple layers and each layer is created from different data set such as satellite map layer, state boundaries layer and earthquake-seismic layer. The proposed caching is applied to the selected layers. These layers are defined as critical in server’s properties file.
How to cache: each critical data is cached in the common data model (GML format) instead of ready to use image tiles. The reason behind this is that the proposed GIS framework allows attribute-based querying/display and data-mining. It is not just for displaying based on location attribute. In order to accomplish this, the data/layer needs to be cached with its geometry and non-geometry elements together with the core data. By doing this, even if client changes its queries in terms of attributes system utilizes the cached data as long as queries and cached data bboxes are intersects.
For each separate session (differentiated by their IDs defined in the request message), there will be separate set of cached data. Cached data is upgraded at every request from the same session.
Since the proposed federated GIS is interacted through browser-based interactive decision making tools over the integrated data views, the remaining of the chapter first gives the details about how to set browser-based session ID to the SOAP message and forward it to the server, and then how to keep track of separate clients’ session information at the server.
The proposed interactive event-based client tools are developed in Apache Tomcat [apache] Servlet container and pages are developed with Servlet and Java Server Pages (JSP). JSP defines session ID whenever a user opens a page to interact with the federated GIS system. A session is normally stored in a cookie which is available to all windows in the browser. The system access this ID by session.getId(). This returns a string unique user ID (uuid) which can be used for application specific purposes.
Whenever federated GIS client interacts with the system through federator, it sets its browser’s session ID to the header of its SOAP messages sent to the Web Service. All the requests coming from the same browser has same session ID. Session IDs are created when the browser is opened and kept same until it is closed. Each browser has a separate and unique session ID. By setting this session ID to the header of SOAP messages federator can distinguish what client (browser) makes the requests and check its cached data and session information stored before.
Here is the pseudo code briefly explaining the steps:
WMSServicesSoapBindingStub binding;
binding = (WMSServicesSoapBindingStub)
 	 new WMServiceLocator().getWMSServices(newURL(service_address));
	String sessionID = session.getid();
	String channel_name = “WMS_getMap_Request”;
//Add SessionID to the SOAP message’s header
binding.setHeader(service_address, channel_name, sessionID);
//See Appendix A-2 for the sample GetMap request
 Object value = binding.getComprehensibleData(getMap_request);

Whenever a user access the system through the same browser its session number will be the same and federator keeps its local data and actions in the system differentiated based on its unique session ID.
In order to implement dynamic client-based caching we keep static table keeping updated session information about each active client. This table is called MapTable and each entry represents a client. Each entry keeps unique user identification number (uuid) and its dynamic session information. Dynamic session information for each client is kept as an instance of a class called FormerRequest. It has four attributes as listed below.

	MapTable:
	Client-id session tracking Obj
	uuid-1
	FormerRequestObj1

	uuid-2
	FormerRequestObj2

	…..
	……

FormerRequest Class attributes
	String uuid;	//unique-user-id
String bbox;	//bounding box of the last request
	Double density; //data size falling into per unit square.
	Vector [] feature_data; //geometry elements of the last request used to plot map

	Density is used to find out allowable largest bbox area to be assigned to a thread for parallel processing. Details about the load balancing and parallel processing are given in Chapter 6.3.2.3.2.
1.3.2.2.2. [bookmark: _Toc189816070]Why Client-based Dynamic Caching
The fundamental concept behind the caching is removing the resource consuming repeated jobs and serving the client from the ready to use data sets kept in local storages. In case of map rendering process, ready to use data sets are map images. Google Map Servers [Googlemap] are the best examples for caching map images to provide high performance map services. They keep the data as ready to use map images chunked in tiles. Each tile is defined by its x,y coordinates and a corresponding zoom-level (18 different zoom levels). They formalize the accepted requests (in terms of parameters), and responses in terms of the tile compositions. Their major concern is developing high performance map services. In order to do that, they introduced AJAX (Asynchronous JavaScript and XML) [AjaxSerrano] for client/server communications and used locally stored static map images.
However, Google Map’s static caching approach (tiling) would not work in case of considering (1) data’s dynamic and distributed characteristics, and their various heterogeneous formats; and (2) seamless addition of new data sources rendered as layers and overlaid with other layers in various combinations and orders.
Google Map Servers provide two unique layers, satellite and Google map, and one hybrid layer as overlay of those two. Maps are served from three groups of tiles corresponding to these layer sets. In order to highlight the limitations of their algorithms, let’s assume they provide three unique layers instead of two. Let’s say layer names are ‘a, b and c. Then server would need to have 7 different tile groups as named a, b, c, ab, ac, bc and abc.
In summary, for the N number of unique layers, the required number of tile groups is calculated as below. It is sum of all k-subset combinations in which k gets the values from 1 to N.

In case of 10 unique layers (N=10), the number of tile groups would be 1023. Moreover, in each tile group there are thousands of tiles, and each tile in the group has different copies for 18 different zoom levels. As the layer number increases, the number of required tile groups increases dramatically and at some point it becomes impossible to store that much tiles in a single storage with current possible technologies.
Client-based dynamic caching approach: We allow all the data to be kept at their original resources and integrated to the system through standard service API, communication messages and in expected common data formats. This enables extensibility and interoperability, easy data handling/maintenance, and workload and data sharing. We do on-demand data fetching and rendering. Instead of caching whole combinations of data sets we fetch and cache the data based on client’s actions (locality and nearest neighborhood principles). Clients are given the flexibility to compose their own maps based on their applications’ requirements. The framework also enables attribute based querying of the data integrated to the system through the common data model carrying both content and presentation features of the data.
With the client-based caching, besides removing the repeated processing jobs, we utilize the locality principles and develop efficient load balancing algorithm for sharing unpredicted workload among the worker nodes. We will show how to use this approach for load balancing in the following section.
6.3.2.3. [bookmark: _Ref187172344][bookmark: _Ref187567453][bookmark: _Toc189816071]Load-balancing through Query Decomposition and Parallel Processing
The parallel processing is implemented based on the main query partitioning. Each partition is assigned to separate thread of work. The number of partitions and their sizes are defined by using locality principles. Locality information is obtained from the cached data kept for the same session and user. See the Chapter 6.3.2.2.
Federator apply the parallel processing for creating multi-layered map images corresponding to un-cached queried region. Since all the data in the system is geo-referenced and queried in ranges defined by bounding boxes (defining coordinates of rectangles in the form of (minx, miny, maxx, maxy)), we do range query partitioning to implement parallel processing.
Parallel processing algorithm has three parts in order and closely related. These are listed below.
1. Cached-data extraction and Rectangulation (Chapter 6.3.2.3.1)
2. Query decomposition over un-cached data regions in rectangle regions created at step1. (Chapter 6.3.2.3.2)
· If there is no cache utilized decomposition will be applied to main query
3. Parallel-processing for sub-queries created at step2.(Chapter 6.3.2.3.3)

In order to make these concepts more clear I give the illustration of these steps and their relations in Figure 39. Figure shows a map image composed of two layers. One is NASA satellite base map layer, and other is a layer showing earthquake seismic records (in blue dots). (a) shows partially overlapping of cached data and the main request bboxes. (b) Shows cached data extraction and rectangulation for the remaining part in the main query. (c) Shows partitioning of the rectangles from (b) based on the locality information obtained (explained in Chapter 6.3.2.3.2) from the cached data. All the rectangulated regions from (c) will be assigned to a thread to created map images as final responses.

 (
R1
R2
Cached Data
(a)
(b)
Successive
query
R2.2’
R2.1’
R1.1’
R1.2’
R1.3’
R1.4’
(c)
m
inx,
miny,
max
x,
maxy,
)
 (
Figure
39
: (a) C
ached data e
xtraction, (b) rectangulation, and (c) query decomposition/partitioning for parallel processing
.
)
[bookmark: _Ref176008173]
6.3.2.3.1. [bookmark: _Ref187621315][bookmark: _Ref187621461][bookmark: _Ref187621503][bookmark: _Toc189816072]Cached-data Extraction and Rectangulation
According to OGC standards in GIS domain, queries are created with location parameter and location is defined in bounding box (bbox) formats. bbox is a formula defining the region as a rectangle through coordinates of bottom left corner and top right corner. Example: Q(minx, miny, maxx, maxy).
After extraction of cached data falling in the main query range, the remaining of the main query needs to be converted to the rectangular shapes in order to create valid sub-queries in the ranges defined by the bboxes (see Figure 39 -b). This is why we make rectangulation after cached data extraction from queried-region.
The cached data extraction and rectangulation algorithm changes depending on the positions of bboxes of the main query and cached data region against to each-other. The main query and cached data bboxes can be positioned to each other in four possible ways (see Figure 40).
Notation to be used for representing bboxes: Main query bbox is described as (minx, miny, maxx, maxy) and Cached data bbox is described as (minxc, minyc, maxxc, maxyc)
 (
Figure
40
: Positioning of the successive main query and stored client-based cached data
) (
Cached Data
(1)
(2)
(3)
(4)
m
inx,
miny,
max
x,
maxy,
)

· Positioning-1: (No rectangulation). The main query and cached data do not overlap in anyway. In this case “cache data extraction and rectangulation” process is going to give only one rectangle which is the main query bbox.
· Positioning-2: The main query covers cached data (zoom-out action):
 Rectangles: R1: minx, miny, minxc, maxy	 R3: minxc, maxyc, maxxc, maxy
 R2: maxc, miny, maxx, maxy	 R4: minxc, miny, maxxc, minyc
· Positioning-3: (No rectangulation). The main query falls in cached data (zoom-in action)
Rectangles: This case enables the fastest response. There is no need for query partitioning and data transfer from WFSs. It just uses cached GML to create map image based on the bboxes values of main query. A lot of performance gains.
· Positioning-4: The main query partially overlaps with cached data (move action).
This case is also explained in Figure 39.
Here is the formula of the rectangles for a specific case of partial overlapping of cached data bbox and main query bbox (Figure 40-4):
Rectangles: R1: minx, miny, maxx, minyc and R2: maxxc, minyc, maxx, maxy
In this case, there are four different sub-cases depending on the movement directions. These are (1) down-right, (2) down-left, (3) up-right, and (4) up-left. The Figure 39 illustrates the down-right case, and the rectangles above belong to his case. The rectangles for the other cases are also created similarly.
The rectangles obtained in this section go through the decomposition process explained in the following chapter.
6.3.2.3.2. [bookmark: _Ref187144621][bookmark: _Ref187173174][bookmark: _Ref187186288][bookmark: _Toc189816073]Query Decomposition
This chapter explains how to determine the number of partitions, and how to partition the rectangles to assign to the separate threads to create map images in parallel processing.
There two ways we propose. One is naïve approach, just partition into equal sizes (Chapter 6.3.2.3.2.1). The other is smart approach partition the queries according to the previous query’s bbox values and utilizing the locality principles. But because of the overhead timings and costs we need to define the best partition number to decompose the main query. In order to do that we propose smart query decomposition using client-based caching algorithm defined in Chapter 6.3.2.3.2.2.
6.3.2.3.2.1. [bookmark: _Ref187150182][bookmark: _Ref187519487][bookmark: _Toc189816074]Blind Query Decomposition
If there is no cached data available for the client, in other word rectangles are coming from positioning-1 explained in the previous chapter, then we use blind partitioning. In all the other cases we use smart decomposition technique explained in the following chapter.
Blind query decomposition is a static approach, it just chunks the query area (represented in bbox) into equal sized regions in terms of bbox values without identifying identity of client. Partition number is pre-defined and does not change at run-time.
6.3.2.3.2.2. [bookmark: _Ref187149831][bookmark: _Ref187519571][bookmark: _Ref187526529][bookmark: _Toc189816075]Smart Query Decomposition Using Client-based Caching
Instead of decomposing the main query into predefined static number of sub-regions, we utilize the neighborhood and locality principles through client-based caching and figure out the most efficient number of partitions changing based on the data returned and cached at last time.
Here we explain how to define the number of partitions (i) and how to decompose the query (ii).
i. Determining the partition number:
In order to define the partition number we use locality principles. Locality principle in this context is explained as following. If a region has a high volume of data, then the regions in close neighborhood also expected to have high volume of data. Example is the human population data. The urban areas have higher human population than the rural areas. The oceans (2/3 of the world) have no populations etc.
We partition the rectangles into equal regions in the form of bboxes, because we don’t know the size of the data falling in that region before getting it. In order to define the size (in bbox) we use cached data sizes expressed in bbox and KB. We assume (by using locality) cached data density is similar to the main request density, and by using the threshold value and un-cached main request part we calculate the partition number (Pn) as below:
Cached data bbox area = (maxxc - minxc)*(maxyc - minyc)
Density of cached-data:	 dcd =

Cached-data size in KB and bbox values are obtained from the client-based caching.
Allowable largest area to assign: lat = =
Threshold data size is a static value pre-defined in server’s properties file for the corresponding critical data.
 Pn: the number of partition =
If Pn is less than 1 then, don’t make partition. In contrast, if it is bigger than 1, then partition into Pn regions. The following section explains how to partition a rectangle into Pn number of regions.
ii. Query decomposition of the rectangulated regions with Pn:
After getting Pn value in previous step, we cut the region into Pn number of sub-regions in the form of bbox values.
Here, we explain how to partition a given rectangle into Pn number of bboxes. There are two alternative techniques here, one is partitioning the rectangle vertically and the other is partitioning it horizontally.
In case of horizontal partitioning the step value is calculated as below, and partitioning is done along the Y-coordinate. (See Figure 41)

	 (
Figure
41
:
Partitioning a rectangle along the coordinate-y
) (
S
y
1
2
Pn
maxx, maxy
m
inx,
miny,
)
	Calculating the bboxes of the partitioned regions:
for (i=0; i<Pn*sx; i=i+sx;)
 print (minx-i, miny, maxx-(i+sy), maxy) ;
sy =

[bookmark: _Ref187144631][bookmark: _Ref175570794][bookmark: _Ref177374794]
6.3.2.3.3. [bookmark: _Ref187621404][bookmark: _Toc189816076]Parallel-Processing
The proposed parallel processing is based on range-query (defined in bbox) decomposition we call it partitioning. The partitioning is done with the locality principles to share the workload to the threads to reduce the response times.
This section explains how to create sub-queries corresponding to the partitions, and how to assign the sub-queries to threads and assemble the results.
 (
Figure
42
: Parallel processing and caching architecture in brief. See also
Figure
39
.
) (
WFS
R
1
GetFeature requests
 - see
Figure
43
R
2
R
3
R
Pn
GML
1
GML
2
GML
Pn
GML
Cached
1
2
. . .
. . . .
Main query
: cached data extraction and rectangulation
Layers from Other
WFS and WMS
Critical data layer
Critical data provider in GML
Critical data falling into partitioned regions
)

These issues are illustrated in Figure 42 above. In this specific example, main query includes three separate layers, and one of them is created with the critical data encoded in common data model, GML. The rectangulated regions 1 and 2 in the main query are determined by the cached-data extraction and rectangulation processes explained in Chapter 6.3.2.3.1. Grey region in the main query overlaps with the cached data. There is no need for data transfer for this region. This is obtained from the cache. For the other parts not overlapping with the cache (region 1 and 2), the system makes parallel processing for data access, query and plotting after creating partitions.

i. Creating the queries for the partitions.
Throughout the rectangulation and partitioning, the only changing attribute of the main query is the bbox coordinate value. These are calculated in the previous chapter.
Based on the set of bbox values obtained at the end of partitioning process (ii) we need to create sub queries. Each partition is differentiated by only their bbox value, and they go through the query creation process. AWMS creates getFeature requests corresponding to these rectangles based on their bounding boxes. Other parameters and attributes required for creating getFeature request are obtained from the main query. All the parameters, attributes and their values (except for bbox values) will be the same for all the getFeature requests created for the partitions.
An example case of decomposing a rectangle obtained by rectangulation process and creating parallel queries is illustrated at Figure 43. In this example, rectangle is partitioned into 5 regions vertically.
Pn = 5 and sy = = = 1
You can see a sample getFeature created for bbox value “-110, 35, -100, 40” request at

Figure 44.

 (
Figure
43
: Example scenario of the partitioning a region into 5 sub-regions through the bbox value of a rectangle.
) (
-110, 35, -100, 40
-110, 35, -100, 36
-110, 36, -100, 37
-110, 37, -100, 38
-110, 38, -100, 39
-110, 39, -100, 40
GetFeature-1
GetFeature-2
GetFeature-3
GetFeature-4
GetFeature-5
A rectangle
 in bbox
 from the rectangulation
Creating queries
 for these bbox values
Decompos
ing the rectangle according to
 P
n
 and s
y
)

[bookmark: _Ref187820923][image:]

[bookmark: _Toc189659113]Figure 44: Sample GetFeature request for the partitioned region of bbox (-110, 35 -100, 40). Request is done for global hotspot (earthquake seismic data)

ii. How to assign the sub-queries to threads and assemble the results.
Sub-queries created at previous step are assigned to separate threads to capture the GML data from WFS and process the corresponding map pieces. Partitions are assigned to worker nodes through separate thread of works in round-robin fashion [tanenbaum].
Let’s say PN is the partition number and WN is the number of WFS worker nodes.

Share is the number of partitions each worker node is supposed to get.

rmg is the remaining of the PN/WN division. If there is no remaining every worker node is assigned share number of partitions. Rmg is dofferent from 0 then partitions are assigned to worker nodes as below:
The first rmg #of WN are assigned share+1 number of partitions, and
remaining WN are assigned share number of partitions.
Figure 45 illustrates the algorithm over a case of seven partitions and three WFS worker nodes (called WFS-1, WFS-2 and WFS-3). So, the algorithm’s parameters would be
share = base (7/3) = 2 and rmg = 3 – 2 = 1;
So WFS-1 is assigned 3 (share+1) partitions through thread-1, 4 and 7,
WFS-2 is assigned 2(share) partitions through thread-2 and 5
And finally WFS-3 is assigned 2 (share) partitions through thread-3 and 6.
 (
1
2
3
4
5
6
7
Thread-1
Thread-2
Thread-3
Thread-4
Thread-5
Thread-6
Thread-7
WFS-1
WFS-
2
WFS-
3
Main query – partially overlapped with cached data (grey region) – rectangulated into 2 – partitioned into 7
Worker nodes for critical layer assigned in round-robin
Cached-data overlapped with main query
1, 4, 7
2, 5
3, 6
)
 (
Figure
45
: A
ssigning partitions to threads and capturing/processing in parallel
)

Each query corresponding to the partitions are assigned to the threads. Threads are responsible for interacting with the WFS and getting the requested data to create map images for the partition. After getting the data, federator starts rendering and plotting the critical data over the other layers by parsing and extracting the geometry elements in returned GML.
6.3.2.3.4. [bookmark: _Toc189816077]Overall Performance Evaluation
Performance will be evaluated in three possible generalized situations categorized based on the cached data utilization. These are:
a. No usage of cached data
b. Complete usage of cached data. No need for parallel processing.
c. Partial usage of cached data
Here is the performance test setup:
 (
Figure
46
: Test setup for federator oriented approaches.
)

According to the test purposes and test setup environment we have six different kinds of servers. These are Web Map Server (WMS), the WMS-extended federator, Web Feature Service (WFS), MySQL-database, Na	radaBrokering messaging middleware and browser/event-based interactive mapping tolls client. We also integrated the third party OGC compatible WMS servers such as NASA WMS providing satellite map images from OnEarth project and Google Map servers providing Google maps.
Every machine (on which servers are deployed) has 2 Quad-core Intel Xeon processors running at 2.33 GHz with 8 GB of memory and operating Red Hat Enterprise Linux ES release 4. Machines are in Local Area Network (LAN).

a. No usage of cached data:
This case happens when the query bbox don’t not overlap with each other. In this case there is no need to cached-data extraction and rectangulation, because there is only one rectangle which is the main query to partition. Here, we show performance gaining by using parallel processing through query decomposition. In order to make performance evaluations, we test the system with different (2, 10 and 20) levels of partitions and assign them to separate individual threads for creating map images in parallel.
We first present the performance values in average response times detailed in “data capture timing”, “map rendering timing” as displayed in Table 11 and Table 12. In this context, response times (total map creation time) are divided into three measured items. First is DC (data capturing from WFS to WMS/federator), second is MR (Map rendering at WMS/federaator), and third one is map images’ transfer time from federator to event-based dynamic map clients for end-users. Third one is not shown in the analysis but can be derived from the table by below formula for each data size separately.
Map images’ transfer time = RT- (DC+MR)
Here, for the partitioning, since there is no cached-data to be utilized we use blind partitioning technique given in Chapter 6.3.2.3.2.1.

[bookmark: _Ref187518213][bookmark: _Toc189659132]Table 11:Average times for data capturing, map rendering and overall response for different number of partitioning and different data sizes.
	
	Average Timings

	Size
	2 Threaded
	10 Threaded
	20 Threaded

	MB
	*DC
	*MR
	*RT
	DC
	MR
	RT
	DC
	MR
	RT

	0.01
	769.9
	813.3
	1,728.3
	1,385.5
	891.6
	2,329.5
	2,423.3
	1,041.4
	3,589.1

	0.1
	1,161.0
	829.6
	2,031.4
	1,712.3
	994.3
	2,760.0
	2,483.4
	1,077.1
	3,629.4

	0.5
	2,664.5
	958.1
	3,672.7
	2,488.5
	999.7
	3,460.4
	2,628.1
	1,194.6
	3,759.4

	1
	5,749.8
	1,172.7
	6,977.0
	3,440.9
	1,140.5
	4,640.5
	3,820.4
	1,382.9
	5,268.8

	5
	20,350.4
	1,707.0
	22,108.0
	15,036.9
	1,627.6
	16,725.4
	14,390.5
	1,680.5
	16,148.0

	10
	45,072.8
	2,499.0
	47,639.1
	20,517.3
	2,518.1
	23,118.4
	22,060.3
	2,637.6
	22,800.1

	50
	247,321.8
	11,839.6
	259,341.7
	192,592.8
	11,894
	204,727
	111.753
	8,890.2
	120,822

TMC (Total Map Creation Time) = Data Capture (*DC) + Map Rendering (*MR)
*RT = TMC + Map Images’ Transfer Time

[bookmark: _Ref187518219][bookmark: _Toc189659133]Table 12: Standard deviation for data capturing, map rendering and overall response for different number of partitioning and different data sizes.
	
	Standard Deviations

	Size
	2 Threaded
	10 Threaded
	20 Threaded

	MB
	*DC
	*MR
	*RT
	DC
	MR
	RT
	DC
	MR
	RT

	0.01
	92.52
	103.67
	164.37
	91.09
	85.34
	131.46
	281.40
	206.17
	482.77

	0.1
	99.03
	81.87
	123.44
	89.56
	107.28
	104.35
	177.48
	297.37
	312.16

	0.5
	94.35
	140.09
	193.28
	97.66
	81.44
	120.24
	117.43
	149.45
	124.11

	1
	101.61
	191.37
	211.20
	90.05
	86.35
	106.42
	108.09
	210.27
	223.71

	5
	99.43
	154.33
	287.72
	190.37
	77.25
	201.62
	265.17
	277.07
	488.09

	10
	131.44
	420.00
	509.01
	973.42
	137.81
	941.83
	582.05
	261.82
	706.62

	50
	312.2
	5,208.7
	5,395.6
	1,852.5
	5,639.1
	5,676.4
	1,154.5
	245.9
	1,182.4

TMC (Total Map Creation Time) = Data Capture (*DC) + Map Rendering (*MR)
*RT = TMC + Map Images’ Transfer Time
Since the major bottleneck of the performance is transferring GML data, we first demonstrate the performance enhancement in data transfer (see Table 13 and Figure 47). The data is transferred from the databases through WFSs to the federator (or WMS). The measured transfer times are in milliseconds.
The data capturing times in the below table are obtained from Table 11 except for single-thread column’s values. They are obtained from Table 6.

Comparison of data transfer times based on partition number and data sizes
[bookmark: _Ref187522961][bookmark: _Toc189659134]Table 13: Data transfer times for different levels of partitioning and data sizes.

	Data Size
	Data Capture Comparisons

	MB
	Single-thread*
	2-thread
	10-thread
	20-thread

	0.01
	797.85
	769.94
	1,385.50
	2,423.30

	0.1
	1,384.86
	1,160.95
	1,712.27
	2,483.36

	0.5
	3,770.16
	2,664.47
	2,488.47
	2,628.10

	1
	6,794.94
	5,749.79
	3,440.89
	3,820.36

	5
	31,237.41
	20,350.38
	15,036.95
	14,390.50

	10
	61,777.20
	45,072.75
	20,517.26
	22,060.27

	50
	308,671.63
	247,321.80
	192,592.80
	111,753.20

*Values for single-thread are obtained from first column of Table 6.

[bookmark: _Ref187522997][bookmark: _Toc189659117]Figure 47: Comparison of average data transfer times for various levels of data sizes and partitioning level.

Comparison of response times based on partition number and data sizes
Table 12 compare the performance values for different levels of partitions and shows what partition level gives the best result for corresponding data size. According to the table, for the data sizes less than 100KB partitioning into two gives the best result. Using more than two partitions degrade the response times because of the overhead times. For the overhead times and analysis see Table 16 and Figure 50. For the sample cases of partitioning levels and given data sizes, we also present the best partition numbers in the last column.
[bookmark: _Ref187519403][bookmark: _Toc189659135]Table 14: Average response times for different data sizes and partition levels, and listing of best partitions for each data sizes.

	Data Size
	Response Time Comparisons
	

	MB
	Single-thread
	2-thread
	10-thread
	20-thread
	Best Partition

	0.01
	1,808.13
	1,728.28
	2,329.50
	3,589.10
	2

	0.1
	2,635.46
	2,031.35
	2,760.00
	3,629.36
	2

	0.5
	5,001.29
	3,672.74
	3,460.40
	3,759.40
	10

	1
	8,225.73
	6,977.00
	4,640.53
	5,268.79
	10

	5
	33,419.31
	22,107.95
	16,725.37
	16,148.00
	20

	10
	64,506.78
	47,639.10
	23,118.42
	22,800.13
	20

	50
	316,906.39
	259,341.67
	204,727.93
	120,822.00
	20

For small sizes of data such as less than 500KB, high number of partitioning does not help in performance increase, instead degrade it. As you see in the table for small size of data partitioning into 2 give sthe best result. That is because of the overhead times coming from partitioning, sub-query creation and finally merging the results to create final response. For more information about overhead times see Table 16 and Figure 50.

[bookmark: _Ref187526007][bookmark: _Toc189659118]Figure 48: Comparison of average response times for different partitioning and data sizes.

When you compare the Figure 47 and Figure 48, you will think that they are same but it is not. They look similar because of that data capturing/transfer is the dominant value in the response times, and in some cases almost %90 of response times comes from data transferring times.
Comparison of Response times: Naïve approaches vs proposed enhanced approaches
Table 15 and Figure 49 show the striking performance enhancement in response times for the overall architecture. To make it more clear, for 10MB of data size, proposed architecture is almost 30 times faster than the architecture developed with naïve approaches.

[bookmark: _Ref187525783][bookmark: _Toc189659136]Table 15: Response times comparison values - Naïve approach and the proposed approach at different partitioning levels.

	Data Size
	Response Time Comparisons

	MB
	Naïve approach
	2-thread
	10-thread
	20-thread

	0.01
	2,578.69
	1,728.28
	2,329.50
	3,589.10

	0.1
	7,973.16
	2,031.35
	2,760.00
	3,629.36

	0.5
	30,868.52
	3,672.74
	3,460.40
	3,759.40

	1
	59,635.69
	6,977.00
	4,640.53
	5,268.79

	5
	288,594.12
	22,107.95
	16,725.37
	16,148.00

	10
	574,825.16
	47,639.10
	23,118.42
	22,800.13

	
	
	
	
	

[bookmark: _Ref187525814][bookmark: _Toc189659119]Figure 49: Comparison of response times at different partitioning levels – Naïve approach vs. proposed approach.

From the figure we see that the performance does not increase in the same ratio at which the thread number increases. That is because of the overheads resulted from mainly the query decomposition and assembling the result sets for the main query etc. Moreover, the figure shows that the higher the data size the larger the performance gains.
Detailed overhead timings:
Table 16 and Figure 50 present overhead times of the proposed federator oriented parallel processing technique in map rendering. The major overheads are grouped into three. These are partitioning, sub-query creation, and merging the sub-results to the partitions to create final output.
[bookmark: _Ref187526765][bookmark: _Toc189659137]Table 16: Overhead times due to making partitioning for parallel processing at various partitioning levels.
	Partition
	Partitioning
	Sub-Query Creation
	Merging of partitions

	Number
	Avg
	StDev
	Avg
	StDev
	Avg
	StDev

	5
	51.28
	14.74
	161.67
	25.32
	27.00
	12.88

	10
	58.65
	15.16
	421.55
	63.98
	44.26
	23.44

	15
	60.15
	19.74
	720.35
	102.87
	64.90
	23.77

	20
	68.75
	21.75
	1,058.84
	199.49
	118.90
	25.53

	25
	69.05
	15.98
	1,366.10
	198.37
	131.88
	30.59

	30
	85.42
	30.04
	1,837.16
	343.26
	170.00
	30.56

[bookmark: _Ref187526785][bookmark: _Toc189659120]Figure 50: Parallel processing overheads based on different levels of partitioning.

b. Complete cached data utilization
In this case there is no need for rectangulation, main query decomposition and threaded parallel processing. This case happens when the user query a smaller region falling in the previous map he got on his browser. It is mostly caused by zooming-in action. In this case, the cached data is enough for responding to the main request, and no other cascaded requests are needed. The Federator renders the map just by using the cached data. The only task needed is the cached data extraction and overlaying (plotting) over the other requested layers.
This case’s performance results are almost same as the pre-fetching techniques’. Please see Table 9 and Figure 37 to get an idea about the performance enhancement.
c. Partial cached data utilization :
This case happens when the user moves (or drag and drop) the map to another region or makes zooming-out. In other words, when the user makes successive requests and their bbox values partially overlap. As explained before in Figure 39 and Figure 40 in Chapter 6.3.2.3, if only one point of main request falls in bbox boundaries of the cached-data, they are called as partially overlapped.
In order to simplify the analyzing we give a sample scenario: 1/2 of main query overlaps to the cached data and remaining data is obtained and processed with 10-threaded parallel processing.
Table 17 shows the average timing values for the selected sample bbox values and data sizes, and Table 18 shows the corresponding standard deviations. The cached data is accessed and processed in a way similar to the way of processing the pre-fetched data. In order to access the remaining data we decompose the query into 10 and assign each query to 10 separate threads to create corresponding map images created from the data captured from databases through WFS services.
The first column of the table shows the data sizes of GML data to be captured to create map images. The data size values given in the parenthesis are cached data sizes which are actually half of the requested data size.

[bookmark: _Ref179167905][bookmark: _Toc189659138]Table 17: Performance results for the sample case scenario in which half of the data is provided by the cached data, and other half is obtained from WFSs and processed by 10-thread parallel processing.
	
	Sample bounding boxes after
	Average Timings

	GML Data
	rectangulations on which partitioning is done
	cached-data
	On Remain
	Total
Average

	Size -MB*
	minx
	miny
	maxx
	maxy
	processing
	10-thread
	Response

	0.01(0.005)
	-121.58
	34.55
	-121.45
	34.69
	734.33
	2,360.86
	3,095.19

	0.1(0.05)
	-121.65
	34.36
	-120.78
	35.00
	768.33
	2,808.40
	3,576.73

	0.5(0.25)
	-118.68
	34.21
	-118.39
	34.50
	782.45
	2,939.32
	3,721.77

	1(0.5)
	-119.16
	34.21
	-118.25
	35.12
	851.33
	3,460.40
	4,311.73

	5(2.5)
	-120.83
	32.07
	-117.15
	36.18
	1,209.79
	10,084.79
	11,294.58

	10(5)
	-120.83
	32.07
	-115.70
	36.70
	1,646.32
	16,725.40
	18,371.72

*requested data size (cached data size)

[bookmark: _Ref179187237][bookmark: _Toc189659139]Table 18: The standard deviations for the average times given in Table 17.
	
	Standard Deviation

	GML Data
	cached-data
	remaining-data
	Total

	Size -MB
	processing
	access and proc
	Response

	0.01(0.005)
	62.45
	141.77
	204.22

	0.1(0.05)
	66.37
	217.43
	283.80

	0.5(0.25)
	79.56
	130.85
	210.41

	1(0.5)
	72.21
	120.24
	192.45

	5(2.5)
	68.52
	245.07
	313.59

	10(5)
	94.57
	201.62
	296.19

[bookmark: _Ref179273352]In Table 19, we compare the average response times of the given sample case with other two group of response times obtained by not using cached data. First group’s response times are obtained by using 10 threaded parallel processing and second group’s are obtained by using single thread.
[bookmark: _Ref187906830][bookmark: _Toc189659140]Table 19: Comparison of the response times for the hybrid (caching and parallel processing) and ordinary non-caching single-threaded system.
	
	Comparison of the response times

	GML Data
	Half cached/ 10 thread
	NO Cached /10 thread
	NO Cached /Single thread

	MB
	Avg. Time
	StdDev
	avg time
	std dev
	Avg. Time
	StdDev

	0.01
	3,095.19
	204.22
	2,329.50
	131.46
	1,808.13
	140.32

	0.1
	3,576.73
	283.8
	2,760.00
	104.35
	2,635.46
	313.48

	0.5
	3,721.77
	210.41
	3,460.40
	120.24
	5,001.29
	238.94

	1
	4,311.73
	192.45
	4,640.53
	106.42
	8,225.73
	200.27

	5
	11,294.58
	313.59
	16,725.37
	201.62
	33,419.31
	394.48

	10
	18,371.72
	296.19
	23,118.42
	941.83
	64,506.78
	283.24

As it is shown in first two lines of Table, there is no gain of using parallel processing with caching for the small sizes of data. In such cases, total overhead sometimes get higher than the total response times of single threaded cases. This problem is solved by using a threshold value to define if the partitioning is needed or not. This technique is also explained in 6.3.2.3.2.2.

[bookmark: _Ref177556744][bookmark: _Toc189659121]Figure 51: Illustrating the performance enhancement of using caching with parallel processing with ½ cached data case.

As it is shown the in Figure 51, for the given test scenario (1/2 of main query overlaps to the cached data and remaining data is obtained and processed with 10-threaded parallel processing) proposed system is more than 3 times faster than the single threaded system. As the data size increases, that ratio increases.
When we compare the enhanced system’s performance result with the naïve approaches’ performance result given in Table 3 and Figure 29. We see that using parallel processing and caching techniques make the system almost 30 times faster than the naive approaches for the given specific case scenario.
As the data size and/or density of data falling per unit square increase, the performance gaining from using the proposed technique increases.

[bookmark: _Toc189816078]Chapter 7
[bookmark: _Ref189373190][bookmark: _Toc189816079]Conclusion and Future Work

7. [bookmark: _Toc189661361][bookmark: _Toc189661850][bookmark: _Toc189716583][bookmark: _Toc189718673][bookmark: _Toc189814336][bookmark: _Toc189814710][bookmark: _Toc189816080]
7.1. [bookmark: _Toc189816081]Thesis Summary

7.2. [bookmark: _Toc189816082]Summary of Answers to Research Questions

7.3. [bookmark: _Toc189816083]Future Research Directions
Federation of the GIS components is done through capability metadata federation. BUT this is done before run-time and system does not allow dynamic federation of the new components and data. We will allow dynamic capability extensions through information systems.
Client-based caching: implement client table as hash-table. Define remove policy based on their interaction periodicity (time spent idle between two interactions).

[bookmark: _Toc189816084]APPENDICES
[bookmark: _Toc189816085]APPENDIX A: Sample Request Instances to standard WMS Service Interfaces
i. [bookmark: _Toc189816086]GetCapability Request Instance
[image: C:\Documents and Settings\Ahmet Sayar\Desktop\FAQ_Blog\getcapasnapshot.bmp]
ii. [bookmark: _Toc189816087]GetMap Request Instance
[image: C:\Documents and Settings\Ahmet Sayar\Desktop\FAQ_Blog\getmapsnapshot.bmp]

iii. [bookmark: _Toc189816088]GetFeatureInfo Request Instance
[image: C:\Documents and Settings\Ahmet Sayar\Desktop\FAQ_Blog\getFeatureInfosnapshot.bmp]

[bookmark: _Toc189816089]APPENDIX B: A Template Capabilities.xml file for WMS.
[image: C:\Documents and Settings\Ahmet Sayar\Desktop\FAQ_Blog\capasnapshot.bmp]

[bookmark: _Toc189816090]APPENDIX C: A sample WMS Capabilities.xml Instance
<?xml version="1.0" encoding="UTF-8"?>
<!--Sample XML file generated by XMLSPY v2004 rel. 4 U (http://www.xmlspy.com)-->
<WMS_Capabilities xmlns="http://www.opengis.net/wms" xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.opengis.net/wms
C:\capabilities_1_3_0.xsd" version="1.3.0" updateSequence="String">
	<Service>
		<Name>WMS</Name>
		<Title>Pervasive WMS</Title>
		<Abstract>wms reference implementation</Abstract>
		<KeywordList>
			<Keyword >pervasive</Keyword>
			<Keyword >wms</Keyword>
		</KeywordList>
		<OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink" xlink:type="simple"
		xlink:href="http://toro.ucs.indiana.edu:8086/WMSServices.wsdl"/>
		<!-- the following service information is optional -->
		<ContactInformation>
			<ContactPersonPrimary>
				<ContactPerson>Ahmet Sayar</ContactPerson>
				<ContactOrganization>Pervasive Tech Lab</ContactOrganization>
			</ContactPersonPrimary>
			<ContactPosition>Research Assistant</ContactPosition>
			<ContactAddress>
				<AddressType>XXXX</AddressType>
				<Address>501 N. Morton St. Rm 222</Address>
				<City>Bloomington</City>
				<StateOrProvince>IN</StateOrProvince>
				<PostCode>47404</PostCode>
				<Country>USA</Country>
			</ContactAddress>
			<ContactVoiceTelephone>1(812)8560752</ContactVoiceTelephone>
			<ContactFacsimileTelephone>1(812)8567972</ContactFacsimileTelephone>
			<ContactElectronicMailAddress>asayar@cs.indiana.edu</ContactElectronicMailAddress>
		</ContactInformation>
	</Service>
	<Capability>
		<Request>
			<GetCapabilities>
				<Format>application/vnd.ogc.wms_xml</Format>
				<DCPType>
					<!-- Currently there is just one DCPT supported HTTP.
						In the near future there will be web services
						support by the Open-GIS.
						Whenever they update their standard schemas, I
						will update my capabilities document.-->
					<HTTP><Get><OnlineResource /></Get>		
<Post>	<OnlineResource /></Post>
</HTTP>
				</DCPType>
			</GetCapabilities>
			<GetMap>
				<Format>image/gif</Format>
				<Format>image/png</Format>
				<Format>image/jpg</Format>
				<Format>image/tif</Format>
				<Format>image/bmp</Format>
				<Format>image/svg+xml</Format>
				<DCPType>
					<HTTP><Get><OnlineResource /></Get>	
<Post>	<OnlineResource /></Post>
</HTTP>
				</DCPType>
			</GetMap>
		</Request>
		<Exception>
			<Format>application/vnd.ogc.se_xml</Format>
			<Format>application/vnd.ogc.se_inimage</Format>
			<Format>application/vnd.ogc.se_blank</Format>
		</Exception>
		<Layer queryable="0" cascaded="1" opaque="0" noSubsets="0" fixedWidth="1"
										fixedHeight="1">
			<Name>pervasive WMS-demo Layers</Name>
			<Title>pervasive WMS-demo Layers</Title>
			<Abstract>pervasive WMS-demo Layers</Abstract>
			<KeywordList>
				<Keyword>pervasive</Keyword>
				<Keyword>WMS</Keyword>
				<Keyword>layer</Keyword>
			</KeywordList>
			<CRS>EPSG:4326</CRS>
			<EX_GeographicBoundingBox>
				<westBoundLongitude>-150</westBoundLongitude>
				<eastBoundLongitude>100</eastBoundLongitude>
				<southBoundLatitude>30</southBoundLatitude>
				<northBoundLatitude>50</northBoundLatitude>
			</EX_GeographicBoundingBox>
			<MinScaleDenominator>0</MinScaleDenominator>
			<MaxScaleDenominator>100000000</MaxScaleDenominator>

			<!-- WORLD SEISMIC -->	
			<Layer queryable="0" cascaded="1" noSubsets="0">
				<Title>World_Seismic</Title>
				<Abstract>Seismic data for the world</Abstract>
				<CRS>EPSG:4326</CRS>
				<Layer queryable="1" cascaded="1" noSubsets="0" fixedWidth="0"
										fixedHeight="0">
					<Name>Nasa:Satellite</Name>
					<Title>Nasa:Satellite</Title>
					<EX_GeographicBoundingBox>
						<westBoundLongitude>-150</westBoundLongitude>
						<eastBoundLongitude>-100</eastBoundLongitude>
						<southBoundLatitude>30</southBoundLatitude>
						<northBoundLatitude>50</northBoundLatitude>
					</EX_GeographicBoundingBox>
					<BoundingBox CRS="EPSG:26986" minx="189000"
				miny="834000" maxx="285000" maxy="962000" resx="1" resy="1" />
					<MinScaleDenominator>0</MinScaleDenominator>
				 <MaxScaleDenominator>100000000</MaxScaleDenominator>
				</Layer>
				<Layer queryable="1" cascaded="1" noSubsets="0" fixedWidth="0"
 fixedHeight="0">
					<Name>Google:Map</Name>
					<Title>Google:Map</Title>
					<EX_GeographicBoundingBox>
						<westBoundLongitude>-150</westBoundLongitude>
						<eastBoundLongitude>-100</eastBoundLongitude>
						<southBoundLatitude>30</southBoundLatitude>
						<northBoundLatitude>50</northBoundLatitude>
					</EX_GeographicBoundingBox>
					<BoundingBox CRS="EPSG:26986" minx="189000"
				miny="834000" maxx="285000" maxy="962000" resx="1" resy="1" />
					<MinScaleDenominator>0</MinScaleDenominator>
				 <MaxScaleDenominator>100000000</MaxScaleDenominator>
				</Layer>
				<Layer queryable="1" cascaded="1" noSubsets="0" fixedWidth="0"
										fixedHeight="0">
					<Name>Google:Satellite</Name>
					<Title>Google:Satellite</Title>
					<EX_GeographicBoundingBox>
						<westBoundLongitude>-150</westBoundLongitude>
						<eastBoundLongitude>-100</eastBoundLongitude>
						<southBoundLatitude>30</southBoundLatitude>
						<northBoundLatitude>50</northBoundLatitude>
					</EX_GeographicBoundingBox>
					<BoundingBox CRS="EPSG:26986" minx="189000"
				miny="834000" maxx="285000" maxy="962000" resx="1" resy="1" />
					<MinScaleDenominator>0</MinScaleDenominator>
				 <MaxScaleDenominator>100000000</MaxScaleDenominator>
				</Layer>
			</Layer>
		</Layer>
	</Capability>
</WMS_Capabilities>

[bookmark: _Toc189816091]APPENDIX D: A sample WFS Capabilities.xml Instance
[image:][image:]
[image:][image:]
[image:]

[bookmark: _Toc189816092]APPENDIX E: A Simplified WMS Web Services Service Definition file (WSDL)
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions	targetNamespace="http://services.wms.ogc.cgl" xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://services.wms.ogc.cgl"
xmlns:intf="http://services.wms.ogc.cgl"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<!--WSDL created by Apache Axis version: 1.2RC2
Built on Dec 08, 2004 (12:13:10 PST)-->
 <wsdl:message name="getFeatureInfoResponse">
 <wsdl:part name="getFeatureInfoReturn" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="getMapResponse">
 <wsdl:part name="getMapReturn" type="xsd:anyType"/>
 </wsdl:message>
 <wsdl:message name="getCapabilityResponse">
 <wsdl:part name="getCapabilityReturn" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="getMapRequest">
 <wsdl:part name="request" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="getFeatureInfoRequest">
 <wsdl:part name="request" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="getCapabilityRequest">
 <wsdl:part name="request" type="xsd:string"/>
 </wsdl:message>
 <wsdl:portType name="WMSServices">
 <wsdl:operation name="getMap" parameterOrder="request">
 <wsdl:input message="impl:getMapRequest" name="getMapRequest"/>
 <wsdl:output message="impl:getMapResponse" name="getMapResponse"/>
 </wsdl:operation>
 <wsdl:operation name="getCapability" parameterOrder="request">
 <wsdl:input message="impl:getCapabilityRequest" name="getCapabilityRequest"/>
 <wsdl:output message="impl:getCapabilityResponse" name="getCapabilityResponse"/>
 </wsdl:operation>
 <wsdl:operation name="getFeatureInfo" parameterOrder="request">
 <wsdl:input message="impl:getFeatureInfoRequest" name="getFeatureInfoRequest"/>
 <wsdl:output message="impl:getFeatureInfoResponse" name="getFeatureInfoResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="WMSServicesSoapBinding" type="impl:WMSServices">
 <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="getMap">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="getMapRequest">

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://services.wms.ogc.cgl" use="encoded"/>
 </wsdl:input>
 <wsdl:output name="getMapResponse">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://services.wms.ogc.cgl" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getCapability">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="getCapabilityRequest">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://services.wms.ogc.cgl" use="encoded"/>
 </wsdl:input>
 <wsdl:output name="getCapabilityResponse">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://services.wms.ogc.cgl" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getFeatureInfo">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="getFeatureInfoRequest">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://services.wms.ogc.cgl" use="encoded"/>
 </wsdl:input>
 <wsdl:output name="getFeatureInfoResponse">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://services.wms.ogc.cgl" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="WMSServicesService">
 <wsdl:port binding="impl:WMSServicesSoapBinding" name="WMSServices">
 <wsdlsoap:address location="http://localhost:8080/wmsstream/services/WMSServices"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

[bookmark: _Toc189816093]APPENDIX F: A Simplified WFS Web Services Service Definition file (WSDL)
[image:]

[image:]
[image:]

[bookmark: _Toc189816094]APPENDIX G: Sample GetFeature Request for WFS - for earthquake fault data
[image:]

[bookmark: _Toc189816095]APPENDIX H: Sample GML document for earthquake fault data. This is simplified document to give an idea about the common data model.

[image:]
[bookmark: _Ref188604480][bookmark: _Ref188604496][bookmark: _Toc189816096]APPENDIX I: Sample GetFeature Response from

[image:]
[image:]
[bookmark: _Toc189816097]APPENDIX J: Generic XSL file for HTML creation from the GML in order to create responses for the getFeatureInfo
[image:]
[image:]

[bookmark: _Toc189816098]REFERENCES
[bookmark: welu:pxp:2006][Lu 2006] Wei Lu, Kenneth Chiu, and Yinfei Pan, “A Parallel Approach to XML Parsing”. In the 7th IEEE/ACM International Conference on Grid Computing, 2006.
[Pallickara2003] 	Pallickara S. and Fox G., “NaradaBrokering: A Distributed Middleware Framework and Architecture for Enabling Durable Peer-to-Peer Grids” ACM/IFIP/USENIX, Rio Janeiro, Brazil June 2003.
[Donbox] Don Box, David Ehnebuske, Gobal Kakivaya, Andrew Layman, Dave Winer., Simple Object Access Protocol (SOAP) Version 1.1, May 2000.
[Sosnoski] Sosnoski, D. “XML and Java Technologies”, performance comparisons of the Java based XML parsers. Available at http://www-128.ibm.com/developerworks/xml/library/x-injava/index.html
[Alexander] 	Aleksander Slominski. XML Pull Parser, visited 04-15-02. http://www.extreme.indiana.edu/xgws.
[Vretanos]	Vretanos, P. (ed.), Web Feature Service Implementation Specification (WFS) 1.0.0, OGC Document #02-058, September 2003
[GML] Cox, S., Daisey, P., Lake, R., Portele, C., and Whiteside, A. (eds) (2003), OpenGIS Geography Markup Language (GML) Implementation Specification. OpenGIS project document reference number OGC 02-023r4, Version 3.0.
[WMS] de La Beaujardiere, J., Web Map Service, OGC project document reference number OGC 04-024. 2004.
[Kris03] Kris Kolodziej, OGC OpenGIS consortium, OpenGIS Web Map Server Cookbook 1.0.1, OGC Document #03-050r1, August 2003
[WFS] Vretanos, P. (2002) Web Feature Service Implementation Specification, OpenGIS project document: OGC 02-058, version 1.0.0. Volume,
 [Booth]Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., and Orchard, D. “Web Service Architecture.” W3C Working Group Note, 11 February 2004. Available from http://www.w3c.org/TR/ws-arch.
[Tran] Tran, P., Greenfield, P., and Gorton, I., Behavior and Performance of Message-
Oriented Middleware Systems. . Proceedings of the 22nd international Conference on Distributed Computing Systems, ICDCSW. 2002.
 [ogc] The Open Geospatial Consortium, Inc. web site: http://www.opengeospatial.org
[deegree] deegree project web site available at http://deegree.sourceforge.net/
[minmapserv]University of Minnesota Map Server, available at http://mapserver.gis.umn.edu/
[Patterninfo] Tiampo, K.F., Rundle, J. B., McGinnis, S. A., & Klein, W., , Pattern dynamics and forecast methods in seismically active regions. Pure and Applied Geophysics (PAGEOPH), 2002(159): p. 2429-2467).
[Tiampo] Tiampo, K.F., Rundle, J. B., McGinnis, S. A., Gross, S. J. & Klein, W., Eigenpatterns in Southern California seismicity. . J. Geophys. Res. , 2002. 107(B12): p. 2354.
[Nanzo06] K. Z. Nanjo, J.R.H., C. C. Chen, J. B. Rundle, and D. L. Turcotte. , Application of a modified Pattern Informatics method to forecasting the locations of future large earthquakes in the central Japan, . Tectonophysics, 2006. 424: p. 351-366
[Denning] P.J. Denning and S. C. Schwartz, Properties of the working-set model. Communications of the ACM, 15(3), March 1972.
[Belur] Belur V. Dasarathy, editor (1991) Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques, ISBN 0-8186-8930-7.
[AjaxSerrano] Nicolas Serrano, Juan Pablo Aroztegi, Ajax Frameworks for Interactive web apps, IEEE Software Magazine V24n5 (Sep/Oct 2007) pp12-14.
[AjaxJames] Jesse James Garret, Ajax: A New Approach to Web Applications. http://www.adaptivepath.com/publications/essays/archives/000385.php
[Googlemap] Project web site is available at http://code.google.com/apis/maps/index.html
[tanenbaum] Andrew S. Tanenbaum, Modern Operating Systems, 2nd ed., Upper Saddle River, NJ: Prentice Hall, 2001.
[apache] Apache Tomcat, http://tomcat.apache.org/.
[Foster04] Foster, I. and Kesselman, C., (eds.) The Grid 2: Blueprint for a new Computing Infrastructure, Morgan Kaufmann (2004).
[Berman03] Fran Berman, Geoffrey C, Fox, Anthony J. G. Hey., Grid Computing: Making the Global Infrastructure a Reality. John Wiley, 2003.
[Koontz] Koontz, L. D. Geographic Information Systems: Challenges to Effective Data Sharing, Washington, D.C.: General Accounting Office, Report GAO-03-874T. 2003.
[Booth04] Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., and Orchard, D. “Web Service Architecture.” W3C Working Group Note, 11 February 2004. Available from http://www.w3c.org/TR/ws-arch.
[Aydin] Galip Aydin, Ahmet Sayar, Harshawardhan Gadgil, Mehmet S. Aktas, Geoffrey C. Fox, Sunghoon Ko, Hasan Bulut, and Marlon E. Pierce Building and Applying Geographical Information Systems Grids. (To appear) in journal of Concurrency and Computation: Practice and Experience
[Kreger] Kreger, H., Web Services Conceptual Architecture (WSCA 1.0). 2001. p. 6-7.
[Belwood] Belwood, T., L. Clement, and C. von Riegen, UDDI Version 3.0.1: UDDI Spec Technical Committee Specification. Available from http://uddi.org/pubs/uddiv3.0.1-20031014.htm. 2003.
[Christensen] Christensen, E., et al., Web Services Description Language (WSDL) 1.1. 2001, March.
[Kirtland] Kirtland, M., A Platform for Web Services. 2001, Jan.
[Redmond] Redmond, F.E., Dcom: Microsoft Distributed Component Object Model with Cdrom. 1997: IDG Books Worldwide, Inc. Foster City, CA, USA.
[Rmi] Redmond, F.E., Dcom: Microsoft Distributed Component Object Model with Cdrom. 1997: IDG Books Worldwide, Inc. Foster City, CA, USA. 90. Microsystems, S., Java Remote Method Invocation Specification. 2002.
[SayarIsprs] Ahmet Sayar, Marlon Pierce and Geoffrey Fox, Developing GIS Visualization Web Services for Geophysical Applications, ISPRS 2005 Spatial Data Mining Workshop, Ankara, Turkey.
[Peng03] Peng, Z.R. and M. Tsou, Internet GIS: Distributed Geographic Information Services for the Internet and Wireless Networks. 2003: Wiley
[Lansing02] Jeff Lansing., OWS1 Coverage Portrayal Service (CPS) Specifications 1.0.0, Document #02-019r1 February 2002.
[Sayar06] Ahmet Sayar, Marlon Pierce, and Geoffrey C. Fox, “Integrating AJAX Approach into GIS Visualization Web Services.”, IEEE International Conference on Internet and Web Applications and Services, ICIW'06, February 2006.
[Vretanos01] Vretanos, P.A., Filter Encoding Implementation Specification. OGC 02-059. Ver 1.0. 0. 2001. p. 02-059.
[Rao00] Rao, A.P., et al., Overview of the OGC catalog interface specification. 2000.
[Galipthesis] Galip Aydin, “Service Oriented Architecture for Geographic Information Systems Supporting Real Time Data Grid” Indian University thesis, February 2007.
[Votable] Williams, F. Ochsenbein, C. Davenhall, D. Durand, P. Fernique, D. Giaretta, R. Hanisch, T. McGlynn, A. Szalay and A. Wicenec, “VOTable: A Proposed XML Format for Astronomical Tables”, version 1.0, R., 15 April 2002.
[Cml] G. L. Holliday, P. Murray-Rust, H. S. Rzepa, Chemical Markup, XML and the Worldwide Web. Part 6. CMLReact; An XML Vocabulary for Chemical Reactions, J. Chem. Inf. Mod., 2006, 46, 145-157.
[Mathml] Buswell, Steven; Devitt, Stan; Diaz, Angel; et al (7 July 1999). Mathematical Markup Language (MathML), 1.01 Specification (Abstract).
[Mitchell] Tyler Mitchell, “Build AJAX-Based Web Maps Using ka-Map” August 2005. Available at http://www.xml.com/pub/a/2005/08/10/ka-map.html
[Ecma1] EcmaScript project web site is available at http://www.ecmainternational.org/
[Ecma2] ECMAScript Language Specification. ECMA International, third edition, 1999.
[Ferraiolo2003] Ferraiolo, Dean Jackson, Scalable Vector Graphics (SVG) Sprcification 1.1., January 2003.
[xslurl] W3C XSL Web Site : http://www.w3.org/Style/XSL/
[crisisgrid] GIS Research at Community Grids Lab, Project Web Site: http://www.crisisgrid.org
[Meyer03] Thomas W. Meyer, et al., The Los Alamos Center for Homeland Security. LOS ALAMOS SCIENCE, 2003. 28
[Bush04] Bush, B.W., NISAC Interdependent Energy Infrastructure Simulation System, Report LA-UR-04-7700,. 2004, Los Alamos National Laboratory.
[OnEarth] OnEarth, NASA OnEarth Web Map Service for global satellite images, available at http://onearth.jpl.nasa.gov/.
[Holliday05] Holliday, J.R., et al., A RELM earthquake forecast based on pattern informatics, in AGU Fall Meeting;. 2005: San Francisco, California,.
[Rundle03] Rundle, J.B., D.L. Turcotte, and R. SHCHERBAKOV, KLEIN, W., AND SAMMIS, C. , Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems. . Rev. Geophys. , 2003. 41(4).
[Hpsearch] Harshawardhan Gadgil, Geoffrey Fox, Shrideep Pallickara, Marlon Pierce, Robert Granat, Proceedings of the IEEE/ACM Cluster Computing and Grid 2005 Conference, CCGrid 2005, Cardiff, UK. See also HPSearch Web Site, http://www.hpsearch.org.
[Gadgil05] Harshawardhan Gadgil, Geoffrey Fox, Shrideep Pallickara, Marlon Pierce, Robert Granat A Scripting based Architecture for Management of Streams and Services in Real-time Grid Applications Proceedings of the IEEE/ACM Cluster Computing and Grid 2005 Conference (CCGrid 2005). Cardiff, UK May 2005 Pages 710-717.
[Hpsearch1] Gadgil, H., et al., HPSearch: Service Management & Administration Tool, in Abstract for VLAB Meeting Minnesota July 21-23 2005. 2005
[Peng] Peng, Z.R. and M. Tsou, Internet GIS: Distributed Geographic Information Services for the Internet and Wireless Networks. 2003: Wiley.
[Rundle2002] Rundle, JB, PB Rundle, W Klein, J Martins, KF Tiampo, A Donnellan and LH Kellogg, GEM plate boundary simulations for the Plate Boundary Observatory: Understanding the physics of earthquakes on complex fault systems, Pure and Appl. Geophys., 159, 2357-2381 2002.
[Donnellan] Donnellan, A., et al., Numerical simulations for active tectonic processes: increasing interoperability and performance.
[Servo] en, A., Donnellan, A., McLeod, D., Fox, G., Parker, J., Rundle, J., Grant, L., Pierce, M., Gould, M., Chung, S., and Gao, S., Interoperability and Semantics for Heterogeneous Earthquake Science Data, International Workshop on Semantic Web Technologies for Searching and Retrieving Scientific Data, Sanibel Island, FL, October 2003.
[Cce] Aydin, G., et al. SERVOGrid Complexity Computational Environments (CCE) Integrated Performance Analysis. in Grid Computing, 2005. The 6th IEEE/ACM International Workshop on. 2005: IEEE.
[Fox2005] Fox, G. and M. Pierce, SERVO Earthquake Science Grid, in summary of iSERVO technology October 2004 in January 2005 report High Performance Computing Requirements for the Computational Solid Earth Sciences edited by Ron Cohen and started at May 2004 workshop on Computational Geoinformatics.
[Bush03] Bush, B.W. and J.H. P. Giguere, S. Linger, A. McCown, M. Salazar, C. Unal, D.Visarraga, K. Werley, R. Fisher, S. Folga, M. Jusko, J. Kavicky, M. McLamore,E. Portante, S. Shamsuddin, NISAC ENERGY SECTOR: Interdependent Energy Infrastructure Simulation System (IEISS), in NISAC Capabilities Workshop. 2003:Portland, OR
[Esri] ESRI, ArcIMS, 9 Architecture and Functionality, J-8694. ESRI White Paper, http://downloads.esri.com/support/whitepapers/ims_/arcims9-architecture.pdf. 2004.
[Rabiner]Rabiner, L.R., A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE, 1989. 77(2): p. 257–286.
[Granat] Granat, R.A., A method of hidden Markov model optimization for use with geophysical data sets. Comp. Sci., 2003(2659): p. 892–901
[Quaketables] Andrea Donnellan, et al, QuakeTables Fault Database for Southern California. Approved project documentation available from http://quakesim.jpl.nasa.gov/QuakeTables_Doc.pdf
[Papakonstantinou95] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, J. D. Ullman: A Query Translation Scheme for Rapid Implementation of Wrappers. DOOD 1995: 161-186. http://www.cse.ucsd.edu/~yannis/papers/querytran.ps
[Li1998] Chen Li , Ramana Yerneni , Vasilis Vassalos , Hector Garcia-Molina , Yannis Papakonstantinou , Jeffrey Ullman , Murty Valiveti, Capability based mediation in TSIMMIS, ACM SIGMOD Record, v.27 n.2, p.564-566, June 1998
[Papakonstantinou96] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Object Fusion in Mediator Systems. In International Conference. on Very Large Data Bases (VLDB), 1996.
[Tomasic98]A. Tomasic, L. Raschid, P. Valduriez: Scaling Access to Heterogeneous Data Sources with DISCO. IEEE Transactions on Knowledge and Data Engineering, Vol. 10, No. 5, 1998:808-823.
[Levy96]A. Levy, A. Rajaraman and J. Ordille: Querying Heterogeneous Information Sources Using Sources Descriptions. Proceedings of VLDB, 1996: 251-262.
[Wiederhold92] Wiederhold G (1992), Mediators in the Architecture of Future Information Systems. IEEE Computer, 25, 3, 38-49.
[Alameh03]Alameh N., Chaining geographic information web services, IEEE Internet Computing, Sept-Oct 2003, 22- 29.
[Jerome05] S. Jerome, Web Map Context Service (WMC), OGC project document reference number OGC 05-005. Version 1.1.0. 2005.
[Sayartech] Ahmet Sayar, Marlon Pierce, Geoffrey Fox OGC Compatible Geographical Information Services Technical Report (Mar 2005), Indiana Computer Science Report TR610.
[Bunting03] Bunting, B., Chapman, M., Hurlery, O., Little M., Mischinkinky, J., Newcomer, E., Webber J, and Swenson, K., Web Services Context (WS-Context) Specification, Version 1.0, July 2003.
[Liping03] Di, L., et al., The Integration of Grid Technology with OGC Web Services (OWS) in NWGISS for NASA EOS Data, in GGF8 & HPDC12 2003: Seattle, USA. . p. 24-27.
[Boyd04] Michael Boyd, Charalambos Lazanitis, Sasivimol Kittivoravitkula, Peter Mc. Brien, and Nikolaos Rizopoulos. AutoMed: A BAV Data Integration Sys-tem for Heterogeneous Data Sources. In Advanced Information Systems Engineering 16th International Conference, CAiSE 2004, Riga, Latvia, June 7-11, 2004, Pro-ceedings. Springer-Verlag, 2004.
[Friedman99] Mark Friedman, L. Y. Alon and M. D. Todd. Navigational Plans For Data Integration. In AAAA/IAAI, pages 67-73, 1999.
[Lenzerini02] Maurizio Lenzerini, Data Integration: A Theoretical Perspective. In PODS Proceedings, PAGES 233-246, 2002. Invited Tutorial.
[Busse99] Busse, S., Kutsche, R.-D., Leser, U., and Weber, H.: Federated Information Systems: concepts, terminology and architectures, Technical Report Nr. 99-9, TU Berlin, 1999.
[Bigagli06] L. Bigagli, S. Nativi, P. Mazzett, Mediation to deal with information heterogeneity − application to Earth System Science, Advances in Geosciences, Vol. 8, pp 3-9, 6-6-2006.
[Fox04] Fox, G., Grids of Grids of Simple Services. Computing in Science and Engg., 2004. 6(4): p. 84-87.
[Kelvin04] Kelvin K. Droegemeier, et al. Linked environments for atmospheric discovery (LEAD): A cyberinfrastructure for mesoscale meteorology research and education. in 20th Conf. on Interactive Information Processing Systems for Meteorology, Oceanography, and Hydrology, . 2004. Seattle, WA.
[Plale06] Beth Plale, et al., CASA and LEAD: Adaptive Cyberinfrastructure for Real-Time Multiscale Weather Forecasting IEEE Computer, 2006. 39(11): p. 56-64.
[Beth06] Beth Plale, Rahul Ramachandran, and S. Tanner, Data Management Support for Adaptive Analysis and Prediction of the Atmosphere in LEAD, in 22nd Conference on Interactive Information Processing Systems for Meteorology, Oceanography, and Hydrology (IIPS),. 2006.
[Zaslavsky04] Zaslavsky, Ilya, Ashraf Memon, “GEON: Assembling Maps on Demand from Heterogeneous Grid Sources”, Twenty-fourth Annual ESRI International User Conference, August 9-13, 2004, San Diego, CA.
[Bhatia00]	Bhatia, Karan, Ashraf Memon, Ilya Zaslavsky, Dogan Seber, Chaitan Baru, “Creating Grid Services to Enable Data Interaoperability: Example from GEON Project”, GSA Annual Meeting in Seattle, WA November 2-5, 2000.
[EsriArcIms] ESRI, ArcIMS, 9 Architecture and Functionality, J-8694. ESRI White Paper, http://downloads.esri.com/support/whitepapers/ims_/arcims9-architecture.pdf. 2004.
[Laits] LAITS project web side is available at http://grid.laits.gmu.edu
[Chu06] Kai-Dee Chu, Liping Di, Peter Thornton: Introduction of Grid Computing Application Projects at the NASA Earth Science Technology Office. 289-298, 2006.
[Allock03] W. Allcock et al. GridFTP: Protocol extensions to FTP for the Grid. GGF Document Series GFD.20, Apr. 2003. Also available as http://www.ggf.org/ documents/GFD.20.pdf
[Foster97]I. Foster and C. Kesselman. Globus: A meta-computing infrastructure toolkit. International Journal of Supercomputer Applications, 11:115–128, 1997
[Wsrf] Web Services Resource Framework, www.globus.org/wsrf/
[Novotny04] Jason Novotny , Michael Russell , Oliver Wehrens, GridSphere: An Advanced Portal Framework, Proceedings of the 30th EUROMICRO Conference (EUROMICRO'04), p.412-419, August 31-September 03, 2004
[Russell04] M. Russell, G. Allen, G. Daues, I. Foster, E. Seidel, J. Novotny, J. Shalf, G. Laszewski The Astrophysics Simulation Collaboratory: A Science Portal Enabling Community Software Development. Cluster Computing 5(3): 297-304 (2002).
[Doyle] Doyle, A. and Reed, C.: Introduction to OGC web services: OGC interoperability program white paper. http://ip.opengis.org/ows/
[Rew1990] R. Rew and G. Davis, “The Unidata netCDF: Software for Scientific Data Access,” Sixth International Conference on Interactive Information and Processing Systems for Meteorology, Oceanography and Hydrology, Anaheim, CA, February 1990.
[bookmark: tex2html5][Williams02] Williams, R., et al. 2002, VOTable: A Proposed XML Format for Astronomical Tables, version 1.0, available at http://cdsweb.u-strasbg.fr/doc/VOTable/
[Yasuda04] Yasuda, N. et al. “Astronomical Data Query Language: Simple Query Protocol for the Virtual Observatory”, in ASP Conf. Ser., Vol. 314, ADASS XII, ed. F. Ochsen-bein, M. Allen, & D. Egret (San Francisco: ASP), p.293, 2004.

Average Response Times for Ordinary systems
Avg Resp Time	1	10	100	200	500	1000	5000	2375.2399999999998	2578.6944444444439	7973.1578947368434	13612.777777777779	30868.52	59335.69	287594.12	Data Size -KB

Time - msecs
Thousands
Log of Average Response Timings for Ordinary systems
Log(ART)	1	10	100	200	500	1000	5000	3.3757074983438473	3.4113998846143181	3.9016303646369352	4.1339467549217916	4.4895158076083765	4.7733159970331114	5.4587800024422126	Data Size -KB

Log(Time in msecs)
Average Response Times for Streaming and Non-Streaming cases for Ordinary system
ART-Streaming	10	30	100	300	1000	2425	2661	2945	3405	4570	ART-Non-Streaming	10	30	100	300	1000	3912.5	3917.1	4098.7	4414	5662.6	Data Size -KB

Log(Time) in msecs
Average times of parsing+extracting geometry data
DOM vs. Pull Parsing
Log(DOM)	1.0000000000000041E-3	1.0000000000000005E-2	0.1	1	5	10	2.6711728427150851	2.6937269489236799	2.7958800173440754	2.8808135922807914	3.1528995963937367	3.5510838651857797	Log(XPP)	1.0000000000000041E-3	1.0000000000000005E-2	0.1	1	5	10	1.192796952558534	1.8622059427061277	2.2625993890256741	2.432125016732344	2.8271991682841602	3.0110090643621827	Data Size -MB

Time - msecs
Average Response Times for the systems enhanced with proposed data approaches and streaming data transfer
Avg Resp Time	10	100	500	1000	5000	10000	1808.1304347826078	2635.4583333333799	5001.2857142857147	8225.7346938775518	33419.306122449212	64506.782608695656	data capture	10	100	500	1000	5000	10000	797.85106382977915	1384.8571428571283	3770.1632653061197	6794.9387755101416	31237.411764705881	61777.204081632575	map-rendering	10	100	500	1000	5000	10000	927.34782608694582	1168.2916666666667	1153.9591836734701	1360.408163265306	2116.1224489795918	2675.8695652173915	Data Size -KB

Time - msecs
Comparison of Average Response Times
Naive systems vs. systems enhanced with proposed approaches
Naïve Approach	10	100	500	1000	5000	10000	2578.6944444444439	7973.1578947368434	30868.52	59635.69	288594.12	574825.16	Enhanced with data approaches	10	100	500	1000	5000	10000	1808.1304347826078	2635.4583333333799	5001.2857142857147	8225.7346938775518	33419.306122449212	64506.782608695656	Data Size -KB

Time - msecs
Average Response Times for Prefetcing system
Response Time	1.0000000000000005E-2	0.1	0.5	1	5	10	50	100	19261.900000000001	19112.304347826092	19222.476190476191	19427.480000000021	20146	20165.904761904763	22882.523809523929	23990.428571428605	Data Size -MB

Time - msecs
Comparison of the Average Response Times
Prefetcing vs. On-demand systems
log(Pre-fetching)	1.0000000000000005E-2	0.1	0.5	1	5	10	50	100	19261.900000000001	19112.304347826092	19222.476190476191	19427.480000000021	20146	20165.904761904763	22882.523809523929	23990.428571428605	log(On-demand)	1.0000000000000005E-2	0.1	0.5	1	5	10	50	100	1808.1304347826078	2635.4583333333799	5001.2857142857147	8225.7346938775518	33419.306122449212	64506.782608695656	316906	643344	Data Size -MB

Log(Time - msecs)
Comparisons of data capturing times based on
different partitioning levels
single-thread	1.0000000000000005E-2	0.1	0.5	1	5	10	50	797.85106382978029	1384.8571428571302	3770.1632653061197	6794.9387755101507	31237.411764705881	61777.204081632575	308671.63	2-thread	1.0000000000000005E-2	0.1	0.5	1	5	10	50	769.94444444444446	1160.95	2664.4736842105262	5749.7894736842109	20350.380952380896	45072.75	247321.8	10-thread	1.0000000000000005E-2	0.1	0.5	1	5	10	50	1385.5	1712.2727272727273	2488.4666666666399	3440.8947368421486	15036.947368421053	20517.263157894737	192592.8	20-thread	1.0000000000000005E-2	0.1	0.5	1	5	10	50	2423.3000000000002	2483.3571428571827	2628.1	3820.3571428571827	14390.5	22060.266666666666	111753.2	Data Size -MB

Time - msecs
Comparisons of response times at different partitioning levels
single-thread	1.0000000000000005E-2	0.1	0.5	1	5	10	50	1808.1304347826078	2635.458333333373	5001.2857142857147	8225.7346938775518	33419.306122449212	64506.782608695656	316906.39	2-thread	1.0000000000000005E-2	0.1	0.5	1	5	10	50	1728.2777777777931	2031.35	3672.7368421052633	6977	22107.952380952385	47639.1	259341.66666666666	10-thread	1.0000000000000005E-2	0.1	0.5	1	5	10	50	2329.5	2760	3460.4	4640.5263157894733	16725.368421052721	23118.42105263158	204727.93333333332	20-thread	1.0000000000000005E-2	0.1	0.5	1	5	10	50	3589.1	3629.3571428571827	3759.4	5268.7857142857147	16148	22800.133333333095	120822	Data Size -MB

Time - msecs
Comparisons of response times with naive approach
single-thread	1.0000000000000005E-2	0.1	0.5	1	5	10	2578.6944444444439	7973.1578947368434	30868.52	59635.69	288594.12	574825.16	2-thread	1.0000000000000005E-2	0.1	0.5	1	5	10	1728.2777777777931	2031.35	3672.7368421052633	6977	22107.952380952385	47639.1	10-thread	1.0000000000000005E-2	0.1	0.5	1	5	10	2329.5	2760	3460.4	4640.5263157894733	16725.368421052721	23118.42105263158	20-thread	1.0000000000000005E-2	0.1	0.5	1	5	10	3589.1	3629.3571428571827	3759.4	5268.7857142857147	16148	22800.133333333095	Data Size -MB

Time - msecs
Comparisons of overheads based on
different partitioning levels
partitioning	5	10	15	20	25	30	51.28	58.65	60.15	68.75	69.05263157894737	85.421052631578945	sub-query crt	5	10	15	20	25	30	161.66666666666652	421.55	720.34999999999798	1058.8421052631579	1366.1	1837.1578947368398	merging	5	10	15	20	25	30	27	44.263157894736963	64.900000000000006	118.9047619047619	131.88235294117646	170	Partition Number

Time - msecs
Comparisons of response times
half-cached/10-thread	1.0000000000000005E-2	0.1	0.5	1	5	10	3095.19	3576.73	3721.7700000000004	4311.7300000000005	11294.580000000002	18371.72	no-cached/10-thread	1.0000000000000005E-2	0.1	0.5	1	5	10	2329.5	2760	3460.4	4640.5263157894733	16725.368421052721	23118.42105263158	no-cached/single-thread	1.0000000000000005E-2	0.1	0.5	1	5	10	1808.1304347826078	2635.458333333373	5001.2857142857147	8225.7346938775518	33419.306122449212	64506.782608695656	Data Size -MB

Time - msecs

82

image1.emf

image2.png

image3.png

image4.emf

image5.png

image6.png

image7.png

image8.png

image9.jpeg

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.emf

image21.png

image22.emf

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

