
1

Table of Contents

1. Performance Issues, and measurements and analysis ... 2

1.1. General Performance Issues in Interoperable Service-oriented GIS ... 3

1.1.1. Using Semi-structured Data Model ... 3

1.1.2. Data Characteristics .. 4

1.2. Ordinary GIS System Performance Using Common Data Model for the Interoperability (To

compare with) ... 6

1.3. High Performance Design and Evaluation of the Proposed System ... 10

1.3.1. Data-oriented Approaches ... 10

1.3.1.1. Streaming Data Transfer ... 10

1.3.1.2. Pull Parsing and Application Specific Rendering ... 14

1.3.2. Federator (AWMS)-oriented Approaches ... 18

1.3.2.1. Pre-Fetching .. 19

1.3.2.1.1. Fetching module (PM) ... 21

1.3.2.1.2. Performance Evaluation .. 23

1.3.2.2. Locality-based Query Decomposition and Parallel Processing 26

1.3.2.2.1. Caching, Cached-data Extraction and Rectangulation .. 28

1.3.2.2.2. Parallel-Processing with caching ... 32

1.3.2.2.3. Performance Evaluation .. 38

2

1. Performance Issues, and measurements and analysis

This chapter presents the common performance issues in service-oriented, federated and

interoperable GIS systems built based on the common structured data model. As the common

data model, OGC [ogc] defined Geographic Markup Language (GML) [GML] is used.

Developing a federated information system inspired us enhancing the whole system performance

by applying novel parallel processing and caching techniques applied together in large scale

interoperable information systems (see Chapter 1.3.2). In addition to this, we proposed some

other innovative performance enhancement techniques (see Chapter 1.3.1) such as streaming

data transfers, and enhanced parsing and rendering of semi-structured geo-data sets (GML). At

the end of each chapter explaining these techniques, performance tests and analysis are provided.

The organization of the rest of the chapter is as follows. Chapter 1.1 summarizes and reviews the

general performance issues of interoperable service-oriented GIS systems in which

interoperability is granted by using XML-structured common data model and Web Services.

Chapter 1.2 presents the limits of the ordinary GIS systems without having any performance

enhancements which will be our comparison base for our proposed techniques. Throughout the

document, with the term “ordinary” we mean on-demand, single-threaded and no-caching

systems. The last chapter (Chapter 1.3) explains our approaches to developing high performance

GIS systems, and performance evaluations by comparing with the ordinary systems. We

approach the performance issues from the two aspects. One is data-oriented and the other is

federator-oriented. The data-oriented approaches deal with transferring large-sized XML

structured data in common model, and high performance parsing and rendering algorithms. The

federator-oriented approaches deal with the performance enhancement techniques based on data

characteristics. For the un-frequently changing archived data handling we propose pre-fetching

3

technique. On the other hand, for the frequently changing archived data, we propose a hybrid

technique composed of caching and parallel processing applied together. This hybrid system is

actually proposes a novel locality based workload forecasting for variable sized and un-evenly

distributed data, and locality information is obtained from the session based one time caching

(Chapter 1.3.2.2).

1.1. General Performance Issues in Interoperable Service-oriented GIS

Performance issues in interoperable service-oriented GIS can be generalized into two groups:

- Issues regarding semi-structured data model (GML).

- Issues regarding domain specific data characteristics. In GIS, the data is described with

location attribute defined in (x, y) coordinates. Based on the location value, the data is

characterized as un-evenly distributed and variable sized.

1.1.1. Using Semi-structured Data Model

Using semi-structured data model enables interoperability and inter-service communication.

XML’s emergence as the de facto standard for encoding tree-oriented, semi-structured data has

brought significant interoperability and standardization benefits to distributed computing. On the

other hand, performance has been still a persistent concern for large scale applications, because

of the size issues and processing overheads [Lu2006]. The processing is detailed as parsing and

differentiating (separating) the core-data from the attributes and other tags to create required

application specific data formats.

Structured data representations enable adding some attributes and additional information to the

data. These attributes and additions are mostly due to the interoperability and security reasons.

4

XML representations of data tend to be significantly larger than binary representations of the

same data. The larger document size means that the greater bandwidth is required to transfer of

data, as compared to the equivalent binary representations. The larger size often implies greater

processing costs as well, since much of the overhead involved in communication processing is

going to be based on the data volume.

There are two well-known and commonly-used paradigms for processing XML data, the

Document Object Model (DOM) and the Simple API for XML (SAX). DOM builds a complete

object representation of the XML document in memory. This can be memory intensive for large

documents, and entails making at least two passes through the data. SAX operates at one level

lower. Rather than actually constructing a model in memory, it informs the application of

elements through callbacks. This also requires at least two passes through the data. These are all

expensive and resource (such as CPU and memory) consuming processes and they don’t provide

enough performance for the large scale applications.

In the document these issues are called data-oriented performance issues, and the proposed

solution approaches are presented in Chapter 1.3.1

1.1.2. Data Characteristics

The different domains have different data types having different characteristic to be handled. As

an example, in GIS domain, which is our motivating domain, science applications need to

manipulate geo-data. Geo-data is described with its location ((x, y) coordinates) on the earth.

Based on the location attribute, geo-data is un-evenly distributed (such as human-population and

temperature distributions) and variable sized. Because of these characteristics, it is not easy to

implement some well-known performance enhancing techniques as applied in other science

domains. Since it is not possible to know the work-load earlier, the classic load balancing

5

algorithms do not work for the variable sized and unevenly distributed data. The work is

decomposed into independent work pieces, and the work pieces are of highly variable sized. This

issue is illustrated in Figure 1 for the case of using one-step-binary query partitioning based on

the location attribute of the data. As it is illustrated in the figure, there are four worker nodes, and

the worker node assigned to R2 gets the heaviest part of the total work, and therefore the

expected performance gain from usinf classic load balancing will not be obtained.

The geo-data is queried based on their attributes. Since all the data is described by their

locations, in order to get the data sets falling in a specific region, the bounding box (bbox) values

are used. The regions are defined in bboxes. A bbox defines a rectangular shape in a two-sim

coordinate plane, and it is dormulated as (minx, miny, maxx, maxy). For example, Figure 1

shows a region formulated in bbox value (a, b, c, d).

These performance issues are dealt with in Chapter 1.3.2 which is called federator-oriented

performance issues.

Before giving our solution approaches to these issues generalized in last two chapters, we give

the ordinary OGC compatible GIS systems’ performance results and present general processes

R1

R2 R3

R4

(c,d)

(a,b)
((a+c)/2, b)

(a,b)

(c,d)

(a) (b)

(c, (b+d)/2) (c, (b+d)/2)

((a+c)/2, b)

Figure 1: Un-balanced load sharing. Server assigned R2:“((a+b)/2, (b+d)/2), (c, d)” gets the most of the work.

6

involved in it. Interoperability is granted by using structured common data model for the

representation of any data.

The performance results presented in the following chapter will be our comparison base for the

proposed techniques’ measurement of successes.

1.2. Ordinary GIS System Performance Using Common Data Model for the

Interoperability (To compare with)

In order to solve data and service heterogeneities for the GIS computation and data services

OGC and ISO/TC-211 standards are used. These standards recommend using structured common

data model called GML for the representation of location based geo-data. The standard bodies

aim is to make the geographic information and services neutral and available across any network,

application, or platform. Currently the two major geospatial standards organizations are the Open

Geospatial Consortium (OGC) and the Technical Committee tasked by the International

Standards Organization (ISO/TC211).

With the ordinary system we mean a GIS developed with widely used technique without using

any novel advanced techniques to handle the data. Most of the implementations are based on

single-threaded and on-demand processing. Deegree project [deegree] and Minnesota Map

Server [minmapserv] can be given as sample projects. In order to compare and contrast our novel

approaches to the ordinary systems approaches, we tested and presented their performance

results at Table 1 and Figure 2.

This performance results teach us valuable lessons in terms of the capabilities and limits of the

general distributed and interoperable GIS systems. From the figure we draw following

conclusions. First, for the small data payloads (less than 500KB) the response time is acceptable.

However for larger data payloads

relatively longer. On the other hand, scientific application

parsing, rendering and displaying) large scale data.

Table 1: The round

Data Size

KB

1

10

100

200

500

1000

5000

(a)

0

50

100

150

200

250

300

350

0 1000 2000 3000

T
im

e
 -

m
se

cs
T

h
o

u
sa

n
d

s

Data Size

Average Response Times for Ordinary systems

Figure 2: (a) Performance result of the

payloads the performance gets worse and the response time gets

On the other hand, scientific applications require handling (transferring,

parsing, rendering and displaying) large scale data.

: The round-trip times (or response times) of the ordinary system.

ART- Average

Response Log(ART) Standard

Times (msec) msec Deviation

1 2,375.24 3.38 152.40

10 2,578.69 3.41 252.49

100 7,973.16 3.90 374.12

200 13,612.78 4.13 417.19

500 30,868.52 4.49 482.83

1000 59,635.69 4.78 343.76

5000 288,594.12 5.46 333.07

(b)

3000 4000 5000 6000
Data Size -KB

Average Response Times for Ordinary systems

Avg Resp Time

rformance result of the ordinary system. (b) Sample output consisting of

7

and the response time gets

handling (transferring,

of the ordinary system.

system. (b) Sample output consisting of two layers.

8

In order to be able to make more reasonable comparisons, we adjusted the timing values given in

Table 1 by taking their logarithmic values and plotted them in Figure 3.

Figure 3: Adjusted performance values over Figure 2 for the ordinary systems.

The test above shows that the performance is not enough in order to meet Geo-Science Grids’

performance requirements. As you see, if the spatial data is over 500KB, the ordinary system

framework is not feasible to use in large scale science applications. Time column (y) in the

Figure 2 (a) and Figure 3 represent response times including querying, transforming, rendering

and displaying spatial data. In other words the figure illustrates the response time of the ordinary

GIS systems as formulated below:

time(measured) = time(result is displayed) – time(client makes request).

Measured time in the figure (time(measured)) can be detailed as below:

0

1

2

3

4

5

6

0 1000 2000 3000 4000 5000 6000

Lo
g

(T
im

e
 i

n

m
se

cs
)

Data Size -KB

Log of Average Response Timings for Ordinary systems

Log(ART)

9

- [time(client makes request).] Client makes requests by interactive smart map tools to Web Map

Server (WMS).

- WMS parse and render requests and define set of actions required based on the requests and

its capabilities file.

- WMS Creates map images (from the returned datasets) and returns them to the clients:

o Defines the set of WFSs [WFS] and other WMSs [WMS] to communicate with to

build the response by in accordance with its capability file.

o Creates requests for WFSs and other WSMs

o Invokes WFSs getFeature Web Services for vector data encoded in Geographic

Markup language (GML) [GML].

o Invokes other WMSs getMap Web Services for raster data rendered in map images

o Transferring GML data (feature collections) from WFS and WMS

o Parsing and rendering returned GML data sets

o Aggregating and overlaying layers according to the request and capability file.

o Sending the map images to the WMS Client.

- [time(map is displayed)] Client shows the returned maps on his browser

From our experience we saw that depending on the total data size, over %90 of the time(measured)

comes from the step called “transferring GML data (feature collections) from WFS and WMS”.

Because of that, even if we use the most efficient and fast parsing and rendering algorithms (such

as using pull parsing or application specific XPath querying), it won’t improve performance very

much if the data transfer time still stays that much high as shown in the Figure 2.

10

1.3. High Performance Design and Evaluation of the Proposed System

Our approaches to the performance issues are grouped into two. The first group of approaches

deals with the general performance issues result from using semi-structured data encodings (such

as GML), and large size data exchange, parsing and rendering (Chapter 1.3.1). The second group

of approaches is regarding the federator oriented design and techniques to enhance the overall

system performance (Chapter 1.3.2).

1.3.1. Data-oriented Approaches

Distributed GIS systems typically handle a large volume of datasets. Therefore the transmission,

processing and visualization/rendering techniques used need to be responsive to provide quick,

interactive feedback. There are some characteristics of GIS services and data that make it

difficult to design distributed GIS with satisfactory performance. One of them is that GIS

services often transmit large resulting datasets such as structured data, images, or large files in

tabular-matrix formats.

In order to provide interoperability and extensibility we use common data format represented and

formulated in XML. This degrades the performance even worse for large scale applications. The

major hurdle of the proposed federated GIS framework is encoding, transferring and rendering

the data in common data model. In the following two sub-sections we present our approaches to

these issues. One is regarding large scale structured data transfer (Chapter 1.3.1.1) and other is

regarding the large scale data parsing (Chapter 1.3.1.2).

1.3.1.1. Streaming Data Transfer

Our experience shows that although we can easily integrate several GIS services into complex

tasks by using Web Services, providing high-rate transportation capabilities for large amounts of

data remains a problem because the pure Web Services implementations rely on SOAP [Donbox]

11

messages exchanged over HTTP. This conclusion has led us to an investigation of topic-based

publish-subscribe messaging systems for exchanging SOAP messages and data payload between

Web Services. We have used NaradaBrokering [Pallickara2003] which provides several useful

features besides streaming data transport such as reliable delivery, ability to choose alternate

transport protocols, security and recovery from network failures.

Naradabrokering is a message oriented middleware (MoM) [Tran] system which facilitates

communications between entities through the exchange of messages. This also allows us to

receive individual results and publish them to the messaging substrate instead of waiting for

whole result set to be returned.

In case of transferring the GML result set in the form of string causes some problems when the

GML is larger than some amount of size (500KB see Figure 2-a). Since the WFS returns the

resulting XML document as an <xsd:string>, this has to be constructed in memory and the size

will depend on several parameters such as the system configuration and memory allocated to the

Java Virtual Machine etc. Consequently there will be a limit on the size of the returned XML

documents. For these reasons we have investigated alternative ways for data transport and,

researched the use of topic based publish-subscribe messaging systems for streaming the data.

Our research on NaradaBrokering shows that it can be used to stream large amount of data

between nodes without significant overhead. Additional capabilities such as reliable messaging

and support for different transport protocols already inherent in NaradaBrokering show that it is

a powerful yet easy to integrate messaging infrastructure. For these reasons we have developed a

novel Web Map Service and Web Feature Service that integrate OGC specifications with Web

Service-SOAP [Donbox] calls and NaradaBrokering messaging system. Architecture is shown in

Figure 4.

12

Connection lines 2 and 3, and UDDI (Universal Description, Discovery and Integration) [uddi]

service are displayed in the figure for showing classic publish-find-bind triangle of the Web

Service based Service Oriented architecture. We don’t go into details of these interactions and

UDDI registry service in this document but these can be summarized as following. WFS services

publish their existence and service providing wit their WSDL service description files (line-3).

Clients (such as WMS) find appropriate WFS by searching UDDI registries (line-2). After

finding appropriate service, clients are bind to that service by creating their client stubs. Instead

of using lines 2 and 3, clients can also directly communicate with the services if they know the

service’s WSDL file earlier.

In case of streaming through Naradabrokering, the clients make the requests with standard SOAP

messages (line-1) but for retrieving the results a NaradaBrokering subscriber class is used.

Figure 4: Streaming data transfer using Naradabrokering publish-subscribe topic based messaging

middleware.

Topic-wfs

(A)WMS

Server
WFS Server

Narada

Brokering

Server

UDDI

client server

Classic publish-

find-bind triangle

of Web Services

registry

 GML GML

1

2 3

getFeature

(topic, IP, port)
Publisher Subscriber

w

s

d

l

w s d l

13

Through first request to Web Service (called getFeature), WMS gets the topic (publish-subscribe

for a specific data), IP and port to which WFS streams requested data. Second request is done by

NaradaBrokering Subscriber. Even in the case of that the whole data is not received by WMS;

WMS can draw the map image with the returned data. This depends on the WMS’s internal

implementation.

Table 2 gives a comparison of the streaming and non-streaming data access approaches for the

different data sizes. These values are obtained by running Pattern Informatics (PI) [patterninfo]

geo-science application over the earthquake seismic data records. These are GML data access

times including query conversion at WFS, result set conversion from database to GML and

transfer times from WFS to AWMS.

Table 2: Data access times (from source to AWMS) while using (1) streaming and (2)non-streaming data

transfer techniques.

Streaming Non-Streaming

Data Size

(KB)

Average

Time for

Streaming

Average

Response

Time

Standard

deviation

Average

Response

Time

Standard

deviation

10 31.3 2425 38 3912.5 77

30 100 2661 27 3917.1 38

100 320.1 2945 50 4098.7 71

300 826.7 3405 48 4414 39

1000 2414.2 4570 360 5662.6 31

14

Figure 5 below explains that streaming data transfer enhancement is still not enough for

providing satisfactory large scale application performance. See Chapter 1.3.2 for the other

proposed overall performance enhancement techniques.

We can deduce from the table that for the larger data sets when using streaming our gain is about

25%. But for the smaller data sets this gain becomes about 40% which is mainly because in the

traditional Web Services the SOAP message has to be created, transported and decoded the same

way for all message sizes which introduces significant overhead.

Figure 5: Comparisons of Streaming vs. Non-Streaming data response timings from source to AWMS.

1.3.1.2. Pull Parsing and Application Specific Rendering

Proposed system includes data rendering/filtering tasks assigned to Web-based Map Services to

create comprehensible data representations derived from the semi-structured common data

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200

Lo
g

(T
im

e
)

in
 m

se
cs

Data Size -KB

Average Response Times (ART) for Streaming and Non-

Streaming cases for Ordinary system

ART-Streaming

ART-Non-Streaming

15

(GML). These comprehensible representations are called maps. Regarding the rendering of large

GML data and creating map images we use parsers.

There are three general parsing techniques proposed for processing XML structured data. These

are document model, push model and pull model. There are also other hybrid alternatives built

on these main approaches. In order to process data in XML structured common data model we

use pull parsing technique.

Pull parsing, as exemplified by the XML Pull Parser [Alexander], is an efficient paradigm

similar to SAX in that it does not build a complete object model in memory. It differs in that the

tags and content are returned directly to the application from calls to the parser, rather than

indirectly in the form of callbacks. The pull approach of this parsing model results in a very

small memory footprint (no document state maintenance required – compared to DOM), and

very fast processing (fewer unnecessary event callbacks - compared to SAX).

Pull parser only parses what is asked for by the application rather than passing all events up to

the client application as SAX parsing does. You can see the article where pull parsing is

compared with other leading Java based XML parsing implementations [Sosnoski].

Pull parsing does not provide any support for validation. This is the main reason that it is faster

than its competitors. Since all the services are OGC compatible and created in Web Service

principles, validation is not necessarily needed. In OGC, services describe themselves by

capability document and servers know each other by exchanging these document. If you are sure

that data is valid (as in our case), or if the validation errors are not catastrophic to your system, or

you can trust validity of the capabilities document of the server you are in contact, then using

XML Pull Parsing gives the highest performance results. For example in communication

16

between WFS and WMS, since it is known that WFS provides feature data in OGC’s GML

format [GML], it is very advantageous skipping validation and using “pull parsing”.

For application specific comparison of Pull parsing and DOM see Table 3 and Figure 6. The

performance values are measured in milliseconds and data sizes are in MBs. Performance test is

done with 1GB allocated JAVA Virtual Machine. Dashed-line values in the table represent

memory exceptions thrown. The figure illustrates the timing values for the data size till 100MB.

Above this threshold value for the Virtual Machine allocated 1GB memory, DOM become

useless.

Test case: For the XML data we use earthquake seismic data records encoded in GML. Each

earthquake seismic record has some attributes and some geometry elements. In our tests we will

parse the GML data in XML documents and extract the geometry elements. In case of DOM,

parsing and extraction are done separate as it is shown in two columns in Table 3. In case of pull

parsing, geometry data is extracted from GML with parsing and extraction applied all together.

Table 3: The performance values of DOM and Pull parsing (Xpp) over GML data. Dashed-line values imply

memory exception.

DOM (dom4j) Pull Parsing

Data

Size

(MB)

Average

Parsing

Time(msec) StdDev

Average

Rendering

Time(msec)

Average

Total Time

Pars+Rend StdDev

Average

Total

Time StdDev

0.001 394.29 18.68 75 469 21.32 15.59 0.87

0.01 429.32 36.46 65 494 20.87 72.81 7.41

0.1 484.41 18.18 141 625 23.04 183.06 23.25

1 663.94 18.09 96 760 31.58 270.47 40.09

17

5 1,247.00 36.74 175 1,422 47.66 671.74 76.05

10 2,126.63 20.73 1,430 3,557 61.51 1,025.67 51.49

100 1,159,613.67 13,122.61 ---- ---- ---- 7,059.72 93.16

150 ---- ---- ---- ---- ---- 11,047.89 107.80

200 ---- ---- ---- ---- ---- 14,949.12 253.15

Figure 6: Performance comparison of two XML data processors, pull parsing and Document Object Model

by using dom4j.

As it is mentioned dashed lines in Table 3 represent memory exceptions. It means system does

not have enough memory for completing its work. Since there is extreme performance difference

0

1

1

2

2

3

3

4

4

0 2 4 6 8 10 12

T
im

e
 -

m
se

cs

Data Size -MB

Parsing+extracting geometry data by using DOM or Pull

Parsing

Log(DOM)

Log(XPP)

18

between using DOM and pull parsing techniques, we plot their logarithmic values to illustrate

the performance gains of using pull parsing more clearly.

1.3.2. Federator (AWMS)-oriented Approaches

The federator (AWMS) in the proposed federated GIS system inherently enables load balancing

and parallel processing and this helps with enhancing the overall system performance. This

chapter presents the techniques and system design to develop high performance federated GIS

system through the federator.

The proposed system design and applied techniques are based on WMS Aggregator (AWMS).

AWMS is actually a WMS [WMS] with some extensions providing enhanced map rendering

services by using innovative pre-fetching, parallel processing with caching techniques. AWMS

aggregates, composes and orchestrates WMS and WFS services and, express the layer level

compositions in its capabilities file by federating other services’ capabilities metadata, and

present it to the users through “GetCapabilities” Web Service interface.

The system design changes depending on the characteristics of the data application use. For the

un-frequently changing data we propose pre-fetching (Chapter 1.3.2.1) technique. For the

frequently changing data (similar to real-time data) we propose hybrid approach composed of

caching and parallel processing techniques applied together (Chapter 1.3.2.2).

In summary, pre-fetching is purely for overcoming the natural bandwidth problem, caching helps

the system with preventing to redo the jobs of querying and rendering, and parallel processing

helps with workload sharing and parallel job run. Depending on the data characteristics, AWMS

uses only one or the combination of these techniques. These techniques will be explained in the

following sections.

19

1.3.2.1. Pre-Fetching

In the proposed integration framework we deal with the archived data in GML format. Archived

data does not change often. Therefore, it is not reasonable transferring and rendering the same

data again and again for every request coming from the different or even the same users. In order

to solve this problem we use pre-fetching. Pre-fetching is used to overcome the performance

degradation of transferring large sized data from source (database) to destination (WMS). It also

indirectly enables getting rid of the data transformation overhead at WFS. As it is mentioned

before, WFS transform any-data kept in databases into GML format every time it gets a request.

Pre-fetching is briefly defined as getting the data before it is needed. We accomplish the pre-

fetching by the data transfer technique explained in Section 1.3.1.1. The general architecture for

the pre-fetching is shown at Figure 7. A performance result of the pre-fetching and comparisons

to the on-demand fetching techniques are displayed in Figure 8 and Figure 9 respectively. Since

pre-fetching is independent of the real-time application and run in an asynchronous manner, it

does not degrade the proposed framework’s overall performance. It’s running times defined by

the periodicity parameter of the Pre-fetching module (PM) (see Figure 7).

The OGC’s standard WMS and WFS specifications are based on HTTP Get/Post methods, but

this type of services have several limitations such as the amount of data that can be transported,

the rate of the data transportation, and the difficulty of orchestrating multiple services for more

complex tasks. Web Services help us overcome some of these problems by providing standard

interfaces to the tools and applications we develop.

As in the proposed data exchange framework defined in Section 1.3.1.1, the pre-fetching module

make the requests with standard SOAP messages but for retrieving the results a NaradaBrokering

subscriber class is used. Through the “getFeature” interface of WFS Web Services, pre-fetching

20

module gets the topic name (publish-subscribe for a specific data), IP and port on which WFS

streams the requested data. Second request is done by NaradaBrokering Subscriber using the

returned parameters. GML data is provided by streaming WFS (implemented by G. Aydin)

[Vretanos]. It uses standard SOAP messages for receiving queries from the clients; however, the

query results are published (streamed) to a NaradaBrokering topic as they become available. In

order to do that, we define the “task” and “timer”. Task defines pre-fetching job, and timer

defines the running periodicity of the task. Different data might have different periodicities set.

Pre-fetching is done over the critical data. The critical data is the GML data affects the

performance because of their sizes.

There will be two separate locations for the pre-fetched data. One is temporary into which pre-

fetched data is stored. Another is stable which will be used for serving the clients' requests. Even

if the system is busy with the pre-fetching job, it keeps itself up and running for the clients by

using the stable storage. When the data transfer is done to the temporary location, all the data at

that location will be moved to stable location. Reading and writing the data files at the stable

locations will be synchronized to keep the data files consistent. This cycle is repeated at some

time intervals pre-defined by periodicity parameter of Pre-fetching Module (PM).

In order for the pre-fetching algorithm to work properly, pre-fetching module fetches the data as

a whole; no constraint should be defined in the query. On the other hand, the requests from

clients contain some query constraints. These queries and their constraints are handled at the A

WMS side. Queries are processed by using parser techniques and XPATH queries over the pre-

fetched data.

21

1.3.2.1.1. Fetching module (PM)

The pre-fetching module (PM) is composed of two components. One is “timer” defining the

periodicity that PF will be running, and other is “task” defining what to do. The periodicity

should not be less than the time to transfer one set of critical data. Assigning a periodicity at PM

is the most critical task. This is defined under the considerations of data characteristics and

developer’s experience on the domain specific application.

Since the system is developed in JAVA, we use Timer and TaskTimer JAVA class libraries to

implement the routinely running pre-fetching module.

Here is the “task” defined in a pseudo code:

...... public void pseudo_TASK() {

............ Vector CDMdataList = new Vector();

............ CDMdataList = getListPerformanceCritical_GMLDataNames();

............ String tempDatastore = applpath + "/prefetchedData";

WMS Aggregator
User Portal

Interactive

Tools

WFS

Processor

1

2

WMS

WMS

WFS

WFS

1

2
PM

NB
Temp

Storage

GML

Synch move

Local File

System

PF: Pre-fetching module

NB: NaradaBrokering

WMS: Web Map Service

WFS: Web Feature Service

Figure 7: Pre-fetching architecture embedded to the federated GIS system

22

............ String stableDatastore = applpath + "/prefetchedDataUsed";

............ //Fetching all the data in CDM format (GML) - with NB

............ fd.FetchDataWithStreaming(NBip,NBport,NBtopic,

..wfs_address,tempDatastore,CDMdataList);

............ //After pre-fetching is done move the data to stable storage

............ fd.moveData(tempDatastore, stableDatastore);

...... }

We also define timer determining the periodicity of task to run. The below sample code sets the

periodicity of “task” defined above to three days. It means PF will be running once every three

days.

Timer timer = new Timer();

timer.schedule(task, 0, 40000);

Timer class schedules the specified task for repeated fixed-delay execution, beginning after the

specified delay. Subsequent executions take place at approximately regular intervals separated by

the specified period.

There are two concerns in developing an efficient pre-fetching architecture. First one is limited

storage capacity for a node. The size of the pre-fetched data is constrained by local node’s

storage capacity. Second one is regarding the pre-fetched data characteristics. Some archived

data is updated so often that they look like real-time data. In that case, pre-fetching becomes un-

feasible and cannot be benefited. For this type of data (archived but updated frequently), we

propose a novel parallel processing approach applied together with the caching (see Chapter

1.3.2.2).

23

1.3.2.1.2. Performance Evaluation

We test the proposed pre-fetching technique over the proposed federated GIS system by using

real-world Pattern Informatics (PI) geo-science applications (see Figure 7). PI is an earthquake

forecasting application and uses archived earthquake seismic records stored at WFS as feature

collections encoded in GML (XML encoded structured data model for geo-data).

We basically test the system as illustrated in Figure 7. Red-curve (short) illustrates the round-trip

path for the pre-fetching and black-curve (long) illustrates the round-trip path for the on-demand

fetching. For the simplicity we will be using only one critical data to apply pre-fetching.

In summary, we give the performance results for the proposed pre-fetching approach and

compare it with the ordinary on-demand fetching approach in Figure 9 and Table 5. In case of

on-demand fetching approach, one end is database and other end is user browser (see the black

(dark)-curve in Figure 7). Performance results show the response times.

Table 4: Performance results for the response times when the pre-fetched data is used.

GML Average Average Average

Data - MB Processing StdDev Transfer StdDev Response StdDev

0.001 961.35 179.92 26.21 6.56 1,006.47 176.84

0.01 1,011.67 233.28 39.13 9.21 1,040.33 233.24

0.1 1,110.00 233.83 38.44 9.57 1,148.44 233.11

1 1,655.56 421.22 31.89 8.22 1,687.44 421.92

10 2,754.58 281.07 30.79 7.64 2,785.37 282.39

20 4,097.89 228.86 28.68 9.25 4,126.58 227.85

40 7,002.61 219.75 31.22 11.90 7,039.11 220.47

24

60 10,096.32 148.61 32.00 11.60 10,128.32 146.68

80 12,900.94 361.10 26.50 14.15 12,927.44 380.99

100 16,019.50 373.06 31.30 12.54 16,050.80 373.72

Figure 8: Performance of the pre-fetching technique

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

0 20 40 60 80 100 120

T
im

e
 -

m
se

cs

Data Size -MB

Average Response Times (ART) for Prefetcing system

Response time

25

Table 5: Comparison of the pre-fetching (Figure 8) and ordinary (on-demand fetching -Figure-2) techniques

Data Size

Average

Response

Average

Response

KB Pre-fetching StdDev On-demand StdDev

1 1,006.47 176.84 2,375.24 152.40

10 1,040.33 233.24 2,578.69 252.49

100 1,148.44 233.11 7,973.16 374.12

1000 1,687.44 421.92 59,335.69 343.76

10,000 2,785.37 282.39 573,324.66 836.46

Figure 9: Performance comparison of the map rendering in the proposed GIS system with pre-fetching and

ordinary ways.

0

1

2

3

4

5

6

7

1 10 100 1000 10,000

Lo
g

(T
im

e
s

in
 m

se
cs

)

Data Size - MB

Response times comparison

Pre-fetching vs On-demand

Log(Pre-fetching)

Log(on-demand)

26

As it is expected the pre-fetching increased the performance and responsiveness of the system for

accessing, querying and rendering archived data. Compared to on-demand fetching (ordinary),

pre-fetching removes the times spent on conversion (from database to GML at WFS side) and

transferring GML data. In case of cascaded data (going through multiple chained services to

access the original data source), performance gains even becomes much larger. Furthermore, the

higher the data size, the higher the performance gains.

As mentioned before, this technique is good for only un-frequently changing data. For the

frequently changing data we propose another technique explained in the following chapter.

Our criterion for selecting the technique to apply depends on two measurements. One is the

minimum time required to fetch a whole critical data from the source and another is the time

periodicity in which data is updated in its storage. If the data changes less than a time periods in

which whole critical data is fetched, then the data is called frequently changing.

1.3.2.2. Locality-based Query Decomposition and Parallel Processing

This chapter presents another federator (AWMS) oriented high performance design for accessing

and rendering of XML encoded large size data (GML).

The parallel processing is implemented based on the main query partitioning. Each partition is

assigned to separate thread of work. The number of partitions and their sizes are defined by using

locality principles. Locality information is obtained from the cached data kept for the same

session and user. In order to achieve this, browser-based sessions are mapped to service-based

sessions by updating the headers of the SOAP messages. All the services in the system are Web

Services and they communicate through SOAP messages.

27

AWMS apply the parallel processing after the cached data extraction and rectangulation. Since

all the data in the system is geo-referenced and queried in ranges defined by bounding boxes

(defining coordinates of rectangles in the form of (minx, miny, maxx, maxy)), we do range query

partitioning to implement parallel processing.

Parallel processing with caching algorithm has three parts closely related to each other:

1. Caching

2. Cached-data extraction and Rectangulation

3. Parallel-processing

In order to make these concepts more clear let’s illustrate these in a picture (See Figure 10):

Figure shows a map image composed of two layers. One is NASA satellite base map layer, and

other is a layer showing earthquake seismic records (in blue dots). (a) shows partially

overlapping of cached data and the main request bboxes. (b) Shows cached data extraction and

rectangulation for the remaining part in the main request. (c) Shows partitioning of the rectangles

from (b) based on the locality information obtained (explained later) from the cached data. All

the rectangulated regions from (c) will be assigned to a thread to created map images as final

responses.

R1

R2

Cached

Data

(a) (b)

Successive

request

R2.2’ R2.1’

R1.1’

R1.2’

R1.3’

R1.4’

(c)

Figure 10: (a) Cached data extraction, (b) rectangulation, and (c) partitioning for parallel processing.

28

Research questions are summarized as below:

i. What to cache, how to cache and how to use

ii. How a server knows what requests come from what user to utilize cache

iii. How to map browser-based sessions across the servers.

iv. How to determine the number of the partitions required for the parallel processing

v. How to partition the rectangles (ex:R1 and R2)

vi. How to make locality-based query decomposition.

vii. How to create sub-queries for the partitioned regions (rectangles)

viii. How to assemble the results to sub-queries to create final response

These research questions are answered in the following two sub-sections. Chapter 1.3.2.2.1

explains the caching, cached data extraction and rectangulation processes as answers to i, ii, iii.

Chapter 1.3.2.2.2 explains the parallel processing based on the range query partitioning and the

locality principles as answers to iv, v, vi, vii, viii.

1.3.2.2.1. Caching, Cached-data Extraction and Rectangulation

We first explain the caching policy and techniques. Second, we introduce a novel approach for

mapping browser-based session context to server-wide sessions in order to apply locality

principles. Third, we explain techniques for cached data extraction and rectangulation.

1. Caching:

We apply the caching for only the critical data pre-defined in AWMS. Critical data is vector data

encoded in GML common data model.

Caching will be utilized by the successive requests for the same user and session. For each

separate session even from the same user there will be separate cached data kept at AWMS. To

29

do that, we introduce browser-like sessions for each user across the servers. In other words,

cached data is kept till the next request comes from the same session.

2. Mapping Browser-based Session across the Servers.

Since the proposed federated GIS is interacted through interactive decision making tools over the

integrated data views, the session tracking and transfer issues have to be addresses to handle

locality based query decomposition and parallel processing across the servers. Java Server Pages

(JSP) defines session ID whenever a user opens a page to interact with the federated GIS system.

A session is normally stored in a cookie which is available to all windows in the browser. The

system access this ID by session.getId(). This returns a string unique user ID (uuid) which can be

used for application specific purposes.

Whenever federated GIS client interacts with the system through AWMS, it sets its browser’s

session ID to the header of its SOAP messages sent to the Web Service. All the requests coming

from the same browser has same session ID. Session IDs are created when the browser is opened

and kept same until it is closed. Each browser has a separate and unique session ID. By setting

this session ID to the header of SOAP messages AWMS can distinguish what client (browser)

makes the requests and check its cached data and session information stored before.

Here is the pseudo code briefly explaining the steps:

WMSServicesSoapBindingStub binding;

binding = (WMSServicesSoapBindingStub)

 new WMServiceLocator().getWMSServices(new URL(service_address));

 String sessionID = session.getid();

 String channel_name = “WMS_getMap_Request”;

30

//Add SessionID to the SOAP message’s header

binding.setHeader(service_address, channel_name, sessionID);

//See Appendix xx for the sample GetMap request

 Object value = binding.getComprehensibleData(getMap_request);

Whenever a user access the system through the same browser its session number will be the

same and AWMS keeps its local data and actions in the system differentiated based on its unique

session ID.

3. Cached Data Extraction and Rectangulation:

According to OGC standards in GIS domain, queries are created with location parameter and

location is defined in bounding box (bbox) formats. bbox is a formula defining the region as a

rectangle through coordinates of bottom left corner and top right corner. Example: Q(minx,

miny, maxx, maxy).

The proposed GIS services are OGC compatible and implemented in Web Service principles.

They accept the requests in predefined XML-structured queries such as “getMap” for WMS and

“getFeature” for WFS (see Chapter xx). Queries to WMS and WFS are actually window shape

range queries. Range queries are formulated in bbox. After extraction of cached data falling in

the main query range, the remaining part needs to be converted to the rectangular shapes in order

to create valid sub-queries in the ranges defined by the bboxes. This is why we make

rectangulation after cached data extraction from queried-region.

Cached-data extraction methodology is removing the regions in the main query which overlap

with the cached data and then, creating the rectangular sub-regions from the remaining main

query in the form of bboxes (see Figure 10 -b).

31

Since we use session-based caching (each session has separate cached data) based on the browser

sessions, the position of the bboxes of the cached data and the following request determines our

strategy for the cached data extraction and rectangulation. The bbox ranges of the cached data

and main query can be positioned to each other in four possible ways.

Main query bbox is described as (minx, miny, maxx, maxy)

Cached data bbox is described as (minx
c
, miny

c
, maxx

c
, maxy

c
)

(1) The main query covers cached data (zoom-out action),

Meeting condition:

 if(minx
c
>minx and maxx

c
<maxx

 and miny
c
>miny and maxy

c
<maxy)

Rectangles:

 R1: minx, miny, minx
c
, maxy R3: minx

c
, maxy

c
, maxx

c
, maxy

 R2: max
c
, miny, maxx, maxy R4: minx

c
, miny, maxx

c
, miny

c

(2) The main query falls in cached data (zoom-in action)

Meeting condition:

 if(minx>minx
c
 and maxx<maxx

c

 and miny>miny
c
 and maxy<maxy

c
)

This case enables the fastest response. There is no need for query partitioning and data transfer

from WFSs. It just uses cached GML to create map image based on the bboxes values of main

query. A lot of performance gains.

R1 R2

R3

R4

Figure 11: zoom-out case of rectangulation

Figure 12: zoom-in case of rectangulation

32

(3) The main query partially overlaps with cached data (move action).

This case is explained in Figure 10, a and b.

Here is the formula of the rectangles:

R1: minx, miny, maxx, miny
c

R2: maxx
c
, miny

c
, maxx, maxy

In this case, there are four different sub-cases depending on the movement directions. These are

(1) south-east, (2) south-west, (3) noth-east, and (4) north-west. The Figure 10 illustrates the

south-east case, and the rectangles above belong to that case. The rectangles for the other cases

are also created similarly.

The rectangles obtained in this section go through the partitioning process explained in the

following chapter.

1.3.2.2.2. Parallel-Processing with caching

The proposed parallel processing is based on range-query (defined in bbox) decomposition and

throughout the document we call it partitioning. The partitioning is done with the locality

principles to share the workload to the threads to reduce the response times to a reasonable level.

Partitioning will be done over the rectangular regions obtained at the end of rectangulation

process. Issues to make parallel-processing with the locality principles are summarized as below:

i. How to determine the number of partitions and their sizes in bbox

ii. How to partition the rectangles

iii. How to create sub-queries corresponding to the partitions

iv. How to assemble the results to sub-queries for the main query

33

These issues are illustrated in Figure 13 below. In this specific example, main query includes

three separate layers, and one of them is created with the critical data encoded in common data

model, GML. The regions 1 and 2 in the main query are determined by the cached-data

extraction and rectangulation processes explained in chapter 1.3.2.2.1. Grey region in the main

query overlaps with the cached data. There is no need for data transfer for this region. This is

obtained from the cache. For the other parts not overlapping with the cache (region 1 and 2), the

system makes parallel processing for data access, query and plotting after creating partitions.

For the simplicity, we assume there are one critical data on which parallel processing and

caching will be applied on, and one rectangle (obtained through the rectangulation process) to be

partitioned in the system.

Terminologies to be used:

WFS

R1 GetFeature requests R2 R3 RPn

GML1 GML2 GMLPn
GML

Cached

1
2

. . .

. . . .

Main query: cached

data extraction and

rectangulation Layers from Other

WFS and WMS

Critical data layer

Critical data

provider in GML

Critical data falling into

partitioned regions

Figure 13: Parallel processing and caching architecture in brief.

34

- CD_size_kb: Cached-data size measured in KB. Cached-data is kept in local file system

as GML file. This is obtained from the system.

- CD_size_br
2
: Cached data bbox area.

CD_size_br
2
 = (maxx

c
 - minx

c
)*(maxy

c
 - miny

c
)

- R_size_br
2
: Rectangle’s bbox area (ex: Region-1 in critical data layer in Figure 13)

 R_size_br
2
 = (maxx - minx)*(maxy - miny)

- Thr: Threshold value. Allowed max data size falling in a partitioned region, and

measured in KB.

Threshold value changes from data to data. It is predefined based on the experience of the

developer. For example for the earthquake seismic data its value is 1000KB. This value defines a

data size for which one thread (ordinary system) can response in a reasonable time period.

- Pn: the number of partition

Let’s explain the research issues listed above.

i. Determining the number of partitions:

In order to define the number of partitions we use locality principles. Locality principle in this

context is explained as following. If a region has a high volume of data, then the regions in close

neighborhood also expected to have high volume of data. Example is the human population data.

The urban areas have higher human population than the rural areas. The oceans (2/3 of the

world) have no populations etc.

We partition the rectangles into equal regions because we don’t know the size of the data falling

in that region before getting it. In order to define the size (in bbox) we use cached data sizes

expressed in bbox and KB. We assume (by using locality) cached data density is similar to the

35

main request density, and by using the threshold value and un-cached main request part we

calculate Pn as below:

Density of cached-data: dcd =
��_����_	

��_����_
�
2

Allowable largets area to assign: lat =
�������� ��� ����

������ �� ������ ���
 =

��

���

 Pn =
�_����_���

������ ���� � ������
 =

�_����_���

��

If Pn is less than 1 then, don’t make partition. In contrast, if it is bigger than 1, then partition into

Pn regions. ii explains how to partition a rectangle into Pn number of regions.

ii. Query decomposition of the rectangulated regions with Pn:

We already know the bbox of the rectangles obtained through rectangulation process explained

at Chapter 1.3.2.2.1. We also calculated the number of regions (in item i) into which each one of

these rectangles is going to be partitioned as the set of bbox values.

Here, we explain how to partition a given rectangle into Pn number of bboxes. There are two

alternative techniques here, one is partitioning the rectangle vertically and the other is

partitioning it horizontally.

In case of vertical partitioning the step value is calculated as below, and partitioning is done

along the Y-coordinate. (See Figure 14)

 sy =
(!"#$%!&'$)

)�

In case of horizontal partitioning the step value is calculated as below, and partitioning is done

along the X-coordinate,

36

 sx =
(!"##%!&'#)

)�

Calculating the bboxes of the partitioned regions:

Vertical:

for (i=0; i<Pn*sy; i=i+sy;)

 print (minx, miny – i, maxx, maxy-(i+sy)) ;

Horizontal:

for (i=0; i<Pn*sx; i=i+sx;)

 print (minx-i, miny, maxx-(i+sx), maxy) ;

After having the rectangles partitioned, the partitions go through the query creation process

explained as following.

iii. Creating the queries for the sub-regions obtained at ii.

Throughout the rectangulation and partitioning, the only changing attribute of the main query is

the bbox coordinate value. These are calculated in the previous step.

Based on the set of bbox values obtained at the end of partitioning process (ii) we need to create

sub queries. Each partition is differentiated by only their bbox value, and they go through the

query creation process. AWMS creates getFeature requests corresponding to these rectangles

based on their bounding boxes. Other parameters and attributes required for creating getFeature

request are obtained from the main query. All the parameters, attributes and their values (except

for bbox values) will be the same for all the getFeature requests created for the partitions.

Sy 1

2

Pn

maxx, maxy

minx,miny,

Figure 14: Partitioning a rectangle

along the coordinate-y

37

An example case of decomposing a rectangle obtained by rectangulation process and creating

parallel queries is illustrated at Figure 15. In this example, rectangle is partitioned into 5 regions

vertically.

Pn = 5 and sy =
(!"#$%!&'$)

)�
 =

(*+%*,)

+
 = 1

You can see a sample getFeature created for bbox value “-110, 35, -100, 40” request at Figure

16. For the overhead coming from the sub-query creation explained here, see Table 8 and Figure

18.

iv. Assembling the results from the sub-queries

Each query created at step iii is sent to WFS in a separate thread, and the returned results are

stored locally at AWMS. After getting the data AWMS starts rendering and plotting the critical

data over the other layers by parsing and extracting the geometry elements in returned GML.

Data transfer, parsing and rendering issues are explained in the previous chapters.

In addition, all the GML data corresponding to main query for the specific bbox is kept as cached

data in order to serve the following request coming from the same session.

-110, 35, -100, 40

-110, 35, -100, 36

-110, 36, -100, 37

-110, 37, -100, 38

-110, 38, -100, 39

-110, 39, -100, 40

GetFeature-1

GetFeature-2

GetFeature-3

GetFeature-4

GetFeature-5

A rectangle from the

rectangulation

process

Creating queries for

these bbox values

Item iii

Decomposing the rectangle

with Pn and s

Item ii

Figure 15: Example scenario of the partitioning a region into 5 sub-regions through the bbox value

of a rectangle.

38

 Figure 16: Sample GetFeature request for the partitioned region of bbox (-110, 35 -100, 40).

1.3.2.2.3. Performance Evaluation

Performance will be evaluated in three possible generalized situations categorized based on the

cached data utilization. These are (as explained in different context in Chapter 1.3.2.2.1):

a. No usage of cached data

b. Complete usage of cached data. No need for parallel processing.

c. Partial usage of cached data (case:1/2 cached). Case is illustrated in Figure 13.

39

a. No usage of cached data:

This case happens when the successive query is randomly created and does not overlap with the

cached data. In this case there is no cached data extraction and sub-rectangle created by

rectangulation processes. There is only one rectangle which is the main query. In order to make

performance evaluations, we test the system with different levels of partitions such as two and

ten and assign them to separate individual threads for the parallel processing.

Since the major bottleneck of the performance is transferring GML data we first demonstrate the

performance enhancement in data transfer (see Table 6 and Figure 17). The data is transferred

from the databases through WFSs to the federator (AWMS). The measured transfer times are in

milliseconds. Queries are decomposed based on their bbox values. Query bbox values and

corresponding data sizes are displayed in Table 6.

Table 6: The performance results for various levels of partitioning and parallel processing.

GML

Data Sample Bboxes of requests

Average

GML-data Transfer Timings

Size -MB minx miny maxx maxy Single-thred 2 threads 10 threads

0.01 -122.05 35.02 -121 35.65 2,632.83 2,773.94 6,498.76

0.1 -121.05 35.02 -120.39 36.15 7,833.16 6,498.12 7441.4375

0.5 -121.05 35.02 -119.8 36.99 30,415.09 18,860.06 13,095.76

1 -121.05 35.02 -118.07 37.15 58,996.75 31,210.44 19,829.11

5 -122.08 34.99 -116.44 40.23 288,095.42 229,499.89 98,660.00

10 -124.85 32.26 -113.56 42.75 573,934.20 395,691.75 159,055.00

40

Table 7: The standard deviations of data transfer timings in Table 6.

GML Data Standard Deviations

Size -MB Single-thread 2 threads 10 threads

0.01 34.46 92.20 146.76

0.1 106.43 82.15 138.6915

0.5 125.17 125.17 277.66

1 134.87 180.03 310.56

5 181.07 160.99 214.55

10 270.82 368.11 249.80

Figure 17: Response times in seconds for different levels of threaded run (2, 4, 8, 20), and data sizes.

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12

T
im

e
 -

m
se

cs
T

h
o

u
sa

n
d

s

Data Size -MB

Average GML transfer time from source to Federator

with threaded approach

single-thread

2-threads

10-threads

41

We also need to compare the response times. Because proposed parallel processing causes some

overheads in query partitioning, corresponding query creation and assembling the data to create

resonse for the main query. As a sample case we chose 10-threaded case and compare the

performance results below.

Detailed overhead timings and the response times in case of using proposed system:

Here is the more detailed analysis in terms of parallel processing’s overhead timings for the case

of partitioning the query into ten through the proposed partitioning techniques for parallel

processing. We first measure and analyze the overhead times (see Table 8, Table 9 and Figure

18) and then compare the overall performance expressed in response times with the on-demand,

single threaded general systems (Table 10 and Figure 19). The general system performance is

given in Table 1

Table 8: The average overhead timings for the proposed parallel processing (10 threaded).

Average Timings

GML

Data

MB

Creating

Partitions

Creating

sub-queries

GML from

Source to

AWMS

Map-Image

To User

Rendering

map-data

Total-time

Response

0.01 438.00 103.06 6,498.76 30.79 72.81 7,143.42

0.1 449.26 104.65 7,441.44 31.12 183.06 8,209.53

0.5 419.63 101.56 13,095.76 31.89 192.34 13,841.18

1 453.17 104.32 19,829.11 33.45 270.47 20,690.51

10 452.22 115.55 159,055.00 39.13 1,025.67 160,687.57

42

Table 9: The standard deviations of the overhead items’ timings given in Table 7.

Standard Deviations

GML

Data

MB

Creating

Partitions sub-queries

GML from

Source to

AWMS

Map-Image

To User

Rendering

map-data

Total-time

Response

0.01 32.61 14.29 146.76 7.64 7.41 208.72

0.1 26.94 11.57 138.69 7.95 23.25 208.40

0.5 22.61 9.71 277.66 8.22 24.47 342.68

1 29.85 10.43 310.56 8.25 40.09 399.18

10 28.02 15.65 249.80 9.21 51.49 354.16

Figure 18: Overhead timings for the cases of partitioning into 10.

Only the timings of “rendering map data” depends on the data size, others are independent of

data size but changes depending on the number of partitions.

1

10

100

1,000

10,000

0 2 4 6 8 10 12

T
im

e
 -

m
se

cs

Data Size -MB

Itimized overheads for the partitioning and parallel perocessing

in case of 10partitions

partitioning

sub-query

creating

map

transfer

43

Comparing the performance of the total response times again for the cases of 10 partitions:

Table 10: Comparing response times of 10-threaded parallel processing and single threaded ordinary system

(also see Figure 2).

Comparison of the average response timings

GML Data PP with 10 Threads Orinary systems

Size - MB time StdDev time StdDev

0.01 7,143.42 208.72 2,578.69 252.49

0.1 8,209.53 208.40 7,973.16 374.12

0.5 13,841.18 342.68 30,868.52 482.83

1 20,690.51 399.18 59,635.69 343.76

10 160,687.57 354.16 574,825.16 836.46

Figure 19: Performance comparison, parallel processing vs ordinary system.

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12

T
im

e
 -

m
se

cs
T

h
o

u
sa

n
d

s

Data Size -MB

Overall Performance Comparison

Proposed system with ordinary single-threaded systems

10-threaded pp

single-threaded

(ordinary)

44

Note that if the density and/or data size increase or the data is distributed more equally, then the

performance gain will be higher.

As it is shown in first two lines of Table 10, there is no gain of using parallel processing for

small sizes of data. For the requests over the small data sizes, total overhead times sometimes get

higher than the total response times of single threaded cases.

The test results show that 10-threaded parallel processing for the data handling is almost 4-times

faster. However, the performance does not increase in the same ratio at which the thread number

increases. That is because of the overheads resulted from mainly the query decomposition and

assembling the result sets for the main query etc. Moreover, the figure shows that the higher the

data size the larger the performance gains.

b. Complete cached data utilization

In this case there is no need for rectangulation, the main query decomposition and threaded

parallel processing. This case happens when the user query a smaller region falling in the

previous map he got on his browser. It is mostly caused by zooming-in action. In this case, the

cached data is enough for responding to the main request, and no other cascaded requests are

needed. AWMS renders the map just by using the cached data. The only task needed is the

cached data extraction and overlaying (plotting) over the other requested layers.

This case’s performance results are same as the pre-fetching technique’s performance results.

Please see Figure 8 and Figure 9.

Since the most of the time is spent on data transfer and GML conversion (from any data to

common data model at WFS), getting rid of these burdens by using cached data enhances the

45

performance a lot. Note that, in order to show huge performance difference in one graph clearly,

the ordinary system performance results are adjusted by taking their logarithmic values.

c. Partial cached data utilization (case:1/2 cached):

This case happens when the user moves (or drag and drop) the map to another region or makes

zooming-out. In other words, when the user makes successive requests and their bbox values

overlap. As explained before (Figure 10 and Chapter 1.3.2.2.1), if only one point of main request

falls in bbox boundaries of the cached-data, they are called as partially overlapped. Table 11 lists

the sample request bboxes and their corresponding data sizes.

Here is the test scenario for the illustration of performance gains by using parallel processing

with caching: it is assumed that 1/2 of the requested data is already cached. In other words, main

request bbox values partially overlap with the cached data and half of the data size corresponds

to main request is provided by the cached data. Other half is going to be requested by 10-

threaded parallel processing. This is a kind of improvement over Table 10 and Figure 19. Instead

of making processing for whole data we utilize cached data and make request for other half by

using the proposed hybrid technique explained in Chapter 1.3.2.2.1.

Table 11 shows the average timing values for the selected sample bbox values and data sizes and

Table 12 shows the corresponding standard deviation values. The cached data is accessed and

processed in a way similar to the way of processing the pre-fetched data except for the pre-

fetching part. The remaining un-cached data is queried and got from the cascaded WFS services

in GML format. In order to access the data 10-threaded parallel processing is used. The number

of partitions is arbitrarily chosen. The data size values given in the parenthesis are cached data

sizes utilized by the system. Other values are the sizes of the main queries.

46

Table 13 shows the detailed steps and timings for the parallel processing timings given in sixth

column of Table 11. It is actually a re-creation of Table 8 for the different data sizes.

Table 11: Performance results for the sample case scenario in which half of the data is provided by the

cached data, and other half is requested by again 10-thread parallel processing.

Sample bounding boxes after Average Timings

GML Data

rectangulations on which

partitioning is done cached-data

Remaining

data Total

Size -MB minx miny maxx maxy processing 10-thread pp Response

0.01(0.005) -121.58 34.55 -121.45 34.69 734.33 6,329.05 7,063.38

0.1(0.05) -121.65 34.36 -120.78 35 768.33 8,934.16 9,702.49

0.5(0.25) -118.68 34.21 -118.39 34.5 782.45 12,109.67 12,892.12

1(0.5) -119.16 34.21 -118.25 35.12 851.00 13,841.18 14,692.18

5(2.5) -120.83 32.07 -117.15 36.18 1,209.79 44,191.61 45,401.40

10(5) -120.83 32.07 -115.7 36.7 1,646.32 68,848.66 70,494.98

Table 12: The standard deviations for the timing values of cached data processing and remaining-data

processing through parallel processing.

Standard Deviation

GML Data cached-data remaining-data Total

Size -MB processing access and proc Response

0.01(0.005) 62.45 395.01 457.46

0.1(0.05) 66.37 325.83 392.20

47

0.5(0.25) 79.56 281.97 361.53

1(0.5) 72.21 342.68 414.89

5(2.5) 68.52 522.37 590.89

10(5) 94.57 380.62 475.19

 Table 13: etailed timings for the remaining data rendering with 10-threaded parallel processing given

in Table 11

Average Timings

GML Data Creating Creating GML from Map-Image Rendering Total-time

Size - MB Partitions sub-queries

Source to

AWMS To User map-data Response

0.005 438.00 103.06 5,706.08 29.39 52.52 6,329.05

0.05 449.26 104.65 8,204.67 32.52 143.06 8,934.16

0.25 403.70 101.56 11,403.75 30.33 170.34 12,109.67

0.5 419.63 101.56 13,095.76 31.89 192.34 13,841.18

2.5 431.52 103.29 43,136.50 35.61 484.69 44,191.61

5 431.52 103.29 67,445.06 34.24 834.55 68,848.66

Table 14 and Figure 20 compare the performance results of the hybrid system (parallel

processing with caching) with ordinary on-demand system for the selected 10 partitioning case.

Ordinary system’s performance results are from Table 1 and parallel processing with caching

performance results are from Table 11.

48

.

Table 14: Comparison of the response times for the hybrid (caching and parallel processing) and ordinary

non-caching single-threaded system.

Comparison of the response times

GML Data Hybrid (half cached half pp) Orinary systems

Size - MB time StdDev time StdDev

0.01 7,063.38 357.46 2,578.69 252.49

0.1 9,702.49 322.20 7,973.16 374.12

0.5 12,892.12 361.53 30,868.52 482.83

1 14,692.18 414.89 59,635.69 343.76

5 45,401.40 590.89 288,594.12 772.41

10 70,494.98 475.19 574,825.16 836.46

As it is shown in first two lines of Table, there is no gain of using of hybrid techniques which we

call as parallel processing with caching for the small sizes of data. In such cases, total overhead

sometimes get higher than the total response times of single threaded cases. This problem is

solved by using a threshold value to define if the partitioning is needed or not. This technique is

also explained in 1.3.2.2.

49

Figure 20: Comparing response times of the hybrid (caching and parallel processing) and ordinary system.

As it is shown the in Figure 20, for the given test scenario (1/2 of main query matches to the

cached data and remaining data is obtained and processed with 10-threaded parallel processing)

proposed system is almost 8 times faster than the ordinary on-demand one-threaded system. As

the data size increases, that ratio increases.

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12

T
im

e
 -

m
se

cs
T

h
o

u
sa

n
d

s

Data Size -MB

Overall Performance Comparison

10-threaded pp

single-threaded (ordinary)

hybrid(1/2cached-1/2pp)

50

REFERENCES

[Lu 2006] Wei Lu, Kenneth Chiu, and Yinfei Pan, “A Parallel Approach to XML Parsing”. In

the 7th IEEE/ACM International Conference on Grid Computing, 2006.

[Pallickara2003] Pallickara S. and Fox G., “NaradaBrokering: A Distributed Middleware

Framework and Architecture for Enabling Durable Peer-to-Peer Grids”

ACM/IFIP/USENIX, Rio Janeiro, Brazil June 2003.

[Donbox] Don Box, David Ehnebuske, Gobal Kakivaya, Andrew Layman, Dave Winer., Simple

Object Access Protocol (SOAP) Version 1.1, May 2000.

[Sosnoski] Sosnoski, D. “XML and Java Technologies”, performance comparisons of the Java

based XML parsers. Available at http://www-

128.ibm.com/developerworks/xml/library/x-injava/index.html

[Alexander] Aleksander Slominski. XML Pull Parser, visited 04-15-02.

http://www.extreme.indiana.edu/xgws.

[Vretanos] Vretanos, P. (ed.), Web Feature Service Implementation Specification (WFS)

1.0.0, OGC Document #02-058, September 2003

[GML] Cox, S., Daisey, P., Lake, R., Portele, C., and Whiteside, A. (eds) (2003), OpenGIS

Geography Markup Language (GML) Implementation Specification. OpenGIS project

document reference number OGC 02-023r4, Version 3.0.

[WMS] de La Beaujardiere, J., Web Map Service, OGC project document reference number

OGC 04-024. 2004.

[WFS] Vretanos, P. (2002) Web Feature Service Implementation Specification, OpenGIS project

document: OGC 02-058, version 1.0.0. Volume,

51

 [Booth]Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., and Orchard,

D. “Web Service Architecture.” W3C Working Group Note, 11 February 2004.

Available from http://www.w3c.org/TR/ws-arch.

[Tran] Tran, P., Greenfield, P., and Gorton, I., Behavior and Performance of Message-

Oriented Middleware Systems. . Proceedings of the 22nd international Conference on

Distributed Computing Systems, ICDCSW. 2002.

[uddi] Bellwood, T., Clement, L., and von Riegen, C., UDDI Version 3.0.1: UDDI Spec

Technical Committee Specification http://uddi.org/pubs/uddi-v3.0.1-20031014.htm.

2003.

[ogc] The Open Geospatial Consortium, Inc. web site: http://www.opengeospatial.org

[deegree] deegree project web site available at http://deegree.sourceforge.net/

[minmapserv]University of Minnesota Map Server, available at http://mapserver.gis.umn.edu/

[patterninfo] Tiampo, K. F., Rundle, J. B., McGinnis, S. A., & Klein, W. Pattern dynamics and

forecast methods in seismically active regions. Pure Ap. Geophys. 159, 2429-2467

(2002).

