
1

Table of Contents

Chapter 6

High-performance design features, measurements and analysis 2

6.1. General Performance Issues in Interoperable Service-oriented GIS 3

6.1.1. Using Semi-structured Data Model .. 4

6.1.2. Though Data Characteristics and Attributes ... 5

6.2. Ordinary GIS Systems Performance (baseline tests with naïve approaches) 7

6.3. High Performance Design and Evaluation of the Proposed System 11

6.3.1. Data-oriented Enhancement Approaches .. 11

6.3.1.1. Streaming Data Transfer .. 12

6.3.1.2. Pull Parsing and Application Specific Rendering .. 17

6.3.1.3. Overall Performance Evaluations over data-oriented performance

enhancement approaches ... 20

6.3.2. Federator-oriented Performance Enhancement Approaches 23

6.3.2.1. Pre-Fetching ... 24

6.3.2.1.1. Fetching module (PM)……………………………………………………………………………………….27

6.3.2.1.2. Performance Evaluation…………………………………………………………………………………….28

6.3.2.2. Client/Session-based Dynamic Caching ... 32

6.3.2.2.1. Architectural Details…………………………………………………………………………………………..33

1.3.2.2.2. Why Client-based Dynamic Caching……………………………………………………………………36

6.3.2.3. Load-balancing through Query Decomposition and Parallel Processing 38

6.3.2.3.1. Cached-data Extraction and Rectangulation……………………………………………………….39

6.3.2.3.2. Query Decomposition…………………………………………………………………………………………41

6.3.2.3.2.1. Blind Query Decomposition .. 42

6.3.2.3.2.2. Smart Query Decomposition Using Client-based Caching 42

6.3.2.3.3. Parallel-Processing…………………………………………………………………………………………….44

6.3.2.3.4. Overall Performance Evaluation…………………………………………………………………………49

REFERENCES .. 65

2

Chapter 6

6. High-performance design features, measurements and analysis

This chapter presents the common performance issues and high-performance design

features in service-oriented, federated and interoperable GIS systems in which the

interoperability is granted by structured data model. As the common data model, OGC

[ogc] defined Geographic Markup Language (GML) [GML] is used. Developing a

federated information system inspired us enhancing the whole system performance by

applying novel parallel processing and caching techniques applied together in large scale

interoperable information systems (see Chapter 6.3.2). In addition to this, we proposed

some other innovative performance enhancement techniques (see Chapter 6.3.1) such as

streaming data transfers, and enhanced parsing and rendering of semi-structured geo-data

sets (GML). At the end of each chapter explaining these techniques, performance tests

and analysis are provided.

3

The organization of the rest of the chapter is as follows. Chapter 1.1 summarizes and

reviews the general performance issues of interoperable service-oriented GIS systems in

which interoperability is granted by using XML-structured common data model and Web

Services. Chapter 1.2 presents the limits of the ordinary GIS systems without having any

performance enhancements which will be our comparison base for our proposed

techniques and enhancements. Throughout the document, with the term “ordinary

system” we mean a system built over naive approaches such as on-demand, single-

threaded and no-caching systems. The last chapter (Chapter 6.3) explains our approaches

to developing high performance GIS systems, and provides performance evaluations by

comparing with the ordinary systems. We approach the performance issues from the two

aspects. One is data-oriented and the other is federator-oriented. The data-oriented

approaches deal with transferring large-sized XML structured data in common model,

and high performance parsing and rendering algorithms. The federator-oriented

approaches deal with the performance enhancement techniques based on data

characteristics. For the infrequently changing archived data handling we propose pre-

fetching technique (Chapter 6.3.2.1). On the other hand, for the frequently changing

archived data, we propose a novel technique composed of client-based caching (Chapter

6.3.2.2) and parallel processing through query decomposition (Chapter 6.3.2.3).

6.1. General Performance Issues in Interoperable Service-oriented GIS

Performance issues in interoperable service-oriented GIS can be generalized into two

groups:

- Issues regarding semi-structured data model (GML).

4

- Issues regarding domain specific data characteristics. In GIS, the data is

described with location attribute defined in (x, y) coordinates. Based on the

location value, the data is characterized as un-evenly distributed and variable

sized. See Figure 1-b.

6.1.1. Using Semi-structured Data Model

Using semi-structured data model enables interoperability and inter-service

communication. XML’s emergence as the de facto standard for encoding tree-oriented,

semi-structured data has brought significant interoperability and standardization benefits

to distributed computing. On the other hand, performance has been still a persistent

concern for large scale applications, because of the size issues and processing overheads

[Lu2006]. The processing is detailed as parsing and differentiating (separating) the core-

data from the attributes and other tags to create required application specific data formats.

Structured data representations enable adding some attributes and additional information

(annotations) to the data. These attributes and additions are mostly due to the

interoperability and security reasons. XML representations of data tend to be significantly

larger than binary representations of the same data. The larger document size means that

the greater bandwidth is required to transfer of data, as compared to the equivalent binary

representations. The larger size often implies greater processing costs as well, since much

of the overhead involved in communication processing is going to be based on the data

volume.

There are two well-known and commonly-used paradigms for processing XML data, the

Document Object Model (DOM) and the Simple API for XML (SAX). DOM builds a

5

complete object representation of the XML document in memory. This can be memory

intensive for large documents, and entails making at least two passes through the data.

SAX operates at one level lower. Rather than actually constructing a model in memory, it

informs the application of elements through callbacks. This also requires at least two

passes through the data. These are all expensive and resource (such as CPU and memory)

consuming processes and they don’t provide enough performance for the large scale

applications.

In the document these issues are called data-oriented performance issues, and the

proposed solution approaches are presented in Chapter 6.3.1

6.1.2. Though Data Characteristics and Attributes

The different domains have different data types having different characteristic to be

handled. As an example, in GIS domain, which is our motivating domain, science

applications need to manipulate geo-data. Geo-data is described with its location ((x, y)

coordinates) on the earth. Based on the location attribute, geo-data is un-evenly

distributed (such as human-population and temperature distributions) and variable sized.

Because of these characteristics, it is not easy to implement some well-known

performance enhancing techniques as applied in other science domains. Since it is not

possible to know the work-load earlier, the classic load balancing algorithms do not work

for the variable sized and unevenly distributed data. The work is decomposed into

independent work pieces, and the work pieces are of highly variable sized. This issue is

illustrated in Figure 1 for the case of using one-step-binary query partitioning based on

the location attribute of the data. As it is illustrated in the figure, there are four worker

nodes, and the worker node assigned to R2 gets the heaviest part of the total work, and

6

therefore the expected performance gain from usinf classic load balancing will not be

obtained.

The geo-data is queried based on their attributes. Since all the data is described by their

locations, in order to get the data sets falling in a specific region, the bounding box

(bbox) values are used. The regions are defined in bboxes. A bbox defines a rectangular

shape in a two-sim coordinate plane, and it is formulated as (minx, miny, maxx, maxy).

For example, Figure 1 shows a region formulated in bbox value (a, b, c, d).

These performance issues are dealt with in Chapter 6.3.2 which is called federator-

oriented performance issues. We approach to the problem by keeping record for each

client separately (we call it client-based caching) and utilizing locality and nearest

neighborhood principles to share the work load to worker nodes as just as possible.

Moreover, shares are created through query decomposition over bbox attribute of the

main query.

R1

R2 R3

R4

(c,d)

(a,b)
((a+c)/2, b)

(a,b)

(c,d)

(a) (b)

(c, (b+d)/2) (c, (b+d)/2)

((a+c)/2, b)

Figure 1: Unbalanced load sharing. Server assigned R2:“((a+b)/2, (b+d)/2), (c, d)” gets the most of

the work.

7

In order to evaluate our proposed system design and performance enhancement

techniques, we will be comparing the results with the baseline performance results given

in the following chapter.

6.2. Ordinary GIS Systems Performance (baseline test results with naïve

approaches)

In order to solve data and service heterogeneities for the GIS computation and data

services OGC and ISO/TC-211 standards are used. These standards recommend using

structured common data model called GML for the representation of location based geo-

data. The standard bodies aim is to make the geographic information and services neutral

and available across any network, application, or platform. Currently the two major

geospatial standards organizations are the Open Geospatial Consortium (OGC) and the

Technical Committee tasked by the International Standards Organization (ISO/TC211).

With the ordinary system we mean a GIS developed with widely used technique without

using any novel advanced techniques to handle the data. Most of the implementations are

based on single-threaded and on-demand processing. Deegree project [deegree] and

Minnesota Map Server [minmapserv] can be given as sample projects. In order to

compare and contrast our novel approaches to the ordinary systems approaches, we tested

and presented their performance results at Table 1 and Figure 3.

Figure 2 shows the test setup for the system. This figure also illustrates a simple GIS

system with major service components and data flow from the originating data sources to

the end-users.

Over this setup system response time is measured and displayed in

The average response times shown in the figures

transforming, rendering and displaying spatial data.

formulated as below:

time(measured)

Moreover, (time(measured)) can be further detailed as below (also see

- [time(client makes request).]

- WMS parse and render requests and define set of actions required based on the

requests and its capabilities file.

- WMS Creates map images (from the returned datasets) and returns them to the

clients:

o Defines the set of WFSs [WFS] and other WMSs [WMS] to c

with to build the response in accordance with its capability file

provided parameters

o Creates requests for WFSs and other WSMs

Figure 2:The ordinary system test set

Over this setup system response time is measured and displayed in Table

The average response times shown in the figures include times for

transforming, rendering and displaying spatial data. The average response time is

(measured) = time(result is displayed) – time(client makes request).

) can be further detailed as below (also see Figure

] Client makes requests through the interactive smart map tools.

WMS parse and render requests and define set of actions required based on the

requests and its capabilities file.

WMS Creates map images (from the returned datasets) and returns them to the

Defines the set of WFSs [WFS] and other WMSs [WMS] to c

with to build the response in accordance with its capability file

provided parameters.

Creates requests for WFSs and other WSMs

The ordinary system test set-up. Any-data is converted to common structured data

(GML) and rendered as map images.

8

Table 1 and Figure 3.

times for querying,

The average response time is

Figure 2):

interactive smart map tools.

WMS parse and render requests and define set of actions required based on the

WMS Creates map images (from the returned datasets) and returns them to the

Defines the set of WFSs [WFS] and other WMSs [WMS] to communicate

with to build the response in accordance with its capability file and client

data is converted to common structured data

9

o Invokes WFSs’ getFeature Web Service interfaces for vector data encoded in

Geographic Markup language (GML) [GML].

o Invokes other WMSs getMap Web Services for raster data rendered in map

images

o Transferring GML data (feature collections) from WFS and WMS

o Parsing and rendering returned GML data sets

o Aggregating and overlaying layers according to the request and capability file.

o Sending the map images to the WMS Client.

- [time(map is displayed)] Client shows the returned maps on his browser

Table 1: The round-trip times (or response times) of the ordinary system.

 Average Log of

Data Size Response

Avg

response Standard

KB Times (msec) msec Deviation

1 2,375.24 3.38 152.40

10 2,578.69 3.41 252.49

100 7,973.16 3.90 374.12

200 13,612.78 4.13 417.19

500 30,868.52 4.49 482.83

1000 59,635.69 4.78 343.76

5000 288,594.12 5.46 333.07

 (a)

In order to be able to make more reasonable comparisons, we adjusted the timing values

given in Table 1 by taking their logarithmic

Figure 4: Adjusted performance values over

0

50

100

150

200

250

300

350

0 1000 2000

T
im

e
 -

m
se

cs
T

h
o

u
sa

n
d

s
Average Response Times for Ordinary systems

0

1

2

3

4

5

6

0

Lo
g

(T
im

e
 i

n

m
se

cs
)

Log of Average Response Timings for Ordinary systems

Figure 3: (a) Performance result of the

(b)

In order to be able to make more reasonable comparisons, we adjusted the timing values

by taking their logarithmic values and plotted them in Figure

: Adjusted performance values over Figure 3 for the ordinary systems.

2000 3000 4000 5000 6000
Data Size -KB

Average Response Times for Ordinary systems

Avg Resp Time

1000 2000 3000 4000 5000

Data Size -KB

Log of Average Response Timings for Ordinary systems

Log(ART)

: (a) Performance result of the ordinary system. (b) Sample output-seismic data is plotted

over NASA Satellite map images

10

In order to be able to make more reasonable comparisons, we adjusted the timing values

Figure 4.

for the ordinary systems.

6000

Log of Average Response Timings for Ordinary systems

Log(ART)

seismic data is plotted

11

This performance results teach us valuable lessons in terms of the capabilities and limits

of the general distributed and interoperable GIS systems. From the figure we draw

following conclusions. First, for the small data payloads (less than 500KB) the response

time is acceptable. However for larger data payloads the performance gets worse and the

response time gets relatively longer. On the other hand, scientific applications require

handling (transferring, parsing, rendering and displaying) large scale data.

From our experience we saw that depending on the total data size, over %90 of the

time(measured) comes from the step called “transferring GML data (feature collections) from

WFS and WMS”. Because of that, even if we use the most efficient and fast parsing and

rendering algorithms (such as using pull parsing or application specific XPath querying),

it won’t improve performance very much as long as the data transfer time still stays that

much high as shown in the Figure 3.

6.3. High Performance Design and Evaluation of the Proposed System

Our approaches to the performance issues are grouped into two. The first group of

approaches deals with the general performance issues result from using semi-structured

data encodings (such as GML), and large size data exchange, parsing and rendering

(Chapter 1.3.1). The second group of approaches is regarding the federator oriented

design and techniques to enhance the overall system performance (Chapter 1.3.2).

6.3.1. Data-oriented Enhancement Approaches

Distributed GIS systems typically handle a large volume of datasets. Therefore the

transmission, processing and visualization/rendering techniques need to be responsive to

provide quick, interactive feedback. There are some characteristics of GIS services and

data that make it difficult to design distributed GIS with satisfactory performance. One of

12

them is that GIS services often transmit large resulting datasets such as structured data,

images, or large files in tabular-matrix formats.

In order to provide interoperability and extensibility we use common data format

represented and formulated in XML. This degrades the performance even worse for large

scale applications. The major hurdle of the proposed federated GIS framework is

encoding, transferring and rendering the data in common data model. In the following

two sub-sections we present our approaches to these issues. One is regarding large scale

structured data transfer (Chapter 6.3.1.1) and other is regarding the large scale data

parsing (Chapter 6.3.1.2).

6.3.1.1. Streaming Data Transfer

Our experience shows that although we can easily integrate several GIS services into

complex tasks by using Web Services, providing high-rate transportation capabilities for

large amounts of data remains a problem because the pure Web Services implementations

rely on SOAP [Donbox] messages exchanged over HTTP. This conclusion has led us to

an investigation of topic-based publish-subscribe messaging systems for exchanging

SOAP messages and data payload between Web Services. We have used

NaradaBrokering [Pallickara2003] which provides several useful features besides

streaming data transport such as reliable delivery, ability to choose alternate transport

protocols, security and recovery from network failures.

Naradabrokering is a message oriented middleware (MoM) [Tran] system which

facilitates communications between entities through the exchange of messages. This also

allows us to receive individual results and publish them to the messaging substrate

instead of waiting for whole result set to be returned.

13

In case of transferring the GML result set in the form of string causes some problems

when the GML is larger than some amount of size (500KB see Figure 3-a). Since the

WFS returns the resulting XML document as an <xsd:string>, this has to be constructed

in memory and the size will depend on several parameters such as the system

configuration and memory allocated to the Java Virtual Machine etc. Consequently there

will be a limit on the size of the returned XML documents. For these reasons we have

investigated alternative ways for data transport and, researched the use of topic based

publish-subscribe messaging systems for streaming the data. Our research on

NaradaBrokering shows that it can be used to stream large amount of data between nodes

without significant overhead. Additional capabilities such as reliable messaging and

support for different transport protocols already inherent in NaradaBrokering show that it

is a powerful yet easy to integrate messaging infrastructure. For these reasons we have

developed a novel Web Map Service and Web Feature Service that integrate OGC

specifications with Web Service-SOAP [Donbox] calls and NaradaBrokering messaging

system. Architecture is shown in Figure 5.

14

Connection lines 1 and 2, and UDDI (Universal Description, Discovery and Integration)

[uddi] service are displayed in the figure for showing classic publish-find-bind triangle of

the Web Service based Service Oriented architecture. We don’t go into details of these

interactions and UDDI registry service in this document but these can be summarized as

following. WFS services publish their existence and service providing with their WSDL

service description files (line-1). Clients (such as WMS) find appropriate WFS by

searching UDDI registries (line-2). After finding appropriate service, clients are bind to

that service by creating their client stubs. Instead of using lines 1 and 2, clients can also

directly communicate with the services if they know the service’s WSDL file earlier.

Figure 5: Streaming data transfer using Naradabrokering publish-subscribe topic

based messaging middleware.

Topic-wfs

(A)WMS

Server
WFS Server

Narada

Brokering

Server

UDDI

client server

registry

 GML GML

3

2 1

getFeature

(topic, IP, port)
Publisher Subscriber

w

s

d

l

w s d l

3: Actual data-transfer

1,2: Binding

15

In case of streaming through Naradabrokering, the clients make the requests with

standard SOAP messages (line-3) but for retrieving the results a NaradaBrokering

subscriber class is used. Through first request to Web Service (called getFeature), WMS

gets the topic (publish-subscribe for a specific data), IP and port to which WFS streams

requested data. Second request is done by NaradaBrokering Subscriber. In this way, even

in the case of that the whole data is not received. WMS can draw the map image with the

returned data. This depends on the WMS’s internal implementation.

Table 2 gives a comparison of the streaming and non-streaming data access approaches

for the different data sizes. These values are obtained by applying the proposed

framework on Pattern Informatics (PI) [patterninfo] geo-science application using

earthquake seismic data records. These are GML data access times including query

conversion at WFS, result set conversion from database to GML and transfer times from

WFS to federator or WMS.

Table 2: Data access times (from federator or WMS) while using (1) streaming and (2)non-streaming

data transfer techniques.

Streaming Non-Streaming

Data

Size

(KB)

Average Time

for Streaming

Transfer

Average

Response

Time

Standard

deviation

Average

Time Non-

Streaming

Average

Response

Time

Standard

deviation

10 31.3 2425 38 1518.8 3912.5 77

30 100 2661 27 1356.1 3917.1 38

100 320.1 2945 50 1473.8 4098.7 71

16

300 826.7 3405 48 1835.7 4414 39

1000 2414.2 4570 360 3506.8 5662.6 31

Figure 6: Comparisons of Streaming vs. Non-Streaming data response timings from source to

federator or WMS.

We can deduce from the table that for the larger data sets when using streaming our gain

is about 25%. But for the smaller data sets this gain becomes about 40% which is mainly

because in the traditional Web Services the SOAP message has to be created, transported

and decoded the same way for all message sizes which introduces significant overhead.

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200

Lo
g

(T
im

e
)

in
 m

se
cs

Data Size -KB

Average Response Times for Streaming and Non-Streaming

cases for Ordinary system

ART-Streaming

ART-Non-Streaming

17

6.3.1.2. Pull Parsing and Application Specific Rendering

Proposed system includes data rendering/filtering tasks assigned to Web-based Map

Services to create comprehensible data representations derived from the semi-structured

common data (GML). These comprehensible representations are called maps. Regarding

the rendering of large GML data and creating map images we use parsers.

There are three general parsing techniques proposed for processing XML structured data.

These are document model, push model and pull model. There are also other hybrid

alternatives built on these main approaches. In order to process data in XML structured

common data model we use pull parsing technique.

Pull parsing, as exemplified by the XML Pull Parser [Alexander], is an efficient

paradigm similar to SAX in that it does not build a complete object model in memory. It

differs in that the tags and content are returned directly to the application from calls to the

parser, rather than indirectly in the form of callbacks. The pull approach of this parsing

model results in a very small memory footprint (no document state maintenance required

– compared to DOM), and very fast processing (fewer unnecessary event callbacks -

compared to SAX).

Pull parser only parses what is asked for by the application rather than passing all events

up to the client application as SAX parsing does. You can see the article where pull

parsing is compared with other leading Java based XML parsing implementations

[Sosnoski].

Pull parsing does not provide any support for validation. This is the main reason that it is

faster than its competitors. Since all the services are OGC compatible and created in Web

18

Service principles, validation is not necessarily needed. In OGC, services describe

themselves by capability document and servers know each other by exchanging these

document. If you are sure that data is valid (as in our case), or if the validation errors are

not catastrophic to your system, or you can trust validity of the capabilities document of

the server you are in contact, then using XML Pull Parsing gives the highest performance

results. For example in communication between WFS and WMS, since it is known that

WFS provides feature data in OGC’s GML format [GML], it is very advantageous

skipping validation and using “pull parsing”.

For application specific comparison of Pull parsing and DOM see Table 3 and Figure 7.

The performance values are measured in milliseconds and data sizes are in MBs.

Performance test is done with 1GB allocated JAVA Virtual Machine. Dashed-line values

in the table represent not-enough memory exceptions thrown. The figure illustrates the

timing values for the data size till 100MB. Above this threshold value for the Virtual

Machine allocated 1GB memory, DOM become useless.

Test case: For the XML data we use earthquake seismic data records encoded in GML.

Each earthquake seismic record has some attributes and some geometry elements. In our

tests we will parse the GML data in XML documents and extract the geometry elements.

In case of DOM, parsing and extraction are done separate as it is shown in two columns

in Table 3. In case of pull parsing, geometry data is extracted from GML with parsing

and extraction applied all together.

19

Table 3: The performance values of DOM and Pull parsing (Xpp) over GML data. Dashed-line

values imply memory exception.

As it is mentioned dashed lines in Table 3 represent memory exceptions. It means system

does not have enough memory for completing its work. Since there is extreme

performance difference between using DOM and pull parsing techniques, we plot their

logarithmic values to illustrate the performance gains of using pull parsing more clearly.

DOM (dom4j) Pull Parsing

Data

Size

(MB)

Average

Parsing

Time StdDev

Avg

Render

Time

Average

Total

Time

Pars/Rend StdDev

Average

Total

Time StdDev

0.001 394.29 18.68 75 469 21.32 15.59 0.87

0.01 429.32 36.46 65 494 20.87 72.81 7.41

0.1 484.41 18.18 141 625 23.04 183.06 23.25

1 663.94 18.09 96 760 31.58 270.47 40.09

5 1,247.00 36.74 175 1,422 47.66 671.74 76.05

10 2,126.63 20.73 1,430 3,557 61.51 1,025.67 51.49

100 1,159,614 13,122.6 ---- ---- ---- 7,059.72 93.16

150 ---- ---- ---- ---- ---- 11,047.89 107.80

200 ---- ---- ---- ---- ---- 14,949.12 253.15

20

Figure 7: Performance comparison of two XML data processors, pull parsing and Document Object

Model by using dom4j.

6.3.1.3. Overall Performance Evaluations over data-oriented performance

enhancement approaches

This chapter presents overall performance gains obtained by applying data-oriented

performance enhancement techniques mentioned in previous chapters (Chapter 6.3.1.1

and Chapter 6.3.1.2). We also compared the performance results with the baseline

performance results given in Figure 3.

We again use the system test set-up shown in Figure 2.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 2 4 6 8 10 12

T
im

e
 -

m
se

cs

Data Size -MB

Average times of parsing+extracting geometry data

DOM vs. Pull Parsing

Log(DOM)

Log(XPP)

21

Table 4: The performance results in average timings.

Average Timings

Data

KB

Data

Capturing

Map

Rendering

Total time Map

Creation*

map images’

transfer time

Response time

for end-users**

10 797.85 927.35 1741.17 61.88 1808.13

100 1384.86 1168.29 2567.35 62.22 2635.46

500 3770.16 1153.96 4934.94 60.15 5001.29

1000 6794.94 1360.41 8155.35 68.38 8225.73

5000 31237.41 2116.12 33350.80 70.26 33419.31

10000 61777.20 2675.87 64441.96 62.15 64506.78

* Total time for map creation = WFS to WMS data capturing + Map Rendering.

** Response time for end-users = Total time for map creation at WMS + map images

transfer time to end user

Table 5: The standard deviation values for the average timings given in

Table 4

Standard Deviations

Data

KB

Data

Capturing

Map

Rendering

Total time

Map Creation

map images’

transfer time

Response time

for end-users

10 48.39 123.29 132.36 26.33 140.32

100 73.86 383.61 384.61 21.90 313.48

500 80.81 230.33 234.03 20.74 238.94

1000 93.24 207.60 199.49 24.59 200.27

5000 211.45 346.06 432.43 22.19 394.48

22

10000 152.54 252.97 279.04 18.64 283.24

Figure 8: Average response, data capturing and map rendering timings for different data sizes. The

values are obtained over the enhanced system with the proposed data-oriented techniques.

Table 6: The comparison of average response times: Enhanced systems vs. naive systems.

 Naïve Approaches

Enhanced with proposed data

approaches

Data

KB

Response

Time (msec)

Standard

Deviation

Response Time

(msec)

Standard

Deviation

10 2578.69 252.49 1808.13 140.32

100 7973.16 374.12 2635.46 313.48

500 30868.52 482.83 5001.29 238.94

1000 59635.69 343.76 8225.73 200.27

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000 12000

T
im

e
 -

m
se

cs
T

h
o

u
sa

n
d

s

Data Size -KB

Average Response Times for the systems enhanced with

proposed data approaches

Avg Resp Time

data capture

map-rendering

23

5000 288594.12 333.07 33419.31 394.48

10000 574825.16 836.46 64506.78 283.24

Figure 9: The comparison of average response times: Naïve systems vs. enhanced systems with the

proposed data-oriented performance enhancement techniques (Chapter 6.3.1.1 and Chapter 6.3.1.2).

We still need to improve the system performance to make it applicable to high

performance GIS applications requiring quick response times such as early warning

systems and crisis management. In order to improve the performance further, we propose

federator-oriented performance enhancement techniques in the following chapter.

6.3.2. Federator-oriented Performance Enhancement Approaches

The federator in the proposed federated GIS system inherently enables load balancing

and parallel processing and this helps with enhancing the overall system performance.

0

100

200

300

400

500

600

700

0 2000 4000 6000 8000 10000 12000

T
im

e
 -

m
se

cs
T

h
o

u
sa

n
d

s

Data Size -KB

Comparison of Average Response Times

Naive systems vs. systems enhanced with proposed approaches

Naïve Approach

24

This chapter presents the techniques and system design to develop high performance

federated GIS system through the federator.

The system design changes depending on the characteristics of the data application use.

For the infrequently changing data (static archived data) we propose pre-fetching

(Chapter 6.3.2.1) technique. For the frequently changing data (similar to the real-time

data) we propose a novel technique composed of client-based caching and parallel

processing through query decomposition (in Chapter 6.3.2).

In summary, pre-fetching is purely for overcoming the natural bandwidth problem,

caching helps the system with preventing to redo the jobs of querying and rendering, and

parallel processing helps with workload sharing and parallel job run. Depending on the

data characteristics, federator uses only one or the combination of these techniques.

These techniques will be explained in the following sections with their performance

evaluations and analysis.

6.3.2.1. Pre-Fetching

In the proposed integration framework we deal with the archived data in GML format.

Archived data does not change often. Therefore, it is not reasonable transferring and

rendering the same data again and again for every request coming from the different or

even the same users. In order to solve this problem we propose pre-fetching. Pre-fetching

is used to overcome the performance degradation of transferring large sized data from

source (database) to destination. It also indirectly enables getting rid of the data

transformation overhead at WFS. As it is mentioned before, WFS transform any-data

kept in databases into common data model (GML) every time it gets a request.

25

Pre-fetching is briefly defined as getting the data before it is needed. We accomplish the

pre-fetching by the data transfer technique explained in Section 6.3.1.1. The general

architecture for the pre-fetching is shown at Figure 10. A performance result of the pre-

fetching and comparisons to the on-demand fetching techniques are displayed in Figure

11 and Figure 12 respectively. Since pre-fetching is independent of the real-time

application and run in an asynchronous manner, it does not degrade the proposed

framework’s overall performance. It’s running times defined by the periodicity parameter

of the Pre-fetching module (PM) (see Figure 10).

The OGC’s standard WMS and WFS specifications are based on HTTP Get/Post

methods, but this type of services have several limitations such as the amount of data that

can be transported, the rate of the data transportation, and the difficulty of orchestrating

multiple services for more complex tasks. Web Services help us overcome some of these

problems by providing standard interfaces to the tools and applications we develop.

As in the proposed data exchange framework defined in Section 6.3.1.1, the pre-fetching

module make the requests with standard SOAP messages but for retrieving the results a

NaradaBrokering subscriber class is used. Through the “getFeature” interface of WFS

Web Services, pre-fetching module gets the topic name (publish-subscribe for a specific

data), IP and port on which WFS streams the requested data. Second request is done by

NaradaBrokering Subscriber using the returned parameters. GML data is provided by

streaming WFS (implemented by G. Aydin) [Vretanos]. It uses standard SOAP messages

for receiving queries from the clients; however, the query results are published

(streamed) to a NaradaBrokering topic as they become available. In order to do that, we

define the “task” and “timer”. Task defines pre-fetching job, and timer defines the

26

running periodicity of the task. Different data might have different periodicities set. Pre-

fetching is done over the critical data. The critical data is the GML data affects the

performance because of their sizes.

There will be two separate locations for the pre-fetched data. One is temporary into

which pre-fetched data is stored. Another is stable which will be used for serving the

clients' requests. Even if the system is busy with the pre-fetching job, it keeps itself up

and running for the clients by using the stable storage. When the data transfer is done to

the temporary location, all the data at that location will be moved to stable location.

Reading and writing the data files at the stable locations will be synchronized to keep the

data files consistent. This cycle is repeated at some time intervals pre-defined by

periodicity parameter of Pre-fetching Module (PM).

Federator
User Portal

Interactive

Tools

WFS

Processor

1

2

WMS

WMS

WFS

WFS

1

2
PM

NB

Temp

Storage

GML

Synch move

Local File

System

PF: Pre-fetching module

NB: NaradaBrokering

WMS: Web Map Service

WFS: Web Feature Service

Figure 10: Pre-fetching architecture embedded to the federated GIS system

27

In order for the pre-fetching algorithm to work properly, pre-fetching module fetches the

data as a whole; no constraint should be defined in the query. On the other hand, the

requests from clients contain some query constraints. These queries and their constraints

are handled at the A WMS side. Queries are processed by using parser techniques and

XPATH queries over the pre-fetched data.

6.3.2.1.1. Fetching module (PM)

The pre-fetching module (PM) is composed of two components. One is “timer” defining

the periodicity that PF will be running, and other is “task” defining what to do. The

periodicity should not be less than the time to transfer one set of critical data. Assigning a

periodicity at PM is the most critical task. This is defined under the considerations of data

characteristics and developer’s experience on the domain specific application.

Since the system is developed in JAVA, we use Timer and TaskTimer JAVA class

libraries to implement the routinely running pre-fetching module.

Here is the “task” defined in a pseudo code:

...... public void pseudo_TASK() {

............ Vector CDMdataList = new Vector();

............ CDMdataList = getListPerformanceCritical_GMLDataNames();

............ String tempDatastore = applpath + "/prefetchedData";

............ String stableDatastore = applpath + "/prefetchedDataUsed";

............ //Fetching all the data in CDM format (GML) - with NB

............ fd.FetchDataWithStreaming(NBip,NBport,NBtopic,

..wfs_address,tempDatastore,CDMdataList);

............ //After pre-fetching is done move the data to stable storage

28

............ fd.moveData(tempDatastore, stableDatastore);

...... }

We also define timer determining the periodicity of task to run. The below sample code

sets the periodicity of “task” defined above to 3 days. It means PF will be running once

every three days.

Timer timer = new Timer();

timer.schedule(task, 0, 40000);

Timer class schedules the specified task for repeated fixed-delay execution, beginning

after the specified delay. Subsequent executions take place at approximately regular

intervals separated by the specified period.

There are two concerns in developing an efficient pre-fetching architecture. First one is

limited storage capacity for a node. The size of the pre-fetched data is constrained by

local node’s storage capacity. Second one is regarding the pre-fetched data

characteristics. Some archived data is updated so often that they look like real-time data.

In that case, pre-fetching becomes unfeasible and cannot be benefited. For this type of

data (archived but updated frequently), we propose a novel parallel processing approach

applied together with the caching (see Chapter 6.3.2.3).

6.3.2.1.2. Performance Evaluation

We test the proposed pre-fetching technique over the proposed federated GIS system by

using real-world Pattern Informatics (PI) geo-science applications (see Figure 10). PI is

an earthquake forecasting application and uses archived earthquake seismic records

stored at WFS as feature collections encoded in GML (XML encoded structured data

model for geo-data).

29

We basically test the system as illustrated in Figure 10. Red-curve (short) illustrates the

round-trip path for the pre-fetching and black-curve (long) illustrates the round-trip path

for the on-demand fetching. For the simplicity we will be using only one critical data to

apply pre-fetching.

In summary, we give the performance results for the proposed pre-fetching approach and

compare it with the ordinary on-demand fetching approach in Figure 12 and Table 8. In

case of on-demand fetching approach, one end is database and other end is user browser

(see the black (dark)-curve in Figure 10). Performance results show the response times.

Table 7: Performance results for the response times when the pre-fetched data is used.

GML Data

Size MB

Average

Processing StdDev

Average

Transfer StdDev

Average

Response StdDev

0.01 19,215.60 477.71 46.30 15.39 19,261.90 481.57

0.1 19,040.74 670.65 71.57 29.74 19,112.30 673.69

0.5 19,191.24 630.50 31.24 8.30 19,222.48 631.35

1 19,387.64 307.45 39.84 10.01 19,427.48 305.94

5 20,107.54 514.46 38.46 10.66 20,146.00 516.50

10 20,113.19 548.52 52.71 27.13 20,165.90 546.53

50 22,830.33 505.86 52.19 15.88 22,882.52 509.98

100 22,934.52 598.25 55.90 12.66 23,990.43 603.59

30

Figure 11: Performance of the pre-fetching technique

Table 8: Comparison of the pre-fetching (Figure 11) and ordinary (on-demand fetching) techniques

Data Size MB

Average Response

Pre-fetching StdDev

Average Response

On-demand StdDev

0.01 19,261.90 481.57 1,808.13 140.32

0.1 19,112.30 673.69 2,635.46 313.48

0.5 19,222.48 631.35 5,001.29 238.94

1 19,427.48 305.94 8,225.73 200.27

5 20,146.00 516.50 33,419.31 394.48

10 20,165.90 546.53 64,506.78 283.24

50 22,882.52 509.98 316,906.00 623.08

100 23,990.43 603.59 643,344.00 548.65

0

5,000

10,000

15,000

20,000

25,000

30,000

0 20 40 60 80 100 120

T
im

e
 -

m
se

cs

Data Size -MB

Average Response Times for Prefetcing system

Response Time

31

Figure 12: Performance comparison of the map rendering in the proposed GIS system with pre-

fetching and ordinary ways.

As it is expected the pre-fetching increased the performance and responsiveness of the

system for accessing, querying and rendering archived data. Compared to on-demand

fetching (ordinary), pre-fetching removes the times spent on conversion (from database to

GML at WFS side) and transferring GML data. In case of cascaded data (going through

multiple chained services to access the original data source), performance gains even

becomes much larger. Furthermore, the higher the data size, the higher the performance

gains.

Our criterion for selecting the technique to apply depends on two measurements. One is

the minimum time required to fetch a whole critical data from the source and another is

the time periodicity in which data is updated in its storage. If the data changes less than a

time periods in which whole critical data is fetched, then the data is called frequently

changing.

1

10

100

1,000

10,000

100,000

1,000,000

0 20 40 60 80 100 120

Lo
g

(T
im

e
 -

m
se

cs
)

Data Size -MB

Comparison of the Average Response Times

Prefetcing vs. On-demand systems

log(Pre-fetching)

log(On-demand)

32

6.3.2.2. Client/Session-based Dynamic Caching

We allocate separate chunk of caching area for the clients and each client is served from

its own allocated area. Client’s cache is updated with the data used for serving that

client’s last query. Server differentiates the clients based on their IDs defined in the

request.

In this context, we use client and session interchangeably. One client might have more

than one session by assigning different IDs to his messages to the server. For example,

when event-based interactive mapping tools are used, those IDs are assigned

automatically whenever user opens a new browser.

We introduced this novel idea for performance reasons. It removes the repeated jobs and

helps efficient load balancing over the un-predicted workload by utilizing the locality

[Denning] and nearest neighborhood [Belur] principles. It also helps us finding out the

best efficient number of partitions for parallel processing and reducing the overhead

timings for handling unnecessary number of partitions. Locality principle in this context

is explained as following. If a region has a high volume of data, then the regions in close

neighborhood also expected to have high volume of data. The simplest example to give is

the distribution of human population data across the earth. The urban areas have higher

human population than the rural areas, and oceans (2/3 of the world) have no human

populations etc.

For large scale applications it might be impossible to cache whole data at intermediary

servers to lower the response times. Furthermore, keeping data at different places force

application developers to be more careful to keep the data consistent. It also brings

maintenance and handling costs to the service administrators. Instead of doing this, we

33

propose a selective client-based dynamic caching. In the following chapter we explain the

architectural details about how to develop such a framework.

6.3.2.2.1. Architectural Details

Architecture is based on recently used data sets and clients requesting them. The research

issues this chapter deals with are summarized as (1) how server differentiate the clients

and (2) what to cache and how to cache.

What to cache: Maps are composed of multiple layers and each layer is created from

different data set such as satellite map layer, state boundaries layer and earthquake-

seismic layer. The proposed caching is applied to the selected layers. These layers are

defined as critical in server’s properties file.

How to cache: each critical data is cached in the common data model (GML format)

instead of ready to use image tiles. The reason behind this is that the proposed GIS

framework allows attribute-based querying/display and data-mining. It is not just for

displaying based on location attribute. In order to accomplish this, the data/layer needs to

be cached with its geometry and non-geometry elements together with the core data. By

doing this, even if client changes its queries in terms of attributes system utilizes the

cached data as long as queries and cached data bboxes are intersects.

For each separate session (differentiated by their IDs defined in the request message),

there will be separate set of cached data. Cached data is upgraded at every request from

the same session.

Since the proposed federated GIS is interacted through browser-based interactive

decision making tools over the integrated data views, the remaining of the chapter first

34

gives the details about how to set browser-based session ID to the SOAP message and

forward it to the server, and then how to keep track of separate clients’ session

information at the server.

The proposed interactive event-based client tools are developed in Apache Tomcat

[apache] Servlet container and pages are developed with Servlet and Java Server Pages

(JSP). JSP defines session ID whenever a user opens a page to interact with the federated

GIS system. A session is normally stored in a cookie which is available to all windows in

the browser. The system access this ID by session.getId(). This returns a string unique

user ID (uuid) which can be used for application specific purposes.

Whenever federated GIS client interacts with the system through federator, it sets its

browser’s session ID to the header of its SOAP messages sent to the Web Service. All the

requests coming from the same browser has same session ID. Session IDs are created

when the browser is opened and kept same until it is closed. Each browser has a separate

and unique session ID. By setting this session ID to the header of SOAP messages

federator can distinguish what client (browser) makes the requests and check its cached

data and session information stored before.

Here is the pseudo code briefly explaining the steps:

WMSServicesSoapBindingStub binding;

binding = (WMSServicesSoapBindingStub)

 new WMServiceLocator().getWMSServices(newURL(service_address));

 String sessionID = session.getid();

 String channel_name = “WMS_getMap_Request”;

//Add SessionID to the SOAP message’s header

35

binding.setHeader(service_address, channel_name, sessionID);

//See Appendix xx for the sample GetMap request

 Object value = binding.getComprehensibleData(getMap_request);

Whenever a user access the system through the same browser its session number will be

the same and federator keeps its local data and actions in the system differentiated based

on its unique session ID.

In order to implement dynamic client-based caching we keep static table keeping updated

session information about each active client. This table is called MapTable and each entry

represents a client. Each entry keeps unique user identification number (uuid) and its

dynamic session information. Dynamic session information for each client is kept as an

instance of a class called FormerRequest. It has four attributes as listed below.

MapTable: Client-id session tracking Obj

uuid-1 FormerRequestObj1

uuid-2 FormerRequestObj2

….. ……

FormerRequest Class attributes

 String uuid; //unique-user-id

String bbox; //bounding box of the last request

 Double density; //data size falling into per unit square.

 Vector [] feature_data; //geometry elements of the last request used to plot map

36

 Density is used to find out allowable largest bbox area to be assigned to a thread

for parallel processing. Details about the load balancing and parallel processing are given

in Chapter 6.3.2.3.2.

1.3.2.2.2. Why Client-based Dynamic Caching

The fundamental concept behind the caching is removing the resource consuming

repeated jobs and serving the client from the ready to use data sets kept in local storages.

In case of map rendering process, ready to use data sets are map images. Google Map

Servers [Googlemap] are the best examples for caching map images to provide high

performance map services. They keep the data as ready to use map images chunked in

tiles. Each tile is defined by its x,y coordinates and a corresponding zoom-level (18

different zoom levels). They formalize the accepted requests (in terms of parameters),

and responses in terms of the tile compositions. Their major concern is developing high

performance map services. In order to do that, they introduced AJAX (Asynchronous

JavaScript and XML) [Ajax] for client/server communications and used locally stored

static map images.

However, Google Map’s static caching approach (tiling) would not work in case of

considering (1) data’s dynamic and distributed characteristics, and their various

heterogeneous formats; and (2) seamless addition of new data sources rendered as layers

and overlaid with other layers in various combinations and orders.

Google Map Servers provide two unique layers, satellite and Google map, and one hybrid

layer as overlay of those two. Maps are served from three groups of tiles corresponding to

these layer sets. In order to highlight the limitations of their algorithms, let’s assume they

37

provide three unique layers instead of two. Let’s say layer names are ‘a, b and c. Then

server would need to have 7 different tile groups as named a, b, c, ab, ac, bc and abc.

In summary, for the N number of unique layers, the required number of tile groups is

calculated as below. It is sum of all k-subset combinations in which k gets the values

from 1 to N.

�C���� ,
�

	
�
 C ����

�!�� � ��! �!

In case of 10 unique layers (N=10), the number of tile groups would be 1023. Moreover,

in each tile group there are thousands of tiles, and each tile in the group has different

copies for 18 different zoom levels. As the layer number increases, the number of

required tile groups increases dramatically and at some point it becomes impossible to

store that much tiles in a single storage with current possible technologies.

Client-based dynamic caching approach: We allow all the data to be kept at their original

resources and integrated to the system through standard service API, communication

messages and in expected common data formats. This enables extensibility and

interoperability, easy data handling/maintenance, and workload and data sharing. We do

on-demand data fetching and rendering. Instead of caching whole combinations of data

sets we fetch and cache the data based on client’s actions (locality and nearest

neighborhood principles). Clients are given the flexibility to compose their own maps

based on their applications’ requirements. The framework also enables attribute based

querying of the data integrated to the system through the common data model carrying

both content and presentation features of the data.

38

With the client-based caching, besides removing the repeated processing jobs, we utilize

the locality principles and develop efficient load balancing algorithm for sharing

unpredicted workload among the worker nodes. We will show how to use this approach

for load balancing in the following section.

6.3.2.3. Load-balancing through Query Decomposition and Parallel Processing

The parallel processing is implemented based on the main query partitioning. Each

partition is assigned to separate thread of work. The number of partitions and their sizes

are defined by using locality principles. Locality information is obtained from the cached

data kept for the same session and user. See the Chapter 6.3.2.2.

Federator apply the parallel processing for creating multi-layered map images

corresponding to un-cached queried region. Since all the data in the system is geo-

referenced and queried in ranges defined by bounding boxes (defining coordinates of

rectangles in the form of (minx, miny, maxx, maxy)), we do range query partitioning to

implement parallel processing.

Parallel processing algorithm has three parts in order and closely related. These are listed

below.

1. Cached-data extraction and Rectangulation (Chapter 6.3.2.3.1)

2. Query decomposition over un-cached data regions in rectangle regions created at

step1. (Chapter 6.3.2.3.2)

- If there is no cache utilized decomposition will be applied to main query

3. Parallel-processing for sub-queries created at step2.(Chapter 6.3.2.3.3)

39

In order to make these concepts more clear I give the illustration of these steps and their

relations in Figure 13. Figure shows a map image composed of two layers. One is NASA

satellite base map layer, and other is a layer showing earthquake seismic records (in blue

dots). (a) shows partially overlapping of cached data and the main request bboxes. (b)

Shows cached data extraction and rectangulation for the remaining part in the main

query. (c) Shows partitioning of the rectangles from (b) based on the locality information

obtained (explained in Chapter 6.3.2.3.2) from the cached data. All the rectangulated

regions from (c) will be assigned to a thread to created map images as final responses.

6.3.2.3.1. Cached-data Extraction and Rectangulation

According to OGC standards in GIS domain, queries are created with location parameter

and location is defined in bounding box (bbox) formats. bbox is a formula defining the

region as a rectangle through coordinates of bottom left corner and top right corner.

Example: Q(minx, miny, maxx, maxy).

R1

R2

Cached

Data

(a) (b)

Successive

query

R2.2’ R2.1’

R1.1’

R1.2’

R1.3’

R1.4’

(c)

minx,miny,

maxx,maxy,

Figure 13: (a) Cached data extraction, (b) rectangulation, and (c) query

decomposition/partitioning for parallel processing.

40

After extraction of cached data falling in the main query range, the remaining of the main

query needs to be converted to the rectangular shapes in order to create valid sub-queries

in the ranges defined by the bboxes (see Figure 13 -b). This is why we make

rectangulation after cached data extraction from queried-region.

The cached data extraction and rectangulation algorithm changes depending on the

positions of bboxes of the main query and cached data region against to each-other. The

main query and cached data bboxes can be positioned to each other in four possible ways

(see Figure 14).

Notation to be used for representing bboxes: Main query bbox is described as (minx,

miny, maxx, maxy) and Cached data bbox is described as (minx
c
, miny

c
, maxx

c
, maxy

c
)

• Positioning-1: (No rectangulation). The main query and cached data do not overlap

in anyway. In this case “cache data extraction and rectangulation” process is going to

give only one rectangle which is the main query bbox.

• Positioning-2: The main query covers cached data (zoom-out action):

Cached

Data

(1) (2) (3) (4)

minx,miny,

maxx,maxy,

Figure 14: Positioning of the successive main query and stored client-based cached data

41

 Rectangles: R1: minx, miny, minx
c
, maxy R3: minx

c
, maxy

c
, maxx

c
, maxy

 R2: max
c
, miny, maxx, maxy R4: minx

c
, miny, maxx

c
, miny

c

• Positioning-3: (No rectangulation). The main query falls in cached data (zoom-in

action)

Rectangles: This case enables the fastest response. There is no need for query

partitioning and data transfer from WFSs. It just uses cached GML to create map

image based on the bboxes values of main query. A lot of performance gains.

• Positioning-4: The main query partially overlaps with cached data (move action).

This case is also explained in Figure 13.

Here is the formula of the rectangles for a specific case of partial overlapping of

cached data bbox and main query bbox (Figure 14-4):

Rectangles: R1: minx, miny, maxx, miny
c
 and R2: maxx

c
, miny

c
, maxx, maxy

In this case, there are four different sub-cases depending on the movement directions.

These are (1) down-right, (2) down-left, (3) up-right, and (4) up-left. The Figure 13

illustrates the down-right case, and the rectangles above belong to his case. The

rectangles for the other cases are also created similarly.

The rectangles obtained in this section go through the decomposition process explained in

the following chapter.

6.3.2.3.2. Query Decomposition

This chapter explains how to determine the number of partitions, and how to partition the

rectangles to assign to the separate threads to create map images in parallel processing.

42

There two ways we propose. One is naïve approach, just partition into equal sizes

(Chapter 6.3.2.3.2.1). The other is smart approach partition the queries according to the

previous query’s bbox values and utilizing the locality principles. But because of the

overhead timings and costs we need to define the best partition number to decompose the

main query. In order to do that we propose smart query decomposition using client-based

caching algorithm defined in Chapter 6.3.2.3.2.2.

6.3.2.3.2.1. Blind Query Decomposition

If there is no cached data available for the client, in other word rectangles are coming

from positioning-1 explained in the previous chapter, then we use blind partitioning. In

all the other cases we use smart decomposition technique explained in the following

chapter.

Blind query decomposition is a static approach, it just chunks the query area (represented

in bbox) into equal sized regions in terms of bbox values without identifying identity of

client. Partition number is pre-defined and does not change at run-time.

6.3.2.3.2.2. Smart Query Decomposition Using Client-based Caching

Instead of decomposing the main query into predefined static number of sub-regions, we

utilize the neighborhood and locality principles through client-based caching and figure

out the most efficient number of partitions changing based on the data returned and

cached at last time.

Here we explain how to define the number of partitions (i) and how to decompose the

query (ii).

43

i. Determining the partition number:

In order to define the partition number we use locality principles. Locality principle in

this context is explained as following. If a region has a high volume of data, then the

regions in close neighborhood also expected to have high volume of data. Example is the

human population data. The urban areas have higher human population than the rural

areas. The oceans (2/3 of the world) have no populations etc.

We partition the rectangles into equal regions in the form of bboxes, because we don’t

know the size of the data falling in that region before getting it. In order to define the size

(in bbox) we use cached data sizes expressed in bbox and KB. We assume (by using

locality) cached data density is similar to the main request density, and by using the

threshold value and un-cached main request part we calculate the partition number (Pn) as

below:

Cached data bbox area = (maxx
c
 - minx

c
)*(maxy

c
 - miny

c
)

Density of cached-data: dcd = ����������� ���� �� �������� ���� !" �#��

Cached-data size in KB and bbox values are obtained from the client-based caching.

Allowable largest area to assign: lat =
��#���!$� ���� ����

������% !& ������ ���� =
��#
���

Threshold data size is a static value pre-defined in server’s properties file for the

corresponding critical data.

 Pn: the number of partition =
#�����'($�)(�#%′� !" �#��

$��

44

If Pn is less than 1 then, don’t make partition. In contrast, if it is bigger than 1, then

partition into Pn regions. The following section explains how to partition a rectangle into

Pn number of regions.

ii. Query decomposition of the rectangulated regions with Pn:

After getting Pn value in previous step, we cut the region into Pn number of sub-regions in

the form of bbox values.

Here, we explain how to partition a given rectangle into Pn number of bboxes. There are

two alternative techniques here, one is partitioning the rectangle vertically and the other

is partitioning it horizontally.

In case of horizontal partitioning the step value is calculated as below, and partitioning is

done along the Y-coordinate. (See Figure 15)

Calculating the bboxes of the partitioned

regions:

for (i=0; i<Pn*sx; i=i+sx;)

 print (minx-i, miny, maxx-(i+sy), maxy) ;

sy =
�*+,-�*./-�

0�

6.3.2.3.3. Parallel-Processing

The proposed parallel processing is based on range-query (defined in bbox)

decomposition we call it partitioning. The partitioning is done with the locality principles

to share the workload to the threads to reduce the response times.

Sy 1

2

Pn

maxx, maxy

minx,miny,

Figure 15: Partitioning a rectangle

along the coordinate-y

45

This section explains how to create sub-queries corresponding to the partitions, and how

to assign the sub-queries to threads and assemble the results.

These issues are illustrated in Figure 16 above. In this specific example, main query

includes three separate layers, and one of them is created with the critical data encoded in

common data model, GML. The rectangulated regions 1 and 2 in the main query are

determined by the cached-data extraction and rectangulation processes explained in

Chapter 6.3.2.3.1. Grey region in the main query overlaps with the cached data. There is

no need for data transfer for this region. This is obtained from the cache. For the other

parts not overlapping with the cache (region 1 and 2), the system makes parallel

processing for data access, query and plotting after creating partitions.

WFS

R1 GetFeature requests -

see Figure 17

R2 R3 RPn

GML1 GML2 GMLPn
GML

Cached

1
2

. . .

. . . .

Main query: cached

data extraction and

rectangulation Layers from Other

WFS and WMS

Critical data layer

Critical data

provider in GML

Critical data falling into

partitioned regions

Figure 16: Parallel processing and caching architecture in brief. See also Figure 13.

46

i. Creating the queries for the partitions.

Throughout the rectangulation and partitioning, the only changing attribute of the main

query is the bbox coordinate value. These are calculated in the previous chapter.

Based on the set of bbox values obtained at the end of partitioning process (ii) we need to

create sub queries. Each partition is differentiated by only their bbox value, and they go

through the query creation process. AWMS creates getFeature requests corresponding to

these rectangles based on their bounding boxes. Other parameters and attributes required

for creating getFeature request are obtained from the main query. All the parameters,

attributes and their values (except for bbox values) will be the same for all the getFeature

requests created for the partitions.

An example case of decomposing a rectangle obtained by rectangulation process and

creating parallel queries is illustrated at Figure 17. In this example, rectangle is

partitioned into 5 regions vertically.

Pn = 5 and sy =
�*+,-�*./-�

0� =
�12�1��

2 = 1

You can see a sample getFeature created for bbox value “-110, 35, -100, 40” request at

Figure 18.

47

Figure 18: Sample GetFeature request for the partitioned region of bbox (-110, 35 -100, 40). Request

is done for global hotspot (earthquake seismic data)

-110, 35, -100, 40

-110, 35, -100, 36

-110, 36, -100, 37

-110, 37, -100, 38

-110, 38, -100, 39

-110, 39, -100, 40

GetFeature-1

GetFeature-2

GetFeature-3

GetFeature-4

GetFeature-5

A rectangle in bbox

from the rectangulation

Creating queries

for these bbox

values

Decomposing the

rectangle according to

 Pn and sy

Figure 17: Example scenario of the partitioning a region into 5 sub-regions through the bbox value

of a rectangle.

48

ii. How to assign the sub-queries to threads and assemble the results.

Sub-queries created at previous step are assigned to separate threads to capture the

GML data from WFS and process the corresponding map pieces. Partitions are

assigned to worker nodes through separate thread of works in round-robin fashion

[tanenbaum].

Let’s say PN is the partition number and WN is the number of WFS worker nodes.

34567
 8537 � 9�:� �
Share is the number of partitions each worker node is supposed to get.

6;<
 :� � 8537 � 9�:� �
rmg is the remaining of the PN/WN division. If there is no remaining every worker

node is assigned share number of partitions. Rmg is dofferent from 0 then partitions

are assigned to worker nodes as below:

The first rmg #of WN are assigned share+1 number of partitions, and

remaining WN are assigned share number of partitions.

Figure 19 illustrates the algorithm over a case of seven partitions and three WFS

worker nodes (called WFS-1, WFS-2 and WFS-3). So, the algorithm’s parameters

would be

share = base (7/3) = 2 and rmg = 3 – 2 = 1;

49

So WFS-1 is assigned 3 (share+1) partitions through thread-1, 4 and 7,

WFS-2 is assigned 2(share) partitions through thread-2 and 5

And finally WFS-3 is assigned 2 (share) partitions through thread-3 and 6.

Each query corresponding to the partitions are assigned to the threads. Threads are

responsible for interacting with the WFS and getting the requested data to create map

images for the partition. After getting the data, federator starts rendering and plotting the

critical data over the other layers by parsing and extracting the geometry elements in

returned GML.

6.3.2.3.4. Overall Performance Evaluation

Performance will be evaluated in three possible generalized situations categorized based

on the cached data utilization. These are:

1

2
3

4
5

6

7

Thread-1

Thread-2

Thread-3

Thread-4

Thread-5

Thread-6

Thread-7

WFS-1

WFS-2

WFS-3

Main query – partially

overlapped with cached data

(grey region) – rectangulated

into 2 – partitioned into 7

Worker nodes for

critical layer

assigned in round-

robin

Cached-data overlapped

with main query

1, 4, 7

2, 5

3, 6

Figure 19: Assigning partitions to threads and capturing/processing in parallel

50

a. No usage of cached data

b. Complete usage of cached data. No need for parallel processing.

c. Partial usage of cached data

Here is the performance test setup:

According to the tes purposes and test setup environment we have six different kinds of

servers. These are Web Map Server (WMS), the WMS-extended federator, Web Feature

Service (WFS), MySQL-database, NaradaBrokering messaging middleware and

browser/event-based interactive mapping tolls client. We also integrated the third party

OGC compatible WMS servers such as NASA WMS providing satellite map images

from OnEarth project and Google Map servers providing Google maps.

Figure 20: Test setup for federator oriented approaches.

51

Every machine (on which servers are deployed) has 2 Quad-core Intel Xeon processors

running at 2.33 GHz with 8 GB of memory and operating Red Hat Enterprise Linux ES

release 4. Machines are in Local Area Network (LAN).

a. No usage of cached data:

This case happens when the query bbox don’t not overlap with each other. In this case

there is no need to cached-data extraction and rectangulation, because there is only one

rectangle which is the main query to partition. Here, we show performance gaining by

using parallel processing through query decomposition. In order to make performance

evaluations, we test the system with different (2, 10 and 20) levels of partitions and

assign them to separate individual threads for creating map images in parallel.

We first present the performance values in average response times detailed in “data

capture timing”, “map rendering timing” as displayed in Table 9 and Table 10. In this

context, response times (total map creation time) are divided into three measured items.

First is DC (data capturing from WFS to WMS/federator), second is MR (Map rendering

at WMS/federaator), and third one is map images’ transfer time from federator to event-

based dynamic map clients for end-users. Third one is not shown in the analysis but can

be derived from the table by below formula for each data size separately.

Map images’ transfer time = RT- (DC+MR)

Here, for the partitioning, since there is no cached-data to be utilized we use blind

partitioning technique given in Chapter 6.3.2.3.2.1.

52

Table 9:Average times for data capturing, map rendering and overall response for different number

of partitioning and different data sizes.

Average Timings

Size 2 Threaded 10 Threaded 20 Threaded

MB *DC *MR *RT DC MR RT DC MR RT

0.01 769.9 813.3 1,728.3 1,385.5 891.6 2,329.5 2,423.3 1,041.4 3,589.1

0.1 1,161.0 829.6 2,031.4 1,712.3 994.3 2,760.0 2,483.4 1,077.1 3,629.4

0.5 2,664.5 958.1 3,672.7 2,488.5 999.7 3,460.4 2,628.1 1,194.6 3,759.4

1 5,749.8 1,172.7 6,977.0 3,440.9 1,140.5 4,640.5 3,820.4 1,382.9 5,268.8

5 20,350.4 1,707.0 22,108.0 15,036.9 1,627.6 16,725.4 14,390.5 1,680.5 16,148.0

10 45,072.8 2,499.0 47,639.1 20,517.3 2,518.1 23,118.4 22,060.3 2,637.6 22,800.1

50 247,321.8 11,839.6 259,341.7 192,592.8 11,894 204,727 111.753 8,890.2 120,822

TMC (Total Map Creation Time) = Data Capture (*DC) + Map Rendering (*MR)
*RT = TMC + Map Images’ Transfer Time

Table 10: Standard deviation for data capturing, map rendering and overall response for different

number of partitioning and different data sizes.

Standard Deviations

Size 2 Threaded 10 Threaded 20 Threaded

MB *DC *MR *RT DC MR RT DC MR RT

0.01 92.52 103.67 164.37 91.09 85.34 131.46 281.40 206.17 482.77

0.1 99.03 81.87 123.44 89.56 107.28 104.35 177.48 297.37 312.16

0.5 94.35 140.09 193.28 97.66 81.44 120.24 117.43 149.45 124.11

53

1 101.61 191.37 211.20 90.05 86.35 106.42 108.09 210.27 223.71

5 99.43 154.33 287.72 190.37 77.25 201.62 265.17 277.07 488.09

10 131.44 420.00 509.01 973.42 137.81 941.83 582.05 261.82 706.62

50 312.2 5,208.7 5,395.6 1,852.5 5,639.1 5,676.4 1,154.5 245.9 1,182.4

TMC (Total Map Creation Time) = Data Capture (*DC) + Map Rendering (*MR)
*RT = TMC + Map Images’ Transfer Time

Since the major bottleneck of the performance is transferring GML data, we first

demonstrate the performance enhancement in data transfer (see Table 11 and Figure 21).

The data is transferred from the databases through WFSs to the federator (or WMS). The

measured transfer times are in milliseconds.

The data capturing times in the below table are obtained from Table 9 except for single-

thread column’s values. They are obtained from Table 4.

Comparison of data transfer times based on partition number and data sizes

Table 11: Data transfer times for different levels of partitioning and data sizes.

Data Size Data Capture Comparisons

MB Single-thread* 2-thread 10-thread 20-thread

0.01 797.85 769.94 1,385.50 2,423.30

0.1 1,384.86 1,160.95 1,712.27 2,483.36

0.5 3,770.16 2,664.47 2,488.47 2,628.10

1 6,794.94 5,749.79 3,440.89 3,820.36

5 31,237.41 20,350.38 15,036.95 14,390.50

54

10 61,777.20 45,072.75 20,517.26 22,060.27

50 308,671.63 247,321.80 192,592.80 111,753.20

*Values for single-thread are obtained from first column of Table 4.

Figure 21: Comparison of average data transfer times for various levels of data sizes and partitioning

level.

Comparison of response times based on partition number and data sizes

Table 12 compare the performance values for different levels of partitions and shows

what partition level gives the best result for corresponding data size. According to the

table, for the data sizes less than 100KB partitioning into two gives the best result. Using

more than two partitions degrade the response times because of the overhead times. For

the overhead times and analysis see Table 14 and Figure 24. For the sample cases of

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60

T
im

e
 -

m
se

cs
T

h
o

u
sa

n
d

s

Data Size -MB

Comparisons of data capturing times based on

different partitioning levels

single-thread

2-thread

10-thread

20-thread

55

partitioning levels and given data sizes, we also present the best partition numbers in the

last column.

Table 12: Average response times for different data sizes and partition levels, and listing of best

partitions for each data sizes.

Data Size Response Time Comparisons

MB Single-thread 2-thread 10-thread 20-thread

Best

Partition

0.01 1,808.13 1,728.28 2,329.50 3,589.10 2

0.1 2,635.46 2,031.35 2,760.00 3,629.36 2

0.5 5,001.29 3,672.74 3,460.40 3,759.40 10

1 8,225.73 6,977.00 4,640.53 5,268.79 10

5 33,419.31 22,107.95 16,725.37 16,148.00 20

10 64,506.78 47,639.10 23,118.42 22,800.13 20

50 316,906.39 259,341.67 204,727.93 120,822.00 20

For small sizes of data such as less than 500KB, high number of partitioning does not

help in performance increase, instead degrade it. As you see in the table for small size of

data partitioning into 2 give sthe best result. That is because of the overhead times

coming from partitioning, sub-query creation and finally merging the results to create

final response. For more information about overhead times see Table 14 and Figure 24.

56

Figure 22: Comparison of average response times for different partitioning and data sizes.

When you compare the Figure 21 and Figure 22, you will think that they are same but it

is not. They look similar because of that data capturing/transfer is the dominant value in

the response times, and in some cases almost %90 of response times comes from data

transferring times.

Comparison of Response times: Naïve approaches vs proposed enhanced approaches

Table 13 and Figure 23 show the striking performance enhancement in response times for

the overall architecture. To make it more clear, for 10MB of data size, proposed

architecture is almost 30 times faster than the architecture developed with naïve

approaches.

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60

T
im

e
 -

m
se

cs
T

h
o

u
sa

n
d

s

Data Size -MB

Comparisons of response times at different partitioning

levels

single-thread

2-thread

10-thread

20-thread

57

Table 13: Response times comparison values - Naïve approach and the proposed approach at

different partitioning levels.

Data Size Response Time Comparisons

MB Naïve approach 2-thread 10-thread 20-thread

0.01 2,578.69 1,728.28 2,329.50 3,589.10

0.1 7,973.16 2,031.35 2,760.00 3,629.36

0.5 30,868.52 3,672.74 3,460.40 3,759.40

1 59,635.69 6,977.00 4,640.53 5,268.79

5 288,594.12 22,107.95 16,725.37 16,148.00

10 574,825.16 47,639.10 23,118.42 22,800.13

Figure 23: Comparison of response times at different partitioning levels – Naïve approach vs.

proposed approach.

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12

T
im

e
 -

m
se

cs
T

h
o

u
sa

n
d

s

Data Size -MB

Comparisons of response times with naive approach

at different partitioning levels

single-thread

2-thread

10-thread

20-thread

58

From the figure we see that the performance does not increase in the same ratio at which

the thread number increases. That is because of the overheads resulted from mainly the

query decomposition and assembling the result sets for the main query etc. Moreover, the

figure shows that the higher the data size the larger the performance gains.

Detailed overhead timings:

Table 14 and Figure 24 present overhead times of the proposed federator oriented parallel

processing technique in map rendering. The major overheads are grouped into three.

These are partitioning, sub-query creation, and merging the sub-results to the partitions to

create final output.

Table 14: Overhead times due to making partitioning for parallel processing at various partitioning

levels.

Partition Partitioning Sub-Query Creation Merging of partitions

Number Avg StDev Avg StDev Avg StDev

5 51.28 14.74 161.67 25.32 27.00 12.88

10 58.65 15.16 421.55 63.98 44.26 23.44

15 60.15 19.74 720.35 102.87 64.90 23.77

20 68.75 21.75 1,058.84 199.49 118.90 25.53

25 69.05 15.98 1,366.10 198.37 131.88 30.59

30 85.42 30.04 1,837.16 343.26 170.00 30.56

59

Figure 24: Parallel processing overheads based on different levels of partitioning.

b. Complete cached data utilization

In this case there is no need for rectangulation, main query decomposition and threaded

parallel processing. This case happens when the user query a smaller region falling in the

previous map he got on his browser. It is mostly caused by zooming-in action. In this

case, the cached data is enough for responding to the main request, and no other cascaded

requests are needed. The Federator renders the map just by using the cached data. The

only task needed is the cached data extraction and overlaying (plotting) over the other

requested layers.

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

0 5 10 15 20 25 30 35

T
im

e
 -

m
se

cs

Partition Number

Comparisons of overheads based on

different partitioning levels

partitioning

sub-query crt

merging

60

This case’s performance results are almost same as the pre-fetching techniques’. Please

see Table 7 and Figure 11 to get an idea about the performance enhancement.

c. Partial cached data utilization :

This case happens when the user moves (or drag and drop) the map to another region or

makes zooming-out. In other words, when the user makes successive requests and their

bbox values partially overlap. As explained before in Figure 13 and Figure 14 in Chapter

6.3.2.3, if only one point of main request falls in bbox boundaries of the cached-data,

they are called as partially overlapped.

In order to simplify the analyzing we give a sample scenario: 1/2 of main query overlaps

to the cached data and remaining data is obtained and processed with 10-threaded parallel

processing.

Table 15 shows the average timing values for the selected sample bbox values and data

sizes, and Table 16 shows the corresponding standard deviations. The cached data is

accessed and processed in a way similar to the way of processing the pre-fetched data. In

order to access the remaining data we decompose the query into 10 and assign each query

to 10 separate threads to create corresponding map images created from the data captured

from databases through WFS services.

The first column of the table shows the data sizes of GML data to be captured to create

map images. The data size values given in the parenthesis are cached data sizes which

are actually half of the requested data size.

61

Table 15: Performance results for the sample case scenario in which half of the data is provided by

the cached data, and other half is obtained from WFSs and processed by 10-thread parallel

processing.

Sample bounding boxes after Average Timings

GML Data

rectangulations on which

partitioning is done

cached-

data

On

Remain

Total

Average

Size -MB* minx miny maxx maxy processing 10-thread Response

0.01(0.005) -121.58 34.55 -121.45 34.69 734.33 2,360.86 3,095.19

0.1(0.05) -121.65 34.36 -120.78 35.00 768.33 2,808.40 3,576.73

0.5(0.25) -118.68 34.21 -118.39 34.50 782.45 2,939.32 3,721.77

1(0.5) -119.16 34.21 -118.25 35.12 851.33 3,460.40 4,311.73

5(2.5) -120.83 32.07 -117.15 36.18 1,209.79 10,084.79 11,294.58

10(5) -120.83 32.07 -115.70 36.70 1,646.32 16,725.40 18,371.72

*requested data size (cached data size)

Table 16: The standard deviations for the average times given in Table 15.

Standard Deviation

GML Data cached-data remaining-data Total

Size -MB processing access and proc Response

0.01(0.005) 62.45 141.77 204.22

0.1(0.05) 66.37 217.43 283.80

0.5(0.25) 79.56 130.85 210.41

1(0.5) 72.21 120.24 192.45

62

5(2.5) 68.52 245.07 313.59

10(5) 94.57 201.62 296.19

In Table 17, we compare the average response times of the given sample case with other

two group of response times obtained by not using cached data. First group’s response

times are obtained by using 10 threaded parallel processing and second group’s are

obtained by using single thread.

Table 17: Comparison of the response times for the hybrid (caching and parallel processing) and

ordinary non-caching single-threaded system.

Comparison of the response times

GML

Data Half cached/ 10 thread NO Cached /10 thread NO Cached /Single thread

MB Avg. Time StdDev avg time std dev Avg. Time StdDev

0.01 3,095.19 204.22 2,329.50 131.46 1,808.13 140.32

0.1 3,576.73 283.8 2,760.00 104.35 2,635.46 313.48

0.5 3,721.77 210.41 3,460.40 120.24 5,001.29 238.94

1 4,311.73 192.45 4,640.53 106.42 8,225.73 200.27

5 11,294.58 313.59 16,725.37 201.62 33,419.31 394.48

10 18,371.72 296.19 23,118.42 941.83 64,506.78 283.24

As it is shown in first two lines of Table, there is no gain of using parallel processing

with caching for the small sizes of data. In such cases, total overhead sometimes get

higher than the total response times of single threaded cases. This problem is solved by

63

using a threshold value to define if the partitioning is needed or not. This technique is

also explained in 6.3.2.3.2.2.

Figure 25: Illustrating the performance enhancement of using caching with parallel processing with

½ cached data case.

As it is shown the in Figure 25, for the given test scenario (1/2 of main query overlaps to

the cached data and remaining data is obtained and processed with 10-threaded parallel

processing) proposed system is more than 3 times faster than the single threaded system.

As the data size increases, that ratio increases.

When we compare the enhanced system’s performance result with the naïve approaches’

performance result given in Table 1 and Figure 3. We see that using parallel processing

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12

T
im

e
 -

m
se

cs
T

h
o

u
sa

n
d

s

Data Size -MB

Comparisons of response times

half-cached/10-thread

no-cached/10-thread

no-cached/single-thread

64

and caching techniques make the system almost 30 times faster than the naive approaches

for the given specific case scenario.

As the data size and/or density of data falling per unit square increase, the performance

gaining from using the proposed technique increases.

65

REFERENCES

[Lu 2006] Wei Lu, Kenneth Chiu, and Yinfei Pan, “A Parallel Approach to XML

Parsing”. In the 7th IEEE/ACM International Conference on Grid Computing,

2006.

[Pallickara2003] Pallickara S. and Fox G., “NaradaBrokering: A Distributed

Middleware Framework and Architecture for Enabling Durable Peer-to-Peer

Grids” ACM/IFIP/USENIX, Rio Janeiro, Brazil June 2003.

[Donbox] Don Box, David Ehnebuske, Gobal Kakivaya, Andrew Layman, Dave Winer.,

Simple Object Access Protocol (SOAP) Version 1.1, May 2000.

[Sosnoski] Sosnoski, D. “XML and Java Technologies”, performance comparisons of the

Java based XML parsers. Available at http://www-

128.ibm.com/developerworks/xml/library/x-injava/index.html

[Alexander] Aleksander Slominski. XML Pull Parser, visited 04-15-02.

http://www.extreme.indiana.edu/xgws.

[Vretanos] Vretanos, P. (ed.), Web Feature Service Implementation Specification

(WFS) 1.0.0, OGC Document #02-058, September 2003

[GML] Cox, S., Daisey, P., Lake, R., Portele, C., and Whiteside, A. (eds) (2003),

OpenGIS Geography Markup Language (GML) Implementation Specification.

OpenGIS project document reference number OGC 02-023r4, Version 3.0.

[WMS] de La Beaujardiere, J., Web Map Service, OGC project document reference

number OGC 04-024. 2004.

66

[WFS] Vretanos, P. (2002) Web Feature Service Implementation Specification, OpenGIS

project document: OGC 02-058, version 1.0.0. Volume,

 [Booth]Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., and

Orchard, D. “Web Service Architecture.” W3C Working Group Note, 11

February 2004. Available from http://www.w3c.org/TR/ws-arch.

[Tran] Tran, P., Greenfield, P., and Gorton, I., Behavior and Performance of Message-

Oriented Middleware Systems. . Proceedings of the 22nd international Conference

on Distributed Computing Systems, ICDCSW. 2002.

[uddi] Bellwood, T., Clement, L., and von Riegen, C., UDDI Version 3.0.1: UDDI Spec

Technical Committee Specification http://uddi.org/pubs/uddi-v3.0.1-

20031014.htm. 2003.

[ogc] The Open Geospatial Consortium, Inc. web site: http://www.opengeospatial.org

[deegree] deegree project web site available at http://deegree.sourceforge.net/

[minmapserv]University of Minnesota Map Server, available at

http://mapserver.gis.umn.edu/

[patterninfo] Tiampo, K. F., Rundle, J. B., McGinnis, S. A., & Klein, W. Pattern

dynamics and forecast methods in seismically active regions. Pure Ap. Geophys.

159, 2429-2467 (2002).

[Denning] P.J. Denning and S. C. Schwartz, Properties of the working-set model.

Communications of the ACM, 15(3), March 1972.

[Belur] Belur V. Dasarathy, editor (1991) Nearest Neighbor (NN) Norms: NN Pattern

Classification Techniques, ISBN 0-8186-8930-7.

67

[Ajax] Nicolas Serrano, Juan Pablo Aroztegi, Ajax Frameworks for Interactive web apps,

IEEE Software Magazine V24n5 (Sep/Oct 2007) pp12-14.

[Googlemap] Project web site is available at

http://code.google.com/apis/maps/index.html

[tanenbaum] Andrew S. Tanenbaum, Modern Operating Systems, 2nd ed., Upper Saddle

River, NJ: Prentice Hall, 2001.

[apache] Apache Tomcat, http://tomcat.apache.org/.

