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1. Performance Issues, and measurements and analysis 

This chapter presents the common performance issues in service-oriented, federated and 

interoperable GIS systems built based on the common structured data model. As the common 

data model, OGC defined Geographic Markup Language (GML) [GML] is used. Developing a 

federated Information system inspired us enhancing the whole system performance by applying 

novel parallel processing and caching techniques applied together in large scale interoperable 

information systems (see Chapter 1.3.2). In addition to this, we proposed some other innovative 

performance enhancement techniques (see Chapter 1.3.1) such as streaming data transfers, and 

enhanced parsing and rendering of semi-structured geo-data sets (GML). At the end of each 

chapter explaining these techniques, there are performance tests and analysis.   

The organization of the rest of the chapter is as follows. Chapter 1.1 summarizes and reviews the 

general performance issues of interoperable service-oriented GIS systems in which 

interoperability is granted by using XML-structured common data model and Web Services. 

Chapter 1.2 presents the limits of the ordinary GIS systems without having any performance 

enhancements which will be our comparison base for our proposed techniques. Throughout the 

document, with the term “ordinary” we mean on-demand, single-threaded and no-caching 

systems. The last chapter (Chapter 1.3) explains our approaches to developing high performance 

GIS systems, and performance evaluations by comparing with the ordinary systems. We 

approach the performance issues from the two aspects. One is data-oriented and the other is 

federator-oriented. The data-oriented approaches deal with transferring large-sized XML 

structured data in common model, and high performance parsing and rendering algorithms. The 

federator-oriented approaches deal with the performance enhancement techniques based on data 

characteristics. For the un-frequently changing archived data handling we propose pre-fetching 
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technique. On the other hand, for the frequently changing archived data, we propose a hybrid 

technique composed of caching and parallel processing applied together. This hybrid system is 

actually proposes a novel locality based workload forecasting and parallel processing through 

range query decomposition (Chapter 1.3.2.2) for variable sized and un-evenly distributed data. 

1.1. General Performance Issues in Interoperable Service-oriented GIS 

Performance issues in interoperable service-oriented GIS can be generalized into two groups:   

- Issues regarding semi-structured data model (GML) (Chapter 1.1.1). 

- Issues regarding domain specific data characteristics (Chapter 1.1.2).  For example in 

GIS, the location attribute (defined as (x,y) coordinate) is the major attribute of geo-data.  

Based on the location, the data is described as un-evenly distributed and variable sized. 

1.1.1. Using Semi-structured Data Model  

Using semi-structured data model enables interoperability and inter-service communication. 

XML’s emergence as the de facto standard for encoding tree-oriented, semi-structured data has 

brought significant interoperability and standardization benefits to distributed computing. On the 

other hand, performance has been still a persistent concern for large scale applications, because 

of the size issues and processing overheads [Lu2006]. The processing is detailed as parsing and 

differentiating (separating) the core-data from the attributes and other tags to create required 

application specific data formats. 

Structured data representations enable adding some attributes and additional information to the 

data. These attributes and additions are mostly due to the interoperability and security reasons. 

XML representations of data tend to be significantly larger than binary representations of the 
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same data. The larger document size means that the greater bandwidth is required to transfer of 

data, as compared to the equivalent binary representations. The larger size often implies greater 

processing costs as well, since much of the overhead involved in communication processing is 

going to be based on the data volume. 

There are two well-known and commonly-used paradigms for processing XML data, the 

Document Object Model (DOM) and the Simple API for XML (SAX). DOM builds a complete 

object representation of the XML document in memory. This can be memory intensive for large 

documents, and entails making at least two passes through the data. SAX operates at one level 

lower. Rather than actually constructing a model in memory, it informs the application of 

elements through callbacks. This also requires at least two passes through the data. These are all 

expensive and resource (such as CPU and memory) consuming processes and they don’t provide 

enough performance for the large scale applications.   

1.1.2. Data Characteristics 

The different domains have different data types having different characteristic to be handled. As 

an example, in GIS domain science applications need to manipulate geo-data. Geo-data is 

described with its location ((x,y) coordinates) on the earth. Based on the location attribute, geo-

data is un-evenly distributed (such as human-population and temperature distributions) and 

variable sized. Because of these characteristics, it is not easy to implement some well-known 

performance enhancing techniques as applied in other science domains. Since it is not possible to 

know the work-load earlier, the classic load balancing algorithms do not work for the variable 

sized and unevenly distributed data.  The work is decomposed into independent work pieces, and 

the work pieces are of highly variable sized. This issue is illustrated in Figure 1 for the case of 

using one-step-binary query partitioning based on the location attribute of the data. As it is 
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illustrated in the figure, there are four worker nodes, and the worker node assigned to R2 gets the 

heaviest part of the total work, and therefore the expected performance gain from usinf classic 

load balancing will not be obtained.  

The geo-data is queried based on their attributes. Since all the data is described by their 

locations, in order to get the data sets falling in a specific region, the bounding box (bbox) values 

are used. The regions are defined in bboxes. A bbox defines a rectangular shape in a two-sim 

coordinate plane, and it is dormulated as (minx, miny, maxx, maxy). For example, Figure 1 

shows a region formulated in bbox value (a, b, c, d). 

 

 

 

1.2. Ordinary GIS System Performance Using Common Data Model for the 

Interoperability (To compare with) 

In order to solve data and service heterogeneities for the GIS computation and data services 

OGC and ISO/TC-211 standards are used. These standards recommend using structured common 

data model called GML for the representation of location based geo-data. The standard bodies 

aim is to make the geographic information and services neutral and available across any network, 
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Figure 1: Un-balanced load sharing. Server assigned R2:“( (a+b)/2, (b+d)/2 ),  (c, d)” gets the most of the work. 



6 

 

application, or platform. Currently the two major geospatial standards organizations are the Open 

Geospatial Consortium (OGC) and the Technical Committee tasked by the International 

Standards Organization (ISO/TC211). 

With the ordinary system we mean a GIS developed without using any novel advanced 

techniques to handle the data. Most of the implementations are based on single-threaded and on-

demand processing. In order to compare and contrast our novel approaches to creating large 

scale high-performance GIS system with the ordinary systems, we tested and presented their 

performance results at Table 1 and Figure 2.  

This performance results teach us valuable lessons in terms of the capabilities and limits of the 

general distributed and interoperable GIS systems. From the figure we draw following 

conclusions. First, for small data payloads (less than 1MB) the response time is acceptable. 

However for larger data payloads the performance gets worse and the response time gets 

relatively longer.   

Table 1: The round-trip times (or response times) of the ordinary system. 

Data Size -MB Response times in minutes 

1 0.97 

20 19.25 

40 38.17 

60 58.20 

80 76.75 

100 95.80 
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- [time(client makes request).] Client makes requests by interactive smart map tools (Geo-Science 

Portal) for Aggregator Web Map Server (AWMS).      

- AWMS parse and render requests and define set of actions required based on the requests 

and its capabilities file.  

- AWMS Creates map images (from the returned datasets) and returns them to the clients:  

o Defines the set of WFSs [WFS] and other WMSs [WMS] to communicate with to 

build the response by in accordance with its capability file. 

o Creates requests for WFSs and other WSMs 

o Invokes WFSs getFeature Web Services for vector data encoded in Geographic 

Markup language (GML) [GML]. 

o Invokes other WMSs getMap Web Services for raster data rendered in map images 

o Transferring GML data (feature collections) from WFS and WMS 

o Parsing and rendering returned GML data sets 

o Aggregating and overlaying layers according to the request and capability file. 

o Sending the map images to the WMS Client. 

- [time(map is displayed)] Client shows the returned maps on his browser 

From our experience we saw that depending on the total data size, over %90 of the time(measured) 

comes from the step called “transferring GML data (feature collections) from WFS and WMS”. 

Because of that, even if we use the most efficient and fast parsing and rendering algorithms (such 

as using pull parsing or application specific XPath querying), it won’t improve performance very 

much if the data transfer time still stays that much high as shown in the Figure 2.  

The next chapter presents our novel approaches to enhance the ordinary GIS system’s 

performances presented here. Our approaches are summarized as data-oriented and federator-
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oriented. At the end of every section, we will make evaluations of the proposed techniques by 

comparing with the ordinary system performance shown in Figure 2. 

1.3. High Performance Design and Evaluation of the System  

Our approaches to the performance issues are grouped into two. First group of approaches deals 

with the general performance issues result from using semi-structured data encodings (such as 

GML), and large size data exchange, parsing and rendering (Chapter 1.3.1). Second group of 

approaches is regarding the federator oriented design and techniques to enhance the overall 

system performance (Chapter 1.3.2).  

1.3.1. Data-oriented Approaches 

Distributed GIS systems typically handle a large volume of datasets. Therefore the transmission, 

processing and visualization/rendering techniques used need to be responsive to provide quick, 

interactive feedback. There are some characteristics of GIS services and data that make it 

difficult to design distributed GIS with satisfactory performance. One of them is that GIS 

services often transmit large resulting datasets such as structured data, images, or large files in 

tabular-matrix formats. 

Iin order to provide interoperability and extensibility we use common data format represented 

and formulated in XML. This degrades the performance even worse for large scale applications. 

The major hurdle of the proposed federated GIS framework is encoding, transferring and 

rendering the data in common data model. In the following two sub-sections we present our 

approaches to these issues. 

Two approaches are presented here. One is regarding large scale structured data transfer (Chapter 

1.3.1.1) and other is regarding the large scale data parsing (Chapter 1.3.1.2). 
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1.3.1.1. Streaming Data Transfer 

Our experience shows that although we can easily integrate several GIS services into complex 

tasks by using Web Services, providing high-rate transportation capabilities for large amounts of 

data remains a problem because the pure Web Services implementations rely on SOAP [Donbox] 

messages  exchanged over HTTP. This conclusion has led us to an investigation of topic-based 

publish-subscribe messaging systems for exchanging SOAP messages and data payload between 

Web Services. We have used NaradaBrokering [Pallickara2003] which provides several useful 

features besides streaming data transport such as reliable delivery, ability to choose alternate 

transport protocols, security and recovery from network failures.  

Naradabrokering is a message oriented middleware (MoM) [Tran] system which facilitates 

communications between entities through the exchange of messages. This also allows us to 

receive individual results and publish them to the messaging substrate instead of waiting for 

whole result set to be returned. 

In case of transferring the GML result set in the form of string causes some problems when the 

GML is larger than some amount of size (1 MB see Figure 2-a). Since the WFS returns the 

resulting XML document as an <xsd:string>, this has to be constructed in memory and the size 

will depend on several parameters such as the system configuration and memory allocated to the 

Java Virtual Machine etc. Consequently there will be a limit on the size of the returned XML 

documents. For these reasons we have investigated alternative ways for data transport and, 

researched the use of topic based publish-subscribe messaging systems for streaming the data. 

Our research on NaradaBrokering shows that it can be used to stream large amount of data 

between nodes without significant overhead. Additional capabilities such as reliable messaging 

and support for different transport protocols already inherent in NaradaBrokering show that it is 
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a powerful yet easy to integrate messaging infrastructure. For these reasons we have developed a 

novel Web Map Service and Web Feature Service that integrate OGC specifications with Web 

Service-SOAP [Donbox] calls and NaradaBrokering messaging system. Architecture is shown in  

Figure 3. 

 

 

 

Connection lines 2 and 3, and UDDI (Universal Description, Discovery and Integration) [uddi] 

service are displayed in the figure for showing classic publish-find-bind triangle of the Web 

Service based Service Oriented architecture. We don’t go into details of these interactions and 

UDDI registry service in this document but these can be summarized as following. WFS services 

publish their existence and service providing wit their WSDL service description files (line-3). 

Clients (such as WMS) find appropriate WFS by searching UDDI registries (line-2). After 
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Figure 3: Streaming data transfer using Naradabrokering publish-subscribe topic based messaging 
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of using lines 2 and 3, clients can also directly communicate with the services if they know the 

service’s WSDL file earlier. 

In case of streaming through Naradabrokering, the clients make the requests with standard SOAP 

messages (line-1) but for retrieving the results a NaradaBrokering subscriber class is used. 

Through first request to Web Service (called getFeature), WMS gets the topic (publish-subscribe 

for a specific data), IP and port to which WFS streams requested data. Second request is done by 

NaradaBrokering Subscriber. Even in the case of that the whole data is not received by WMS; 

WMS can draw the map image with the returned data. This depends on the WMS’s internal 

implementation. 

Table 2 gives a comparison of the streaming and non-streaming data access approaches for the 

different sizes of data. These values are obtained by running Pattern Informatics (PI) geo-science 

application over the earthquake seismic data records. These are data access times including query 

conversion at WFS, result set conversion from database to GML and transfer times from WFS to 

AWMS. 

Table 2: Data access times while using (1) streaming and (2)non-streaming data transfer techniques. 

Data Size (KB) Time for Streaming Time for Non-Streaming 

10 31.3 3912.5 

30 100 3917.1 

100 320.1 4098.7 

300 826.7 4414 

1000 2414.2 5662.6 
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Figure 2 below explains that streaming data transfer enhancement is still not enough for providing 

satisfactory large scale application performance. See Chapter 1.3.2 for the proposed overall 

performance enhancement techniques. 

 

Figure 4: Comparisons of Streaming vs. Non-Streaming data transfer timings. 
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Pull parsing, as exemplified by the XML Pull Parser [Alexander], is an efficient paradigm 

similar to SAX in that it does not build a complete object model in memory. It differs in that the 

tags and content are returned directly to the application from calls to the parser, rather than 

indirectly in the form of callbacks. The pull approach of this parsing model results in a very 

small memory footprint (no document state maintenance required – compared to DOM), and 

very fast processing (fewer unnecessary event callbacks - compared to SAX). 

Pull parser only parses what is asked for by the application rather than passing all events up to 

the client application as SAX parsing does. You can see the article where pull parsing is 

compared with other leading Java based XML parsing implementations [Sosnoski]. 

Pull parsing does not provide any support for validation. This is the main reason that it is faster 

than its competitors. Since all our services are OGC compatible and created in Web Service 

principles, we do not necessarily need validation. In OGC, services describe themselves by 

capability document and servers know each other by exchanging these document. If you are sure 

that data is valid (as in our case), or if the validation errors are not catastrophic to your system, or 

you can trust validity of the capabilities document of the server you are in contact, then using 

XML Pull Parsing gives the highest performance results. For example in communication 

between WFS and WMS, since we know that WFS provides feature data in OGC’s GML format 

[GML], it is very advantageous skipping validation and using “pull parsing”.  

For application specific comparison of Pull parsing and DOM see Table 3 and Figure 5. The 

performance values are measured in milliseconds and data sizes are in KBs. Performance test is 

done with 1GB allocated JAVA Virtual Machine. Infinite values in the table represent memory 

exceptions thrown. The figure illustrates the timing values for the data size till 10MB. Above this 

threshold value DOM become useless for the Virtual Machine allocated 1GB memory. 
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Pull parsing column of the table does not show parsing values. Inc case of pull parsing, geometry 

data is extracted from GML without making parsing.  For the GML data we use earthquake 

seismic data records kept in archived stores and provided by WFS deployed at Community Grids 

Labs in Indiana University. 

 

Table 3: DOM and Pull parsing (Xpp) performance values over GML data 

DOM (dom4j) Pull Parsing 

Data Size 

(KB)   

Document 

parsing 

(msec) 

Geometry data 

extraction 

(msec) 

Total time 

(msec) 

Total time 

(msec) 

1   437 32 469 63 

10   453 41 494 79 

100   547 78 625 172 

1,000   625 135 760 234 

5,000   1,093 329 1,422 500 

10,000   2,094 763 2,857 890 

100,000   40,266 ∞ ∞ 7,156 

150,000   383,829 ∞ ∞ 70,610 

200,000   ∞ ∞ ∞ 98,343 

500,000   ∞ ∞ ∞ 152,172 

1,000,000   ∞ ∞ ∞ 165,610 
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Figure 5: Performance comparison of two XML data processors, pull parsing and Document Object Model 

by using dom4j.  
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System design changes depending on the characteristics of the data to be handled for 

performance considerations. For the un-frequently changing data we propose pre-fetching 

(Chapter 1.3.2.1) technique. For the frequently changing data we propose hybrid approach 

composed of caching and parallel processing techniques applied together (Chapter 1.3.2.2).  

In summary, pre-fetching is purely for overcoming the natural bandwidth problem, caching helps 

system prevent redoing the jobs of querying and rendering before, and parallel processing helps 

workload sharing and parallel job run. Depending on the data characteristics, AWMS uses only 

one or the combination of these techniques. These techniques will be explained in the following 

sections.  

1.3.2.1. Pre-Fetching 

In the proposed integration framework we deal with archived data provided by WFS in GML 

format. Archived data does not change often. So, it is not reasonable transferring and rendering 

the same data again and again for every request coming from the different or even the same 

users. In order to solve this problem we use pre-fetching. Pre-fetching is used to overcome the 

performance degradation of transferring large sized data transfer from WFS to WMS. It can even 

be used in data transfer between WFSs in case of cascaded WFS services. 

Pre-fetching is briefly defined as getting the data before it is needed. We accomplish the pre-

fetching by the data transfer technique explained in Section 1.3.1.1. The general architecture for 

the pre-fetching is shown at Figure 6. A performance result of the pre-fetching and comparisons 

to the on-demand fetching techniques are displayed in Figure 7 and Figure 8 respectively. Since it 

is independent of real-time application and run in asynchronous manner, it does not degrade the 
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proposed framework’s overall performance. It’s running times defined by the periodicity 

parameter of the Pre-fetching module (PM) (see Figure 6).  

The OGC’s standard WMS and WFS specifications are based on HTTP Get/Post methods, but 

this type of services have several limitations such as the amount of data that can be transported, 

the rate of the data transportation, and the difficulty of orchestrating multiple services for more 

complex tasks. Web Services help us overcome some of these problems by providing standard 

interfaces to the tools or applications we develop.  

As in proposed data exchange framework defined in Section 1.3.1.1 pre-fetching module make 

the requests with standard SOAP messages but for retrieving the results a NaradaBrokering 

subscriber class is used. Through the “getFeature” interface of WFS Web Services, pre-fetching 

module gets the topic name (publish-subscribe for a specific data), IP and port on which WFS 

streams the requested data. Second request is done by NaradaBrokering Subscriber using the 

returned parameters. GML data is provided by streaming WFS (implemented by G. Aydin) 

[Vretanos]. It uses standard SOAP messages for receiving queries from the clients; however, the 

query results are published (streamed) to a NaradaBrokering topic as they become available. In 

order to do that, we define the “task” and “timer”. Task defines pre-fetching job, and timer 

defines the running periodicity of the task.  Different data might have different periodicities set. 

Pre-fetching is done over the critical data. Critical data is the GML data affects the performance 

because of their sizes. 

There will be two separate locations for the pre-fetched data. One is temporary which will be 

active during pre-fecting the data. Another is stable which will be used for serving the clients' 

requests. When the data transfer is done to the temporary location, all the data at that location 

will be moved to stable location. Reading and writing the data files at the stable locations will be 
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synchronized to keep the data files consistent. This cycle is repeated at some time intervals pre-

defined by periodicity parameter of Pre-fetching Module (PM).  

In order for the pre-fetching algorithm to work properly, pre-fetching module fetches the data as 

a whole; no constraint should be defined in the query. On the other hand, requests from clients 

contain some query constraints. These queries and their constraints are handled at the Aggregator 

WMS (see APPENDIX xx) side. Queries are processed by using parser techniques and XPATH 

queries over the pre-fetched data.  

 

 

 

 

 

  

 

 

 

 

1.3.2.1.1. Fetching module (PM)  

Pre-fetching module composed of two components. One is “timer” defining the periodicity that 

PF will be running, and other is “task” defining what to do. The periodicity should not be less 
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task. This is defined under the considerations of data characteristics and developer’s experience 

with the domain specific application. 

Since we develop the system in JAVA we use Timer and TaskTimer JAVA class libraries to 

implement the routinely running pre-fetching module. 

Here is the “task” defined in a pseudo code: 

...... public void pseudo_TASK() { 

............ Vector CDMdataList = new Vector(); 

............ CDMdataList = getListPerformanceCritical_GMLDataNames(); 

............ String tempDatastore = applpath + "/prefetchedData"; 

............ String stableDatastore = applpath + "/prefetchedDataUsed"; 

............ //Fetching all the data in CDM format (GML) - with NB 

............ fd.FetchDataWithStreaming( NBip,NBport,NBtopic, 

........................................wfs_address,tempDatastore,CDMdataList ); 

............ //After pre-fetching is done move the data to stable storage 

............ fd.moveData(tempDatastore, stableDatastore); 

...... } 

We also define timer determining the periodicity of this task to run. Below sample code sets the 

periodicity of “task” defined above to three days. It means PF will be running once every three 

days. 

Timer timer = new Timer(); 

timer.schedule(task, 0, 40000); 
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Timer class schedules the specified task for repeated fixed-delay execution, beginning after the 

specified delay. Subsequent executions take place at approximately regular intervals separated by 

the specified period. 

There are two concerns in developing an efficient pre-fetching architecture. First one is limited 

storage capacity for a node. The size of the pre-fetched data is constrained by local node’s hard-

disk capacity. Second one is regarding the pre-fetched data characteristics. Some archived data is 

updated so often that they look like real-time data. In that case, pre-fetching becomes un-feasible 

and cannot be utilized. For this type of data (archived but updated frequently), we use parallel 

processing approach applied together with the caching (see Chapter 1.3.2.2). 

1.3.2.1.2. Performance Evaluation  

We test the proposed pre-fetching technique over the proposed federated GIS system by using 

real Pattern Informatics (PI) geo-science applications (see Figure 6). PI is an earthquake 

forecasting application and uses archived earthquake seismic records stored at WFS as feature 

collections encoded in GML (XML encoded structured data model for geo-data).  As explained 

before, data is kept at WFS and rendered at WMS to create a comprehensible data in map 

images.  

We basically test the system as illustrated in Figure 6. Red-curve (short) illustrates the round-trip 

path for the pre-fetch data and black-curve (long) illustrates the round-trip path for the on-

demand fetched data. For the simplicity we will be using only one critical data to apply pre-

fetching.  

In summary, we give the performance results for the proposed pre-fetching approach and 

compare it with the ordinary on-demand fetching approach (see Figure 8 and Table 5). In case of 



22 

 

on-demand fetching approach, one end is database and other end is user browser (see the black 

(dark)-curve in Figure 6). Performance results show the response times. 

Table 4: Performance results for the pre-fetching technique 

GML 

Data Size in MB 

Response time  

pre-fetched data usage 

seconds 

1 3 

20 7 

40 10 

60 13 

80 17 

100 19 

 

 

Figure 7: Performance of the pre-fetching technique 
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Table 5: Comparison of the pre-fetching and ordinary (on-demand fetching) techniques  

GML 

Data Size in MB 

with 

on-demand 

minutes 

with  

pre-fetching 

minutes 

Log of       

on-demand 

minutes 

1 1.97 0.05 0.29 

20 19.25 0.12 1.28 

40 38.17 0.17 1.58 

60 58.20 0.22 1.76 

80 76.75 0.28 1.89 

100 95.80 0.32 1.98 

 

 

Figure 8: Performance comparison of the map rendering in the proposed GIS system with pre-fetching and 

ordinary ways. 
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Figure 8 is actually comparison of Figure 2 (showing on-demand ordinary system’s performance) and 

Figure 7 (pre-fetching system’s performance). Note that both approaches use the streaming data transfer 

and advanced pull-parsing techniques. The difference comes only from using the pre-fetching technique. 

As it is expected the pre-fetching increased the performance and responsiveness of the system for 

accessing, querying and rendering archived data. Compared to on-demand fetching (ordinary), 

pre-fetching removes the times spent on conversion (from database to GML at WFS side) and 

transferring GML data.  In case of cascaded data (going through multiple chained services to 

access the original data source), performance gains even becomes much larger.  

1.3.2.2. Locality-based Query Decomposition and Parallel Processing 

This chapter presents another federator (AWMS) oriented high performance design for accessing 

and rendering of XML encoded large size data (GML).  

Parallel processing is implemented based on the main query partitioning. Each partition is 

assigned to separate thread of work. The number of partitions and their sizes are defined by using 

locality principles. Locality information is obtained from the cached data kept for the same 

session and user. In order to achieve this, browser-based sessions are mapped to service-based 

sessions by updating the headers of the SOAP messages. All the services in the system are Web 

Services and they communicate through SOAP messages.   

AWMS apply the parallel processing after cached data extraction and rectangulation. Since all 

the data in the system is geo-referenced and queried in ranges defined by bounding boxes 

(defining coordinates of rectangles in the form of (minx, miny, maxx, maxy)), we do range query 

partitioning to implement parallel processing. Partitioning the queries for parallel processing can 

be considered in two ways. One is layer-based (horizontal) another is partitioning the bbox 

criteria of the queries.  These issues are taken care of at the AWMS. For the vertical partitioning, 



25 

 

AWMS defines the layer compositions for hierarchical data (map images) in its capability file. 

Vertical partitioning is handled in the capabilities file by defining different service access points 

for different layers. The techniques explained here is regarding the horizontal partitioning. The 

horizontal partitioning is explained as range query partitioning to assign the main job to worker 

nodes justly.  

Caching + parallel processing algorithm has three parts closely related to each other: 

1. Caching 

2. Cached-data extraction and Rectangulation 

3. Parallel-processing 

In order to make these concepts more clear let’s illustrate these in a picture (See Figure 9): 

Figure shows a map image composed of two layers. One is NASA satellite base map layer, and 

other is a layer showing earthquake seismic records (in blue dots). (a) shows partially 

overlapping of cached data and main request bboxes. (b) Shows cached data extraction and 

rectangulation for the remaining part in the main request. (c) Shows partitioning of the rectangles 

from (a) based on the locality information obtained from the cached data. All the rectangulated 

regions from (c) will be assigned to a thread to created map images as final responses. 

 

 

R1 

R2 

Cached 

Data 

(a) (b) 

Successive 

request 

R2.2’ R2.1’ 

R1.1’ 

R1.2’ 

R1.3’ 

R1.4’ 

(c) 

Figure 9:  (a) Cached data extraction, (b) rectangulation, and (c) partitioning for parallel processing. 
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Research questions are summarized as below: 

i. What to cache, how to cache and how to use 

ii. How a server knows what requests come from what user to utilize cache 

iii. How to map browser-based sessions across the servers. 

iv. How to determine the number of the partitions required for the parallel processing 

v. How to partition the rectangles (ex:R1 and R2)  

vi. How to make locality-based query decomposition. 

vii. How to create sub-queries for the partitioned regions (rectangles) 

viii. How to assemble the results to sub-queries to create final response  

These research questions are answered in the following two sub-sections. Chapter 1.3.2.2.1 

explains the caching, cached data extraction and rectangulation processes as answers to i, ii, iii. 

Chapter 1.3.2.2.2 explains the parallel processing based on the range query partitioning and the 

locality principles as answers to iv, v, vi, vii, viii. 

1.3.2.2.1. Caching, Cached-data Extraction and Rectangulation 

We first explain the caching policy and techniques. Second, we introduce a novel approach for 

mapping browser-based session context to server-wide sessions in order to apply locality 

principles. Third, we explain techniques for cached data extraction and rectangulation. 

1. Caching: 

We apply the caching for only the critical data pre-defined in AWMS. Critical data is vector data 

encoded in GML common data model. 

Caching will be utilized just by the successive requests for the same user and session. For each 

separate session even from the same user there will be separate cached data kept at AWMS. To 
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do that, we introduce browser-like sessions for each user across the servers. In other words, 

cached data is kept till the next request comes from the same session. 

2. Mapping Browser-based Session across the Servers. 

Since the proposed federated GIS is interacted through interactive decision making tools over the 

integrated data views, the session tracking and transfer issues have to be addresses to handle 

locality based query decomposition and parallel processing across the servers. Java Server Pages 

(JSP) defines session ID whenever a user opens a page to interact with the federated GIS system. 

A session is normally stored in a cookie which is available to all windows in the browser. The 

system access this ID by session.getId(). This returns a string unique user ID (uuid) which can be 

used for application specific purposes. 

Whenever federated GIS client interacts with the system through AWMS, it sets its browser’s 

session ID to the header of its SOAP messages sent to the Web Service. All the requests coming 

from the same browser has same session ID. Session IDs are created when the browser is opened 

and kept same until it is closed. Each browser has a separate and unique session ID. By setting 

this session ID to the header of SOAP messages AWMS can distinguish what client (browser) 

makes the requests and check its cached data and session information stored before. 

Here is the pseudo code briefly explaining the steps: 

WMSServicesSoapBindingStub binding; 

binding = (WMSServicesSoapBindingStub) 

                  new WMServiceLocator().getWMSServices(new URL( service_address)); 

 String sessionID = session.getid(); 

 String channel_name = “WMS_getMap_Request”; 
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//Add SessionID to the SOAP message’s header  

binding.setHeader(service_address, channel_name, sessionID); 

//See Appendix xx for the sample GetMap request 

            Object value = binding.getComprehensibleData(getMap_request); 

Whenever a user access the system through the same browser its session number will be the 

same and AWMS keeps its local data and actions in the system differentiated based on its unique 

session ID. 

3. Cached Data Extraction and Rectangulation: 

According to OGC standards in GIS domain, queries are created with location parameter and 

location is defined in bounding box (bbox) formats. bbox is a formula defining the region as a 

rectangle through coordinates of bottom left corner and top right corner. Example: Q(minx, 

miny, maxx, maxy).  

The proposed GIS services are OGC compatible and implemented in Web Service principles. 

They accept the requests in predefined XML-structured queries such as “getMap” for WMS and 

“getFeature” for WFS (see Chapter xx). Queries to WMS and WFS are actually window shape 

range queries. Range queries are formulated in bbox. After extraction of cached data falling in 

the main query range, the remaining part needs to be converted to the rectangular shapes in order 

to create valid sub-queries in the ranges defined by the bboxes. This is why we make 

rectangulation after cached data extraction from queried-region. 

Cached-data extraction methodology is removing the regions in the main query which overlap 

with the cached data and then, creating the rectangular sub-regions from the remaining main 

query in the form of bboxes (see Figure 9 -b).  
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Since we use session-based caching (each session has separate cached data) based on the browser 

sessions, the position of the bboxes of the cached data and the following request determines our 

strategy for the cached data extraction and rectangulation. The bbox ranges of the cached data 

and main query can be positioned to each other in four possible ways. 

Main query bbox is described as (minx, miny, maxx, maxy) 

Cached data bbox is described as (minx
c
, miny

c
, maxx

c
, maxy

c
) 

(1) The main query covers cached data (zoom-out action), 

 

Meeting condition: 

        if(minx
c
>minx and maxx

c
<maxx 

            and miny
c
>miny and maxy

c
<maxy) 

 

Rectangles: 

          R1:    minx, miny, minx
c
, maxy R3:    minx

c
, maxy

c
, maxx

c
, maxy 

          R2:    max
c
, miny, maxx, maxy  R4:    minx

c
, miny, maxx

c
, miny

c
 

(2) The main query falls in cached data  (zoom-in action)  

 

 

Meeting condition: 

    if(minx>minx
c 
 and maxx<maxx

c
 

            and miny>miny
c
 and maxy<maxy

c
) 

 

This case enables the fastest response. There is no need for query partitioning and data transfer 

from WFSs. It just uses cached GML to create map image based on the bboxes values of main 

query. A lot of performance gains.  

R1 R2 

R3 

R4 

Figure 10: zoom-out case of rectangulation 

Figure 11: zoom-in case of rectangulation 
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(3) The main query partially overlaps with cached data (move action).  

This case is explained in Figure 9, a and b. 

Here is the formula of the rectangles: 

R1: minx, miny, maxx, miny
c 

R2: maxx
c
, miny

c
, maxx, maxy 

In this case, there are four different sub-cases depending on the movement directions. These are 

(1) south-east, (2) south-west, (3) noth-east, and (4) north-west. The Figure 9 illustrates the south-

east case, and the rectangles above belong to that case. The rectangles for the other cases are also 

created similarly.  

The rectangles obtained in this section go through the partitioning process explained in the 

following chapter.  

1.3.2.2.2. Parallel-Processing with caching 

The proposed parallel processing is based on range-query (defined in bbox) decomposition and 

throughout the document we call it partitioning. The partitioning is done with the locality 

principles to share the workload to the threads to reduce the response times to a reasonable level.  

Partitioning will be done over the rectangular regions obtained at the end of rectangulation 

process. Issues to make parallel-processing with the locality principles are summarized as below: 

i. How to determine the number of partitions and their sizes in bbox 

ii. How to partition the rectangles 

iii. How to create sub-queries corresponding to the partitions 

iv. How to assemble the results to sub-queries for the main query 
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These issues are illustrated in Figure 12 below. In this specific example, main query includes 

three separate layers, and one of them is created with the critical data encoded in common data 

model, GML. The regions 1 and 2 in the main query are determined by the cached-data 

extraction and rectangulation processes explained in chapter 1.3.2.2.1. Grey region in the main 

query overlaps with the cached data. There is no need for data transfer for this region. This is 

obtained from the cache. For the other parts not overlapping with the cache (region 1 and 2), the 

system makes parallel processing for data access, query and plotting after creating partitions. 

 

 

For the simplicity, we assume there are one critical data on which parallel processing and 

caching will be applied on, and one rectangle (obtained through the rectangulation process) to be 

partitioned in the system. 

Terminologies to be used: 

WFS 

R1 GetFeature requests R2 R3 RPn 

GML1 GML2 GMLPn 
GML 

Cached 

1 2 

.   .   . 

.   .   .   . 

Main query: cached 

data extraction and 

rectangulation Layers from Other  

WFS and WMS 

Critical data layer 

Critical data 

provider in GML 

Critical data falling into 

partitioned regions 

Figure 12: Parallel processing and caching architecture in brief. 
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- CD_size_kb: Cached-data size measured in KB. Cached-data is kept in local file system 

as GML file. This is obtained from the system. 

- CD_size_br
2
: Cached data bbox area.  

CD_size_br
2
  =   (maxx

c
 - minx

c
)*(maxy

c
 - miny

c
) 

-  R_size_br
2
: Rectangle’s bbox area (ex: Region-1 in critical data layer in Figure 12) 

  R_size_br
2
   =    (maxx - minx)*(maxy - miny) 

-  Thr: Threshold value. Allowed max data size falling in a partitioned region, and 

measured in KB.   

Threshold value changes from data to data. It is predefined based on the experience of the 

developer. For example for the earthquake seismic data its value is 1000KB. This value defines a 

data size for which one thread (ordinary system) can response in a reasonable time period.  

- Pn: the number of partition 

Let’s explain the research issues listed above. 

i. Determining the number of partitions: 

In order to define the number of partitions we use locality principles. Locality principle in this 

context is explained as following. If a region has a high volume of data, then the regions in close 

neighborhood also expected to have high volume of data. Example is the human population data.  

The urban areas have higher human population than the rural areas. The oceans (2/3 of the 

world) have no populations etc. 

We partition the rectangles into equal regions because we don’t know the size of the data falling 

in that region before getting it. In order to define the size (in bbox) we use cached data sizes 

expressed in bbox and KB. We assume (by using locality) cached data density is similar to the 
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main request density, and by using the threshold value and un-cached main request part we 

calculate Pn as below: 

Density of cached-data:  dcd =  
��_����_	


��_����_
�
2  

Allowable largets area to assign:    lat = 

�������� ��
� ����

�����
� �� ������ ��
�
 =   


��

���
 

 Pn = 
�_����_���

������
 ���� 
� ������
 =   

�_����_���

��

 

If Pn is less than 1 then, don’t make partition. In contrast, if it is bigger than 1, then partition into 

Pn regions. ii explains how to partition a rectangle into Pn number of regions. 

ii. Query decomposition of the rectangulated regions with Pn: 

We already know the bbox of the rectangles obtained through rectangulation process explained 

at Chapter 1.3.2.2.1. We also calculated the number of regions (in item i) into which each one of 

these rectangles is going to be partitioned as the set of bbox values.  

Here, we explain how to partition a given rectangle into Pn number of bboxes.  There are two 

alternative techniques here, one is partitioning the rectangle vertically and the other is 

partitioning it horizontally. 

In case of vertical partitioning the step value is calculated as below, and partitioning is done 

along the Y-coordinate.  (See Figure 13) 

 sy = 
(!"#$%!&'$) 

)�
 

In case of horizontal partitioning the step value is calculated as below, and partitioning is done 

along the X-coordinate,  
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    sx = 
(!"##%!&'#) 

)�
 

       

 

Calculating the bboxes of the partitioned regions: 

Vertical: 

for (i=0; i<Pn*sy; i=i+sy;) 

    print ( minx, miny – i, maxx, maxy-(i+sy) ) ; 

Horizontal: 

for (i=0; i<Pn*sx; i=i+sx;) 

    print ( minx-i, miny, maxx-(i+sx), maxy) ; 

 

After having the rectangles partitioned, the partitions go through the query creation process 

explained as following. 

iii. Creating the queries for the sub-regions obtained at ii. 

Throughout the rectangulation and partitioning, the only changing attribute of the main query is 

the bbox coordinate value. These are calculated in the previous step.  

Based on the set of bbox values obtained at the end of partitioning process (ii) we need to create 

sub queries. Each partition is differentiated by only their bbox value, and they go through the 

query creation process. AWMS creates getFeature requests corresponding to these rectangles 

based on their bounding boxes. Other parameters and attributes required for creating getFeature 

request are obtained from the main query. All the parameters, attributes and their values (except 

for bbox values) will be the same for all the getFeature requests created for the partitions.   

Sy 1 

2 

Pn 

maxx, maxy 

minx,miny, 

Figure 13: Partitioning a rectangle 

along the coordinate-y 
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An example case of decomposing a rectangle obtained by rectangulation process and creating 

parallel queries is illustrated at Figure 14. In this example, rectangle is partitioned into 5 regions 

vertically.  

Pn = 5   and   sy =  
(!"#$%!&'$) 

)�
  =  

(*+%*,) 

+
  = 1 

You can also see a sample getFeature created for bbox value “-110, 35, -100, 40” request at 

Figure 15. 

 

 

 

iv. Assembling the results from the sub-queries 

Each query created at step iii is sent to WFS in a separate thread, and the returned results are 

stored locally at AWMS. After getting the data AWMS starts rendering and plotting the critical 

data over the other layers by parsing and extracting the geometry elements in returned GML.  

Data transfer, parsing and rendering issues are explained in the previous chapters. 

In addition, all the GML data corresponding to main query for the specific bbox is kept as cached 

data in order to serve the following request coming from the same session. 

-110, 35, -100, 40 

-110, 35, -100, 36 

-110, 36, -100, 37 

-110, 37, -100, 38 

-110, 38, -100, 39 

-110, 39, -100, 40 

GetFeature-1 

GetFeature-2 

GetFeature-3 

GetFeature-4 

GetFeature-5 

A rectangle from the 

rectangulation process 

Creating queries for 

these bbox values  

Item iii 

Decomposing the 

rectangle with Pn and s 

Item ii 

Figure 14: Example scenario of the partitioning a region into 5 sub-regions through the bbox value 

of a rectangle. 
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                   Figure 15: Sample GetFeature request for the partitioned region of bbox (-110, 35 -100, 40). 

 

1.3.2.2.3. Performance Evaluation 

Performance will be evaluated in three possible generalized situations categorized based on the 

cached data utilization. These are (as explained in different context in Chapter 1.3.2.2.1): 

a. No usage of cached data  

b. Complete usage of cached data. Cached data is enough to respond to main request 

c. Partial usage of cached data.  
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a. No cached data utilization:  

This case happens when the successive query is randomly created and does not overlap with the 

cached dat. In this case there is no cached data extraction and sub-rectangle created by 

rectangulation processes. There is only one rectangle which is the main query. In order to make 

performance evaluations, we test the system with different levels of partitions such as  2, 4, 6, 8, 

10, 15 and 20, and assign them to separate individual threads for the parallel processing. The 

measured response times are in seconds. Queries are decomposed based on their bbox values. 

Query bbox values and corresponding data sizes are displayed in Table 6. 

Table 6: The performance results for the selected bbox values and corresponding data size for the various 

levels of parallel processing. 

Sample Bounding boxes's of requests GML Data Parallel processing - partition numbers -seconds 

minx miny maxx maxy Size -MB 2thrd 4 6 8 10 15 20 

-119.97 36.95 -118.55 38.27 1.081 62 53 43 38 31 30 21 

-120.67 36.3 -117.85 38.92 1.711 88 60 45 49 51 41 32 

-122.08 34.99 -116.44 40.23 4.999 170 136 108 81 64 329 86 

-124.85 32.26 -113.56 42.75 11.110 434 313 295 190 162 144 154 

-130.5 27.01 -107.92 48 14.799 558 452 435 315 235 202 178 

-141.78 16.52 -96.62 58.49 17.511 668 515 500 512 485 281 242 

-164.36 -4.46 -74.04 79.47 34.128 1035 723 656 611 576 540 402 

-180 -46.42 -28.88 90 62.696 2608 1208 954 857 922 966 707 

-180 -90 46.67 90 83.167 3194 1969 1188 1223 1293 1476 1158 
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Figure 16: Response times in seconds for different levels of threaded run (2, 4, 8, 20), and data sizes. 

 

Table 7: Comparing response times of 20-threaded parallel processing and single threaded ordinary system. 

Response times -seconds 

GML Data Parallel Proces ordinary 

Size -MB 20 Threads One-threaded 

1.081 21 66.670 

1.711 32 102.100 

4.999 86 292.950 

11.110 154 636.280 

14.799 178 847.500 

17.511 242 1001.920 

34.128 402 1957.620 

62.696 707 3590.720 

83.167 1158 4819.860 

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60 70 80 90

T
im

e
 -

se
co

n
d

s

Data Size - MB

Response Times with Parallel Processing using various 

thread numbers

2

4

8

20



39 

 

 

Figure 17: Performance comparison, parallel processing vs ordinary system. 

 

The test results show that 20-threaded parallel processing for the data handling is almost 4-times 

faster. However, the performance does not increase in the same ratio at which the thread number 

increases. That is because of the overheads resulted from mainly the query decomposition and 

assembling the result sets for the main query etc. Moreover, the figure shows that the higher the 

data size the larger the performance gains.  

b. Complete cached data utilization 

This case happens when the user query a smaller region falling in the previous map he got on his 

browser. It is mostly caused by zooming-in action. In this case, the cached data is enough for 

responding to the main request, and no other cascaded requests are needed. AWMS renders the 

map just by using the cached data.  The only task needed is the cached data extraction and 
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overlaying (plotting) over the other requested layers. There is no need for rectangulation, the 

main query decomposition and threaded parallel processing. 

Table 8: Response times in case of complete use of cached data. No other requests are done for the response. 

Sample Bounding boxes's of requests Cached GML Response-time 

minx miny maxx maxy Data Size -MB seconds 

-119.97 36.95 -118.55 38.27 1.081 1.38 

-120.67 36.3 -117.85 38.92 1.711 1.45 

-122.08 34.99 -116.44 40.23 4.999 1.81 

-124.85 32.26 -113.56 42.75 11.110 2.83 

-130.5 27.01 -107.92 48 14.799 3.58 

-141.78 16.52 -96.62 58.49 17.511 3.92 

-164.36 -4.46 -74.04 79.47 34.128 6.62 

-180 -46.42 -28.88 90 62.696 11.45 

-180 -90 46.67 90 83.167 13.27 

 

 

Figure 18: Responsiveness of the system in case of complete cached data utilization. Enough cached-data. 
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Table 9: The response times for complete cached-data and one-threaded ordinary system (Figure 2).  

Complete caching Complete caching Ordinary systm 

Cached GML 

Data Size -MB 

Response time 

seconds 

Response time 

seconds 

Log(Rtt_ordinary) 

minutes 

1.081 1.38 0.02 0.14 

1.711 1.45 0.02 0.16 

4.999 1.81 0.03 0.26 

11.110 2.83 0.05 0.45 

14.799 3.58 0.06 0.55 

17.511 3.92 0.07 0.59 

34.128 6.62 0.11 0.82 

62.696 11.45 0.19 1.06 

83.167 13.27 0.22 1.12 

 

 

Figure 19: Comparisons of roundtrip times of complete use case of cached data and ordinary systems. 
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Table 9  and Figure 19 compare the performance results obtained by using complete caching and the 

ordinary one-threaded data handing. Since most of the time is spent on data transfer and converting any 

data to common data model GML (at WFS), getting rid of these burdens by using cached data enhances 

the performance a lot. Note that, in order to show huge performance difference in one graph clearly, the 

ordinary system performance results are adjusted by taking their logarithmic values.  

c. Partial cached data utilization: 

This case happens when the user moves (or drag and drop) the map to another region or makes 

zooming-out. As explained before (Figure 9 and Chapter 1.3.2.2.1), if only one point of main 

request falls in bbox boundaries of the cached-data, they are called as partially overlapped. Table 

10 lists the sample request bboxes and their corresponding data sizes.  

Table 10: Performance results for the sample case scenario in which half of the data is provided by the 

cached data, and other half is requested by again 20-thread parallel processing. 

Sample request distinguished in their bboxes Parallel Parallel processing + Caching 

Bounding boxes Data Size Processing 1/2 cached -seconds 

minx miny maxx maxy MB 20 thread time-cd time-fd time-sum 

-119.97 36.95 -118.55 38.27 1.081 21 0.97 10.50 11.47 

-120.67 36.3 -117.85 38.92 1.711 32 1.18 16.00 17.18 

-122.08 34.99 -116.44 40.23 4.999 86 1.31 43.00 44.31 

-124.85 32.26 -113.56 42.75 11.110 154 1.62 78.00 78.62 

-130.5 27.01 -107.92 48 14.799 178 1.91 89.00 90.91 

-141.78 16.52 -96.62 58.49 17.511 242 2.82 121.00 123.82 

-164.36 -4.46 -74.04 79.47 34.128 402 3.33 201.00 204.33 

-180 -46.42 -28.88 90 62.696 707 5.18 353.50 358.68 

-180 -90 46.67 90 83.167 1158 7.34 579.00 586.34 
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Table 10 also presents the performance values for the sample case scenario in which main 

request bbox values partially overlap with the cached data and half of the data size corresponds 

to main request is provided by the cached data. For the comparison reasons, un-cached data will 

be fetched and rendered through 20-thread parallel processing (see Figure 20). 

 

Figure 20: The performance gaining over 20-threaded pp when half of the data is fetched from the cache. 

 

Figure 21 and Table 11 compares the performance results of the hybrid system (caching+parallel 

processing) with ordinary on-demand system. caching+parallel processing they use the values 

obtained at the sample scenario shown in Table 10. 

As it is shown the in Figure 21, proposed system is almost 10 times faster than the ordinary on-

demand one-threaded system. As the data size increases, that ratio increases. 
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Table 11: Comparison of response times for caching+pp and ordinary non-caching single-threaded system 

Response times -seconds 

Data Size 1/2 cached ordinary  

MB time-sum system 

1.081 11.47 66.670 

1.711 17.18 102.100 

4.999 44.31 292.950 

11.110 78.62 636.280 

14.799 90.91 847.500 

17.511 123.82 1001.920 

34.128 204.33 1957.620 

62.696 358.68 3590.720 

83.167 586.34 4819.860 

 

 

Figure 21: Comparing response times of caching+pp and ordinary system. 
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