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Abstract. The relatively weak uptake of spatial error handling capabilities by commercial
GIS companies and users can in part be attributed to the relatively low availability and high
costs of spatial data quality information. Based on the well established artificial intelligence
technique of induction, this paper charts the development of an automated quality capture
tool. By learning from example, the tool makes very efficient use of scarce spatial data quality
information, so helping to minimise the cost and maximise availability of data quality. The
example application of the tool to a telecommunications legacy data capture project indicates
the practicality and potential value of the approach.
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1. Introduction

The term error-sensitive GIS (Uwin 1995) refers to the concept of a GIS
capable of handling both geographic information (GI) and the uncertainty that
inevitably surrounds GI. Work on the development of error-sensitive GIS has
progressed on a number of fronts, including the management of information
about error (e.g. Ramlal and Drummond 1992; Duckham and Drummond
1999; Qiu and Hunter 1999), error propagation (e.g. Lanter and Veregin 1992;
Openshaw et al. 1991; Wesseling and Heuvelink 1993; Heuvelink 1998),
and the development of error-sensitive user interfaces and visualisation tech-
niques (e.g. van Elzakker et al. 1992; van der Wel et al. 1994; Agumya and
Hunter 1997; Hunter 1999; Bastin et al. 1999). Despite increasing awareness
amongst GIS companies and users of the importance of data quality, very
often adequate data quality information for a data set will simply not exist.
Further, limited expertise and financial restrictions are likely to mean most
data producers may not feel in a position to compile such quality informa-
tion about their geospatial data. Veregin (1989) places the identification and
assessment of errors at the root of a hierarchy of needs for effective error-
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handling in GIS. There exists, therefore, a clear need for error-sensitive GIS
tools that assist not simply in management, propagation and visualisation of
information about uncertainty in GI but additionally to assist with the capture
and production of data quality.

Some attempts to address this need have already appeared in the literature.
Lanter (1991) describes a meta-data system capable of tracking the devel-
opment of GI and automatically producing appropriate lineage information.
The technique of least-squares adjustment (Mikhail 1978) has been proposed
as a basis for a measurement-based GIS (M-BGIS) capable of automatically
producing positional accuracy information based on original survey data
(Campbell et al. 1994; Goodchild 1999). However, such attempts are both
scarce and relatively specialised, such that there exist no general purpose
tools that can claim to automate the capture and production of spatial data
quality information. By developing automatic data quality capture systems,
one of the major barriers to practical error-sensitive GIS deployment may be
overcome, making the use of error-sensitive GIS a viable option in a wider
variety of applications than currently feasible. In the context of this situation,
this paper explores the use of an inductive learning algorithm as a basis for
flexible and automatic capture of data quality information in GIS.

2. Background

This section reviews three important elements in the approach to automatic
data quality capture proposed here. First, the need for automatic data quality
capture is demonstrated by introducing the example of a telecommunications
application. Second, the use of inductive learning algorithms is proposed as
a mechanism for achieving automatic data quality capture. Third, the role of
object-orientation (OO) in the development of automatic data quality capture
is reviewed.

2.1. Telecommunications and data quality

The specific application considered by this research concerned the migration
of telecommunications network plans to digital mapping. In 1997, Kingston
Communications (KC), Informed Solutions and Survey and Development
Services (SDS) undertook the capture of the entire telecommunications
network for Kingston-upon-Hull, UK, within an OO GIS. Prior to 1997,
spatial data management at KC had relied primarily on Ordnance Survey of
Great Britain (OSGB) 1:1250 base maps with telecommunications features
marked on by hand. The migration away from paper towards digital mapping
practices is a common feature of the deregulated UK telecommunications
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industry, motivated largely by the improvements in logical and topological
consistency afforded by GIS. Indeed experiences during this study suggested
that there is, in fact, a high level of informal awareness of data quality issues
amongst GIS professionals. For example, initiatives such as the National
Land Information Service and the Scottish Land Information Service are
adding momentum to the development of an integrated LIS in the UK
(Smith 1996). Utility companies in particular are well placed to benefit from
and contribute to such initiatives; generally such companies are aware that
management of data quality may be a vital component of this increased
integration.

Aside from logical and topological consistency, broader provision for
data quality management is not usually a feature of data capture projects,
such as that undertaken by KC. Lack of expertise, wariness of relatively
new error-sensitive technology and negative connotations of error will all be
considerations that militate against long-term data quality management. Such
considerations are both causes and symptoms of a self-perpetuating cycle of
under-investment in data quality. Arguably, it is the high levels of investment
needed to perform full quality assessments that underly this situation. In order
to break the cycle simple, efficient and cost effective methods of data quality
capture are required.

2.2. Inductive learning algorithms and data quality

In order to address the needs of the telecommunications industry and offer
automated assistance with data quality capture, this research took advantage
of a powerful artificial intelligence (AI) technique used for automated
learning from example: inductive learning. Given a training data set, an
inductive learning algorithm should be able to automatically deduce rules
that embody the patterns in that data, rules which, hopefully, correspond to
underlying processes governing the data. Quinlan (1979) describes the ID3
inductive learning algorithm in its application to the chess endgame. Given
a suitable set of example endgame positions, Quinlan’s ID3 algorithm was
able to induce a set of rules that describe these examples. Having undergone
this training, the induced rules can then be applied to chess endgames more
generally, even endgame situations that were not part of the original training
set.

Inductive learning algorithms are not new to GIS. Walker and Moore
(1988) use induction to identify relationships between geospatial objects and
help with an automated habitat classification process. Similarly, Aspinall
(1992) applied induction to the problems of habitat analysis, while Bennet
and Armstrong (1996) use induction to assist with drainage feature extraction
from a DEM. From the point of view of automatic data quality assess-
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ment, inductive learning algorithms offer the possibility of making the most
efficient use of the available data by constructing reasonable inferences
from scarce data quality information. However, inductive learning algorithms
still require adaptation before they are suitable for use with spatial data
quality. Use of induction in GIS is not widespread as induction is primarily
designed to deal with discrete categorical data, and so the technique requires
modification to cope with the inherently continuous spatially referenced data
commonly used in GIS. While data quality information is generally aspatial
and does not rely too heavily on the spatial nature of the data to which it
refers, the existence of spatial relationships, for example autocorrelation in
errors provides additional complexity that needs to be overcome.

2.3. Object calculus

The issues covered by this paper are tackled from an object-oriented
(OO) perspective. The superior semantic modelling capabilities of object-
orientation, when compared with alternatives such as the relational data
model, are well documented (see Egenhofer and Frank 1989; Worboys et al.
1990; Kösters et al. 1997) and OO should now be regarded as familiar part of
the mainstream of GI technology. To facilitate a precise formal discussion of
OO GI, this section briefly introduces an algebra for objects, called ς (sigma)
calculus.

The ς -calculus (Abadi and Cardelli 1996) provides a simple and robust
formalism with which to explore object systems. The ς -calculus can be used
to model objects in the same way as the relational algebra (Codd 1970)
is used to provide a formal model of relational databases or as λ-calculus
(Hankin 1994) is used to provide a formal model of functional programming
languages. The ς -calculus has already proved useful in the development of
OO GIS (Duckham 2001). Briefly, an object in the ς -calculus is represented
as a collection of named methods, li , each with method bodies bi . The symbol
ς is used to bind the postfixed ‘self’ parameter (conventionally s or z) with
occurrences of that parameter in the body of the method, written ς(s)bi . Each
object is enclosed in square brackets an associated with a label using the
symbol � (equal by definition), illustrated in Equation 1 below.

o � [li = ς(s)bi∈1...n
i ] (1)

Invocation of a method l on an object o, written o.l, causes the body of
the method l to be evaluated by substituting the object o for occurrences of
the self parameter in the body of l. A full exposition of method invocation of
ς -calculus objects (termed reduction) is not necessary here, particularly since
the informal semantics of the reduction process will be familiar to anyone
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used to object-oriented programming (OOP) techniques. Reduction can be
illustrated informally with the LineSegment object in Equation 2 below. In
Equation 2, the LineSegment object is described by two x,y coordinate pairs
(0,0) and (3,4). Invocation of the length method on the LineSegment object
reduces to 5 (written LineSegment.length � 5) as expected.

LineSegment � [x1 = ς(s)0, y1 = ς(s)0, x2 = ς(s)3, y2 = ς(s)4,

length = ς(s)((s.x1 − s.x2)
2 + (s.y1 − s.y2)

2)
1
2 ] (2)

Following from Equation 2, two further points are worth noting. First,
the existence of natural numbers assumed in Equation 2 is a notational
convenience and not part of the core ς -calculus. Second, where the bound
self parameter ς(s) is unused in the body of the method it is conventionally
omitted (e.g. x1 = ς(s)0 becomes x1 = 0): such methods are usually termed
attributes or fields.

3. Induction

All induction algorithms share a number of features in common. In essence,
we can define induction as operating upon a set of (ς -calculus) objects T =
{o|o � [lk = ak]k∈1...n} called the training set. Additionally, each object in
the training set is classified as belonging to exactly one category Ci such that
Ci ⊆ T and Ci �= Cj ⇒ Ci∩Cj = ∅. An inductive algorithm is able to build
a decision tree that embodies the data in the training set using the following
three steps, after Quinlan (1983).
1. if the training set of objects is empty, T = ∅, we associate a new leaf in

the decision tree arbitrarily with one of the categories Ci .
2. if all objects in the training set belong to the same category T ⊆ Ci then

we create a new leaf in the decision tree with that category Ci .
3. else we select an attribute l and partition T into disjoint sets T

j∈1...m
j

where Tj contains members with the j th value of the selected attribute,
T

j∈1...m
j = {o|∀o ∈ T o.l � xj }. A new decision node is then created

to represent this decision and the algorithm is reiterated using each subset
Tj .

Even in this stripped-down form, the induction algorithm is surprisingly
powerful and will always successfully categorise a set of objects, provided
there are no two objects that have identical attribute values but belong to
different categories (Quinlan 1983) – i.e. as long as the statement ∀o1 ∈
Ci, o2 ∈ Cj∃l o1.l �= o2.l holds where Ci �= Cj . When this condition
does not hold, it indicates that there is not enough attribute information about
objects in different categories to tell them apart. In reality this condition will
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occasionally not hold and a practical inductive learning algorithm will usually
need to resort to some heuristic, tackled in §4.3, to resolve such conflicts.

The actual performance of the inductive algorithm is dependent to a large
extent on how the algorithm selects the attribute l with which to partition
the set T in 3 above. There are a range of different methods that might be
used to achieve this, but one of the most efficient is to use information theory.
The mathematical concept of information theory was first defined by Claude
Shannon in the late 1940s (Shannon 1948). Shannon’s information theory
formalises the information content of a statement in terms of a number of
binary digits or bits of information conveyed by the statement. For example,
when tossing a coin, the value of knowing the outcome has an information
content of 1 bit. However, if it is already known that the coin is biased, the
value of knowing the actual outcome is reduced. The amount by which the
value of knowing the outcome is reduced is related to the probability of each
possible outcome. In the extreme case where the outcome for a biased coin
is always, say, heads (P(H) = 1) the information content for any given coin
toss is reduced to zero bits. In general, for a number of possible outcomes
vi each with probability P(vi), the information content I of knowing the
outcome is given by Equation 3 (Russell and Norvig 1995).

I (P (v1), . . . , P (vn)) =
n∑

i=1

−P(vi)log2P(vi) (3)

Information content can be used as a method for systematically selecting
one attribute from a range of possible attributes to use in partitioning the set of
objects T . For each possible partition of the set T with respect to a particular
attribute l, the information gained by using that attribute can be calculated.
This calculation involves estimating a set of probabilities associated with the
partitioned sets Ti as a function of the ratio of objects in each partitioned set
to the total number of objects (Russell and Norvig 1995). The attribute that
results in the largest information gain should be the optimal attribute with
which to partition the set T , since it provides more information about the
decision tree than any other attribute.

3.1. Induction example

It is possible to provide an illustration of the induction algorithm in operation.
The illustration is loosely based on experience with the KC data capture
application, and concerns the accuracy of five ς -calculus objects each with
just two categorical attributes, density and type, shown in Equation 4. Three
different types of telecommunications point features are illustrated: ‘pole’
features are familiar telegraph poles used to support overhead cables; ‘kiosk’
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features are the familiar telephone kiosks, while ‘cabinet’ features are the
street-level boxes used to house cable joints. For the purposes of this example,
the objects have only one qualitative spatial attribute, the relative spatial
density of features.

T = {o1 = [density = “dense”, type = “pole”],
o2 = [density = “dense”, type = “kiosk”],
o3 = [density = “sparse”, type = “cabinet”],
o4 = [density = “sparse”, type = “pole”],
o5 = [density = “sparse”, type = “kiosk”]} (4)

Where digital data is derived from paper maps, such as for the KC data
capture project, high feature density may be associated with poor positional
accuracy. Densely packed features on hardcopy maps are often deliberately
displaced for cartographic reasons in addition to being harder to understand
and digitise. The lower positional accuracy of such features often persists
when digital data is derived from these cartographic products. In some cases,
however, positional accuracy may be low regardless of feature density. In the
case of the KC database, cabinet features on the original plant-on-plan maps
explicitly use a symbology that obscures any precise location. Although the
induction algorithm can have no ‘understanding’ of these sorts of processes,
the induction algorithm is sensitive to data exhibiting these types of relation-
ships. When shown a data set where low accuracy and high feature density
are coincident it should be able to derive a rule or set of rules that embody
this relationship.

Accordingly, the five objects in the set T have been categorised into two
sets denoting low (Cl) and high (Ch) accuracy features, shown in Equations 5
and 6 respectively. The categories are broadly speaking as would be expected
according to each object’s spatial density attribute, with one object, o3 a
cabinet, exhibiting low accuracy Cl despite its low spatial density.

Cl = {o1, o2, o3} (5)

Ch = {o4, o5} (6)

The induction process for this example is illustrated in Table 1, which
expands on each step of the induction process. The result of this induction
process is a simple decision tree, shown in Figure 1. The decision tree is auto-
matically derived from the induction algorithm, but is a reflection of the more
general processes behind the training set data. Having used induction to build
a decision tree, it is possible to then categorise objects outside the original
training set. For example, the object o6 � [density = “dense”, type =
“cabinet”] was not part of the training set, but an examination of the decision
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Figure 1. Example induction process results.

tree in Figure 1 reveals that such an object would be categorised as having
low accuracy.

4. Optimising the induction algorithm

While naïve, the example in §3.1 above does illustrate how the core induction
algorithm can operate for a very simple quality assessment. The inductive
learning algorithm described above was used as the basis for an ‘inductive
data quality capture tool’, described in §5. However, a number of optimisa-
tions were necessary before the induction algorithm could be incorporated
into software intended for practical application. This section reviews the
optimisations used in the software.

4.1. Support for continuous attributes

A common feature of all induction algorithms is that they are essentially
categorical and operate only upon discrete information. While a categorical
induction algorithm can be useful in many contexts, most data demands some
quantitative capabilities. For example, imagine a training set that includes
three polygonal objects with ‘area’ attribute values of 10.0 m2, 10.1 m2

and 100.0 m2. The inductive learning algorithm would by default treat each
area attribute value as a separate category. This is technically undesirable
since treating continuous information as discrete quickly results in large frag-
mented decision trees riddled with decisions that yield minimal information
gain. However, it is also semantically undesirable since we would probably
intuitively expect 10.0 m2 and 10.1 m2 to appear in a different category to
100.0 m2, but the same category as each other.
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Table 1. Example induction process iterations

Induction step Details

0.1 Start induction process with T , Cl and Ch T = {o1, o2, o3, o4, o5}, Cl = {o1, o2, o3}, Ch =
{o4, o5}

1.1 Check for empty T T �= ∅

1.2 Check whether T contains objects of only
one category

T � Cl T � Ch

1.3 Partition T with first attribute, type. Tp = {o1, o4} Tk = {o2, o5} Tc = {o3}
1.4 Calculate information gain for type Gain(type) =

I ( 3
5 ,

2
5 )− ( 2

5 I (
1
2 ,

1
2 )+ 2

5 I (
1
2 ,

1
2 )+ 1

5 I (
1
1 ,

0
1 )) =

0.171 bits

1.5 Partition T with second attribute, density. Td = {o1, o2} Ts = {o3, o4, o5}
1.6 Calculate information gain for density Gain(density) =

I ( 3
5 ,

2
5 ) − ( 3

5 I (
2
3 ,

1
3 ) + 2

5 I (
2
2 ,

0
2 )) = 0.420 bits

1.7 Create new decision node using attribute
with highest information gain and reiterate
process.

Reiterate with Td (2.1) and Ts (3.1)

2.1 Check for empty Td Td �= ∅

2.2 Check whether Td contains objects of only
one category

Td ⊆ Cl so iteration terminates with new leaf

3.1 Check for empty Ts Ts �= ∅

3.2 Check whether Ts contains objects of only
one category

Ts � Cl Ts � Ch

3.3 Partition Ts with first attribute, type. Ts,p = {o4} Ts,k = {o5} Ts,c = {o3}
3.4 Calculate information gain for type Gain(density, type) =

I ( 2
3 ,

1
3 )− ( 1

3 I (
1
1 ,

0
1 )+ 1

3 I (
1
1 ,

0
1 )+ 1

3 I (
1
1 ,

0
1 )) =

0.918 bits

3.5 Partition Ts with second attribute, density. Ts,d = ∅ Ts,s = {o3, o4, o5}
3.6 Calculate information gain for density Gain(density, density) =

I ( 3
3 ,

0
3 ) − ( 1

3 I (
1
1 ,

0
1 ) + 1

3 I (
2
2 ,

0
2 )) = 0.000 bits

3.7 Create new decision node using attribute
with highest information gain and reiterate
process.

Reiterate with Ts,p (4.1), Ts,k (5.1) and Ts,c (6.1)

4.1 Check for empty Ts,p Ts,p �= ∅

4.2 Check whether Ts,p contains objects of
only one category

Ts,p ⊆ Ch so iteration terminates with new leaf

5.1 Check for empty Ts,k Ts,k �= ∅

5.2 Check whether Ts,k contains objects of only
one category

Ts,k ⊆ Ch so iteration terminates with new leaf

6.1 Check for empty Ts,c Ts,j �= ∅

6.2 Check whether Ts,c contains objects of only
one category

Ts,c ⊆ Cl so iteration terminates with new leaf
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The discretisation of continuous information is a common problem
in learning systems (Susmaga 1997) and a wide range of discretisation
algorithms have been proposed. The software described in the following
section relies on a simple heuristic for discretisation, an approach also used
by Walker and Moore (1988). The heuristic uses measures of spread to
categorise the population of values for a particular continuous attribute into
up to five separate categories. The approach is effective, simple and can
operate unsupervised, but could easily be replaced by more sophisticated
discretisation algorithms, such as cluster analysis.

4.2. Spatial parameters

A variety of spatial information naturally lends itself to a discrete repre-
sentation, such as topological information. Spatially continuous informa-
tion, such as coordinate location, must be discretised before induction in a
similar way to continuous aspatial information, for example by using cluster
analysis. Spatial information can be very rich and in addition to locational
or topological information, other discretised derived spatial parameters can
be included in the induction process. The inductive quality capture tool
described in §5 automatically calculates a local measure of spatial density,
geometric complexity and area or length where appropriate for each spatial
object. The derived spatial parameters can then be discretised and utilised in
the induction algorithm as described above.

It is worth noting that the choice of spatial parameters used introduces an
element of circularity to the induction process. Feature density was already
known to be important to data quality for the KC application (see §3.1),
before it was included as an attribute to be used in the inductive learning
algorithm. In general, the algorithm will only provide reasonable results if
supplied with relevant information (see §4.4 below). Deciding what spatial
(or aspatial) attributes are likely to be relevant may require some prior knowl-
edge or experience of the problem domain. In practice, the task of deciding
which attributes to include is not as difficult as might be imagined, since the
inductive learning algorithm works best in information rich environments.
As a general principle, ‘more is better’: the performance of the algorithm will
most likely be improved by making any and all possible spatial and aspatial
attributes available to the inductive learning algorithm.

4.3. Majority classification

There are two points within the induction process when arbitrary categor-
isations need to be used. The first point occurs when the training set for a
particular iteration is empty, T = ∅ (see §3). T = ∅ occurs when a training
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set has no objects that exhibit a particular value for an attribute being used
to partition that training set. The second point, as suggested in §3, occurs
when conflicting information exists and two objects with identical attributes
belong to different categories. In reality both cases do occur, and the inductive
quality capture tool uses a majority classification heuristic to provide a basis
for an otherwise arbitrary categorisation. By looking at the range of different
outcomes in the training set, or in the training set of the parent iteration in the
case of T = ∅, the inductive quality capture tool assigns a new decision with
the most populous outcome in that set. The assumption is that, on balance
and in the absence of better information, the category with the majority of
instances in the training set is the more likely outcome.

4.4. Overfitting

The inductive learning algorithm is far from infallible. A problem common to
learning algorithms generally occurs when a learning algorithm infers mean-
ingless patterns from a data set, termed overfitting (Russell and Norvig 1995).
In particular, if the training set is unrepresentative or too small, the algorithm
is much more likely to derive rules that relate to no particular processes or
are entirely coincidental. In order to provide some guidance as to whether
the training process has been successful, the induction algorithm reserves a
portion of the training set, approximately one-third of the data, for cross-
validation purposes. Having produced a decision tree using two-thirds of the
training set, the decision tree is then used to deduce the correct categorisation
for the remaining third of the training set. These results can be compared with
the actual categorisations in the reserved third of the training set, to provide
a guide as to how successful the training process was. Low classification
accuracies indicate the training set is unrepresentative or too small and the
training set needs to be extended.

There are two extreme cases that may cause the induction process to fail
despite cross-validation. First, the cross-validation process may produce low
classification accuracies for any training set drawn from a data set where
spatial data quality is strongly related to some attribute which is not avail-
able in that data set. For example, when digitising map-based data, positional
accuracy may be strongly dependent on the digitiser operator. If there exists
no record of which operators digitised which features and there exists no
discernible pattern in the spatial or thematic distribution of different digitiser
operator’s work (ie operators worked on features of every type and in every
spatial region) then it is likely that the inductive learning algorithm would
never achieve satisfactory cross-validation results. Second, high classification
accuracies could be incorrectly indicated where spatial data quality is both
strongly spatially autocorrelated and the training set happens to coincide with
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a relatively homogeneous region or set of regions. This problem is more diffi-
cult to deal with, as it will result in artificially high classification accuracies
that indicate training has been more successful than in fact has been the case.
In practice, neither of these effects were observed, and both are relatively
remote possibilities. For data sets that do exhibit these characteristics, the
inductive learning algorithm is unsuitable and more conventional methods of
data quality capture would be necessary.

4.5. Spatial inference

Following training, the decision tree should be able to make reasonable
decisions regarding the quality of the geospatial objects from which the
training set was drawn, even objects with attribute values that the decision
tree has not encountered during training. Inevitably, the trained decision tree
may come across objects that it cannot categorise because a completely new
attribute value arises that was not present within the training set. Assuming
the training set was representative, such situations should be infrequent.
Rather than just abandon the automatic data quality assessment for these
objects, the inductive quality capture tool attempts to match the problem
object with a similar nearby object for which the attribute can be resolved.
By further assuming the existence of spatial autocorrelation, it should be
reasonable to substitute the nearest similar object for the problem object
if the decision process stalls occasionally. The assumption of autocorrela-
tion does not always hold. Many geographic features are not autocorrelated
and in such cases the spatial inference mechanism should not be used.
However, autocorrelation is undoubtedly an important factor in a wide range
of geographic phenomena (Tobler 1970) and the assumption of autocorrela-
tion will normally be a valid one. As an illustration of the spatial inference
mechanism, in the example in §3.1 the trained decision tree in Figure 1
would have difficulty with an object o7 = [density = “very dense”, type =
“cabinet”], since the attribute value “very dense” did not occur in the training
set. In such a case, the spatial inference mechanism would be free to substitute
the density attribute value of the nearest “cabinet” object. If such an object
exists and the attribute is spatially autocorrelated, the object is more likely
to have the density attribute value “dense” rather than “sparse” by virtue of
being nearby and consequently ought to be a reasonable substitute.

4.6. Parallel induction

The automatic data quality capture technique described so far would be very
useful for deriving decision trees which could be used to infer the quality
of geospatial objects in terms of a single quality element. For example, the



273

algorithm could train a decision tree to infer accuracy or to infer lineage for
a data set. However, it is very likely that for a given set of geospatial objects,
accuracy, lineage and indeed any other quality element may vary independ-
ently of each other. Further, a particular quality element may have a number
of attributes that also vary independently. The inductive quality assessment
task can be viewed as a number of parallel induction tasks based on a training
set categorised according to each attribute on each of the quality elements
present in the training set.

This study developed a simple extension to the conventional induction
algorithm outlined above, which is able to perform the induction process in
parallel for several categorisations. In common with the conventional induc-
tion algorithm, the parallel induction algorithm uses a single training set and
produces a single decision tree. At any given induction step the attribute used
to partition the training set can be selected according to the total information
gain produced by that attribute. Since information content is additive, the
total information gain can be calculated from the summed information gain
for each individual category family. Attributes can then be selected on the
basis of maximal information gain across a range of categories. The result
is that while a decision may be sub-optimal for an individual category at an
individual iteration, overall the system still results in an efficient decision
tree that should be able to resolve a number of categorisations at each step,
effectively performing several categorisations at once.

For example, in the KC data capture process, certain feature types were
captured by digitising from existing maps, while others were captured
through field resurvey. In addition to the accuracy classifications Cl and Ch in
§3.1, the lineage of geospatial data might be represented with two categories
Dr , containing features that have been resurveyed, and Dd containing features
have been digitised without resurvey, as in Equations 7 and 8.

Dr = {o2, o3, o5} (7)

Dd = {o1, o4} (8)

The induction process can then proceed much as Table 1, independently
calculating information gain for both accuracy and lineage, and calculating
the optimal partition for all categories. Table 2 provides the first iteration of
this revised parallel induction process, while Figure 2 provides a summarised
version of the decision table resulting from the parallel induction process.
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Table 2. Parallel induction process: first iteration

Induction step Details

0.1 Start induction process with T , Cl , Ch, Dr

and Dd

T = {o1, o2, o3, o4, o5}, Cl = {o1, o2, o3}, Ch =
{o4, o5}, Dr = {o2, o3, o5}, Dd = {o1, o4}

1.1 Check for empty T T �= ∅

1.2 Check whether T contains objects of only
one category

T � Cl T � Ch T � Dr T � Dd

1.3 Partition T with first attribute, type. Tp = {o1, o4} Tk = {o2, o5} Tc = {o3}
1.4.1 Calculate information gain for type with

accuracy
GainC(type) =
I ( 3

5 ,
2
5 )− ( 2

5 I (
1
2 ,

1
2 )+ 2

5 I (
1
2 ,

1
2 )+ 1

5 I (
1
1 ,

0
1 )) =

0.171 bits

1.4.2 Calculate information gain for type with
lineage

GainD(type) =
I ( 3

5 ,
2
5 )− ( 2

5 I (
2
2 ,

0
2 )+ 2

5 I (
2
2 ,

0
2 )+ 1

5 I (
1
1 ,

0
1 )) =

0.971 bits

1.5 Partition T with second attribute, density. Td = {o1, o2} Ts = {o3, o4, o5}
1.6.1 Calculate information gain for density with

accuracy
GainC(density) =
I ( 3

5 ,
2
5 ) − ( 3

5 I (
2
3 ,

1
3 ) + 2

5 I (
2
2 ,

0
2 )) = 0.420 bits

1.6.2 Calculate information gain for density with
lineage

GainD(density) =
I ( 3

5 ,
2
5 ) − ( 3

5 I (
2
3 ,

1
3 ) + 2

5 I (
1
2 ,

1
2 )) = 0.020 bits

1.7 Create new decision node using attribute
with highest total information gain and reit-
erate process.

Gain(type) = 0.171 + 0.971 = 1.142bits
Gain(density) = 0.420 + 0.020 = 0.440bits so
reiterate with Tp , Tk and Tc

. . .

5. Implementation results

An inductive quality capture tool was implemented using the inductive
learning algorithm outlined above. The tool offers a simple interface to help
GIS users to incorporate quality information into their data set during data
capture. The quality capture tool is intended to work alongside conventional
geospatial data capture streams. In particular, it is aimed at legacy data
capture projects, such as that undertaken by KC.

5.1. Choosing the training set

Use of the inductive quality capture tool begins with a pilot assessment of the
quality of a small area of the legacy paper map data being captured. This pilot
quality assessment forms the training set for the inductive learning algorithm.
In the case of KC, it proved entirely feasible to derive a picture of the history
and accuracy of the KC data without the need for resurvey. Simply by looking
through the project documentation, familiarity with the source maps and by
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Figure 2. Example parallel induction process results.

talking with the KC, SDS and Informed Solutions employees it was possible
to produce a credible pilot quality assessment. Perversely, a significant body
of quality information associated with legacy paper maps will usually be lost
during the migration to digital mapping. Lineage information on the proven-
ance of maps and map features is well known to engineers used to handling
those maps. Levels of accuracy, precision and detail are often implied by
the physical limitations of the map, limitations which do not apply once
the map is digitised. In other cases it might be necessary to embark upon
relatively expensive resurvey. In the case of legacy data capture the value of
such informally developed quality information should never be discounted.
The pilot assessment was conducted along conventional lines, based on the
procedures set out in the Spatial Data Transfer Standard (SDTS, US Geolo-
gical Survey 1999). The detailed choice of quality elements used is external to
the induction algorithm, and any quality elements or standard could be used.
Initial experiments with other common standards, namely Spatial Archive
and Interchange Format (SAIF, Geographic Data BC 1996) and the European
draft standard (CEN/TC287 1996) proved just as successful as using SDTS
as a basis.

It is worth noting that the pilot quality assessment used for the training
set need not be located within a single contiguous geographic area. For
the purposes of the core induction algorithm, the pilot quality assessment
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can operate using a training set composed of features that are geographi-
cally dispersed across the study area. However, two practical considerations
militate against using such dispersed training sets. First, it will usually be
much more efficient from the point of view of data capture to perform the
pilot quality on a single contiguous sub-set of the study area rather than
perform a piecemeal assessment over the entire study area. Second, the induc-
tion optimisation routines may assume that the training set is not spatially
dispersed. In particular, the calculation of feature density mentioned in §4.2
assumes that the spacing of features in the training set is characteristic of the
study area generally. If the training set is spatially dispersed this assumption
will not hold.

5.2. Tool architecture

The inductive quality capture tool was programmed using Java object-
oriented programming language (OOPL). The tool communicates with a
geospatial database via a three-tier client-server architecture built using Java
remote method invocation (RMI), related to the common object request
broker architecture (CORBA). Potentially, this architecture means the tool
could be used to interface with almost any database. In the case of this study,
the core spatial database functionality was provided by Laser-Scan Gothic
OO GIS. The Laser-Scan database was modified to allow objects in the spatial
database to be associated with quality objects, as described in Duckham and
Drummond (1999). Using RMI, the relationships between quality and other
database objects can be controlled transparently by any Java program, such
as the inductive quality capture tool.

The tool interface, shown in Figure 3 acts as a data import filter, allowing
the pilot data set to be imported and quality assessment information added
to this pilot data set. The pilot data set for this study was drawn from the
KC data supplied by SDS in the form of CLIFF files, the intermediate text
file format used by the KC project for data transfer. The tool as depicted in
Figure 3 has four linked windows. The main map window, in the top left
of Figure 3, shows a portion of the pilot data set and the menus needed to
control tool operation. Once loaded, the pilot data set is annotated with quality
information gathered, in this case, from the informal sources described in
§5.1. In order to annotate the pilot data set with quality information a further
three different types of window are needed, shown in Figure 3. Clockwise
from the main map window, a geospatial object selection window displays the
attributes of geospatial objects selected from the main map window, while a
selected quality object and a quality attribute window allow individual quality
objects to be defined and associated with selected geospatial objects.
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Figure 3. Pilot quality assessment

Once the quality assessment information has been added to the pilot
data, this information can be used as the basis of a wider quality assess-
ment. The tool uses the pilot data set as a training set for the inductive
learning algorithm. The geospatial data in the training set is categorised
into a number of separate category families according to its associated
quality objects’ attributes. Using this training set the quality capture inductive
learning algorithm looks for patterns in the geospatial data that imply patterns
in the quality data. The product of the induction algorithm is a decision
tree tailored to the particular features of the telecommunications data being
captured. Once created, this decision tree can be applied to the remaining
data being captured, automatically deducing quality information. Java RMI is
used to manage the flow of information between the inductive quality capture
tool and the Laser-Scan database, although the architecture ensures that this
information flow is completely hidden from the tool user.

5.3. Tool performance

The induction algorithm is guaranteed to infer a decision tree from a represen-
tative training set of geospatial objects and their associated quality. This
decision tree can then be used to derive quality information for the full data
set from which the training set is derived. Based on the KC data capture
project, the technique was tested on a small section total area, approximately
half of a 1 km2 area located at UK National Grid coordinates (510000,
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434000). The discussion in §4.4 highlighted the problems with overfitting
where unrepresentative or small data sets infer meaningless patterns. In
order to increase the likelihood of meaningful results, following training and
cross-validation the tool interface displays a dialogue box that reports the
classification accuracy of the training process, along with some guidance as to
what that accuracy means and whether the pilot data set should be extended.
As a rule of thumb, this study suggested that the best results were produced
by pilot assessments covering between 5 and 10% of the total number of
features. Such assessments generally resulted in classification accuracies of
80% or greater. Assessments of less than 5% of the total number of features
were much more likely to be unpredictable or unreasonable. As indicated in
§4.4, data exhibiting certain unusual characteristics may produce consistently
low classification accuracies or otherwise poor performance. While no such
problems were encountered in this study, users should be aware that inductive
learning may not be suitable for certain special data sets.

As a last line of defence, all automatically generated quality objects
are themselves associated with a quality object (a meta-quality object) that
reports both the fact that the quality object was automatically generated and
a simple justification of the inductive process leading to the decision to use
that quality object. Where majority classification (see §4.3) has been used for
example, the meta-quality object reports this fact and the size of the majority.
Intuitively this meta-quality information represents the degree of uncertainty
associated with a particular piece of quality information. The meta-quality
information provides the basis of ‘quality audit’, so that following the quality
capture process the original data sets can still be retrieved, and automati-
cally derived quality information can always be distinguished from manually
derived quality information.

6. Further work

The work so far has indicated that inductive learning is a suitable technique
for efficient capture of scarce spatial data quality information. However, there
remains a question mark over how the results of such an inductive quality
capture exercise should be interpreted. Even assuming the training set is
representative of the full data set, it is a moot point as to what extent the
quality information produced by the induction algorithm can be considered
‘correct’. There is a dearth of research addressing the reliability of quality
assessments, and it is difficult to see how the reliability of quality informa-
tion could be tested using conventional experimental methods. Conceivably,
a comparison between repeated independent quality assessments would yield
an idea of how accurate a particular quality assessment procedure is. Such
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experiments have not been performed and, given the difficultly in encour-
aging companies to perform a single quality assessment, it is implausible
to expect the same companies to perform a statistically representative set
of quality assessments in order to derive meta-quality information about the
reliability of their quality assessment procedure. In the absence of such a
mechanism for externally verifying the reliability of spatial data quality infor-
mation, it is difficult to make any sweeping judgments about the inductive
quality capture tool’s performance, other than to say that the results appear
to be reasonable. Clearly, further research into the semantics and veracity of
spatial data quality information would be beneficial, both to better evaluate
the results of this research and more widely for research into spatial data
quality.

Other work is also suggested by this research. Cross-validation is an
effective, but relatively crude mechanism for ensuring the inductive learning
algorithm is operating efficiently. Presenting a single statistic, classification
accuracy, may hide important information about the detailed characteristics
of the induction process. Further work exploring alternative techniques
for providing a more sophisticated impression of the spatial and thematic
characteristics of data quality would be useful. Visualisation of the spatial
and thematic distribution of the multi-dimensional data quality information,
for example, might help users gain some insight into the nature and extent
of likely spatial data quality issues during training. Similarly, sensitivity
analysis of the training process applied to different training sets and attributes
would help provide the user with a more complete picture of the key factors
influencing the efficacy of the inductive learning algorithm.

7. Conclusions

The failure to collect quality information is a self-perpetuating reason for a
widespread failure to incorporate quality management procedures in digital
data capture projects. The already high cost of collecting geospatial data,
coupled with the high levels of competition in industries like telecommunica-
tions, mean that such industries are unlikely to embrace quality management
of geospatial data on short-term financial grounds alone. The value of the
inductive quality capture tool within the error-aware GIS architecture is that
it maximises the efficiency of quality assessment, requiring only a small frac-
tion of the information produced during full quality assessment to operate.
Potentially, introducing low-cost quality capture techniques is the first step in
breaking the cycle that prevents companies collecting and using data quality
information for geospatial data sets.
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The induction algorithm at the heart of the inductive quality capture
tool uses a pilot data set to infer general rules relating quality to geospa-
tial objects. Individual geospatial objects in the pilot data set are categor-
ised according to their quality. The induction algorithm is able to build a
decision tree based on the spatial and aspatial characteristics of the geospa-
tial objects, while performing a cross-validation on a reserved portion of the
pilot data set. Assuming the cross-validation indicates the training process
has been successful, this decision tree can be used to automatically infer
quality more generally across the geospatial data set. Experiences during
this study support the view that induction when applied to automated quality
capture can produce reasonable results, while automatically generated meta-
quality information can provide guidance as to the verity of inferred quality
information.
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